##Variables como factor y cambio de nombres
train <- train %>% mutate_at(vars(Died, gender, hypertension, a_fib, CHD, diabetes, anemia, depression, Hyperlipemia, CKD, COPD ),~as.factor(.))
train$heart=train$`heart rate`
train$syst=train$`Systolic blood pressure`
train$dias=train$`Diastolic blood pressure`
train$sat=train$`SP O2`
train$magn=train$`Magnesium ion`
train$probnp=train$`NT-proBNP`
train$resp=train$`Respiratory rate`
train$ureanit=train$`Urea nitrogen`
train$urine=train$`Urine output`
train$sodio=train$`Blood sodium`
train$lactico=train$`Lactic acid`
train$calcio=train$`Blood calcium`
train$potasio=train$`Blood potassium`
train <- train %>% select(-`heart rate`)
train <- train %>% select(-`Systolic blood pressure`)
train <- train %>% select(-`Diastolic blood pressure`,- `Respiratory rate`, -`Magnesium ion`)
train <- train %>% select(-`Urea nitrogen`, -`Urine output`, -`Blood sodium`)
train <- train %>% select(-`Blood calcium`, -`Blood potassium`, -`Lactic acid`, -`NT-proBNP`)
##Hago base nueva DIED0, donde la variable muerte=1 es muertos y
muerte=0 es vivos al revés de Died según lo hablado con Diego
DIED0=train
DIED0<- DIED0 %>%
mutate(muerte = as.factor(case_when(
Died== 1 ~ "0", Died == 0 ~ "1")))
levels(DIED0$muerte)
## [1] "0" "1"
describe(DIED0$muerte)
## DIED0$muerte
## n missing distinct
## 824 0 2
##
## Value 0 1
## Frequency 108 716
## Proportion 0.131 0.869
describe(train$Died)
## train$Died
## n missing distinct
## 824 0 2
##
## Value 0 1
## Frequency 716 108
## Proportion 0.869 0.131
##Tabla 1a Antecedentes Tabla 1b Continuas
#Creo variable muerte 1 si/no para que la tabla se vea mejor
DIED0<- DIED0 %>% select(-`Died`)
DIED0$muerte1=DIED0$muerte
DIED0$muerte1 <- factor(DIED0$muerte1,
levels = c(0, 1),
labels = c("No muerte", "Muerte"))
catvars = c( "gender", "hypertension", "a_fib", "CHD", "diabetes", "anemia", "depression", "Hyperlipemia", "CKD", "COPD")
vars = c("gender", "hypertension", "a_fib", "CHD", "diabetes", "anemia", "depression", "Hyperlipemia", "CKD", "COPD")
tabla_1a <- CreateTableOne(vars = vars, strata = "muerte1", factorVars = catvars, data = DIED0)
print(tabla_1a)
## Stratified by muerte1
## No muerte Muerte p test
## n 108 716
## gender = 2 (%) 52 (48.1) 382 (53.4) 0.365
## hypertension = 1 (%) 67 (62.0) 521 (72.8) 0.029
## a_fib = 1 (%) 64 (59.3) 313 (43.7) 0.004
## CHD = 1 (%) 10 ( 9.3) 66 ( 9.2) 1.000
## diabetes = 1 (%) 42 (38.9) 310 (43.3) 0.448
## anemia = 1 (%) 22 (20.4) 266 (37.2) 0.001
## depression = 1 (%) 8 ( 7.4) 90 (12.6) 0.166
## Hyperlipemia = 1 (%) 39 (36.1) 278 (38.8) 0.664
## CKD = 1 (%) 24 (22.2) 276 (38.5) 0.001
## COPD = 1 (%) 3 ( 2.8) 64 ( 8.9) 0.046
library(dplyr)
kableone(tabla_1a)
n |
108 |
716 |
|
|
gender = 2 (%) |
52 (48.1) |
382 (53.4) |
0.365 |
|
hypertension = 1 (%) |
67 (62.0) |
521 (72.8) |
0.029 |
|
a_fib = 1 (%) |
64 (59.3) |
313 (43.7) |
0.004 |
|
CHD = 1 (%) |
10 ( 9.3) |
66 ( 9.2) |
1.000 |
|
diabetes = 1 (%) |
42 (38.9) |
310 (43.3) |
0.448 |
|
anemia = 1 (%) |
22 (20.4) |
266 (37.2) |
0.001 |
|
depression = 1 (%) |
8 ( 7.4) |
90 (12.6) |
0.166 |
|
Hyperlipemia = 1 (%) |
39 (36.1) |
278 (38.8) |
0.664 |
|
CKD = 1 (%) |
24 (22.2) |
276 (38.5) |
0.001 |
|
COPD = 1 (%) |
3 ( 2.8) |
64 ( 8.9) |
0.046 |
|
catvars = c( "gender", "hypertension", "a_fib", "CHD", "diabetes", "anemia", "depression", "Hyperlipemia", "CKD", "COPD")
#edad y enojo son continuas
vars = c("age","temperature", "hematocrit","Leucocyte","Platelets","INR","Creatinine","glucose","Chloride","PH","Bicarbonate","PCO2","heart","syst","dias","sat","magn","probnp","resp","ureanit","urine","sodio","lactico", "calcio","potasio", "SP O2")
tabla_2a <- CreateTableOne(vars = vars, strata = "muerte1", factorVars = catvars, data = DIED0)
print(tabla_2a)
## Stratified by muerte1
## No muerte Muerte p test
## n 108 716
## age (mean (SD)) 75.98 (14.01) 73.76 (13.01) 0.102
## temperature (mean (SD)) 36.48 (0.73) 36.70 (0.57) <0.001
## hematocrit (mean (SD)) 31.97 (5.43) 31.91 (5.11) 0.913
## Leucocyte (mean (SD)) 13.84 (7.96) 10.37 (4.52) <0.001
## Platelets (mean (SD)) 214.03 (133.44) 248.72 (108.03) 0.003
## INR (mean (SD)) 2.02 (1.40) 1.58 (0.75) <0.001
## Creatinine (mean (SD)) 1.84 (1.20) 1.60 (1.21) 0.046
## glucose (mean (SD)) 151.15 (52.98) 148.52 (50.57) 0.617
## Chloride (mean (SD)) 103.36 (6.04) 102.12 (5.28) 0.026
## PH (mean (SD)) 7.36 (0.08) 7.38 (0.06) <0.001
## Bicarbonate (mean (SD)) 23.48 (5.32) 27.41 (5.01) <0.001
## PCO2 (mean (SD)) 43.16 (12.22) 45.49 (11.54) 0.053
## heart (mean (SD)) 88.24 (14.68) 83.80 (15.83) 0.006
## syst (mean (SD)) 110.39 (16.75) 119.21 (17.05) <0.001
## dias (mean (SD)) 57.67 (9.21) 60.00 (10.84) 0.034
## sat (mean (SD)) 95.90 (3.01) 96.35 (2.14) 0.054
## magn (mean (SD)) 2.18 (0.31) 2.10 (0.24) 0.004
## probnp (mean (SD)) 15554.25 (14867.09) 10814.14 (12818.97) <0.001
## resp (mean (SD)) 21.68 (4.27) 20.51 (3.93) 0.005
## ureanit (mean (SD)) 48.71 (28.71) 34.83 (20.81) <0.001
## urine (mean (SD)) 1251.19 (1042.46) 1999.65 (1271.35) <0.001
## sodio (mean (SD)) 138.18 (5.35) 139.02 (3.97) 0.052
## lactico (mean (SD)) 2.40 (1.36) 1.71 (0.75) <0.001
## calcio (mean (SD)) 8.23 (0.63) 8.54 (0.55) <0.001
## potasio (mean (SD)) 4.34 (0.58) 4.15 (0.38) <0.001
## SP O2 (mean (SD)) 95.90 (3.01) 96.35 (2.14) 0.054
kableone(tabla_2a)
n |
108 |
716 |
|
|
age (mean (SD)) |
75.98 (14.01) |
73.76 (13.01) |
0.102 |
|
temperature (mean (SD)) |
36.48 (0.73) |
36.70 (0.57) |
<0.001 |
|
hematocrit (mean (SD)) |
31.97 (5.43) |
31.91 (5.11) |
0.913 |
|
Leucocyte (mean (SD)) |
13.84 (7.96) |
10.37 (4.52) |
<0.001 |
|
Platelets (mean (SD)) |
214.03 (133.44) |
248.72 (108.03) |
0.003 |
|
INR (mean (SD)) |
2.02 (1.40) |
1.58 (0.75) |
<0.001 |
|
Creatinine (mean (SD)) |
1.84 (1.20) |
1.60 (1.21) |
0.046 |
|
glucose (mean (SD)) |
151.15 (52.98) |
148.52 (50.57) |
0.617 |
|
Chloride (mean (SD)) |
103.36 (6.04) |
102.12 (5.28) |
0.026 |
|
PH (mean (SD)) |
7.36 (0.08) |
7.38 (0.06) |
<0.001 |
|
Bicarbonate (mean (SD)) |
23.48 (5.32) |
27.41 (5.01) |
<0.001 |
|
PCO2 (mean (SD)) |
43.16 (12.22) |
45.49 (11.54) |
0.053 |
|
heart (mean (SD)) |
88.24 (14.68) |
83.80 (15.83) |
0.006 |
|
syst (mean (SD)) |
110.39 (16.75) |
119.21 (17.05) |
<0.001 |
|
dias (mean (SD)) |
57.67 (9.21) |
60.00 (10.84) |
0.034 |
|
sat (mean (SD)) |
95.90 (3.01) |
96.35 (2.14) |
0.054 |
|
magn (mean (SD)) |
2.18 (0.31) |
2.10 (0.24) |
0.004 |
|
probnp (mean (SD)) |
15554.25 (14867.09) |
10814.14 (12818.97) |
<0.001 |
|
resp (mean (SD)) |
21.68 (4.27) |
20.51 (3.93) |
0.005 |
|
ureanit (mean (SD)) |
48.71 (28.71) |
34.83 (20.81) |
<0.001 |
|
urine (mean (SD)) |
1251.19 (1042.46) |
1999.65 (1271.35) |
<0.001 |
|
sodio (mean (SD)) |
138.18 (5.35) |
139.02 (3.97) |
0.052 |
|
lactico (mean (SD)) |
2.40 (1.36) |
1.71 (0.75) |
<0.001 |
|
calcio (mean (SD)) |
8.23 (0.63) |
8.54 (0.55) |
<0.001 |
|
potasio (mean (SD)) |
4.34 (0.58) |
4.15 (0.38) |
<0.001 |
|
SP O2 (mean (SD)) |
95.90 (3.01) |
96.35 (2.14) |
0.054 |
|
##Modelo univariado
DIED0 %>%
tbl_uvregression(
method = glm,
y = muerte1,
method.args = list(family = binomial),
exponentiate = TRUE,
pvalue_fun = ~style_pvalue(.x, digits = 2)) %>% bold_p() %>% bold_labels()
## There was a warning constructing the model for variable "muerte". See message
## below.
## ! glm.fit: algorithm did not converge
## There was a warning running `tbl_regression()` for variable "muerte". See
## message below.
## ! glm.fit: fitted probabilities numerically 0 or 1 occurred, glm.fit: fitted
## probabilities numerically 0 or 1 occurred, glm.fit: fitted probabilities
## numerically 0 or 1 occurred, glm.fit: fitted probabilities numerically 0 or 1
## occurred, glm.fit: fitted probabilities numerically 0 or 1 occurred, glm.fit:
## fitted probabilities numerically 0 or 1 occurred, glm.fit: fitted
## probabilities numerically 0 or 1 occurred, glm.fit: fitted probabilities
## numerically 0 or 1 occurred, glm.fit: fitted probabilities numerically 0 or 1
## occurred, glm.fit: fitted probabilities numerically 0 or 1 occurred, glm.fit:
## fitted probabilities numerically 0 or 1 occurred, glm.fit: fitted
## probabilities numerically 0 or 1 occurred, glm.fit: fitted probabilities
## numerically 0 or 1 occurred, glm.fit: fitted probabilities numerically 0 or 1
## occurred, glm.fit: fitted probabilities numerically 0 or 1 occurred, glm.fit:
## fitted probabilities numerically 0 or 1 occurred, glm.fit: fitted
## probabilities numerically 0 or 1 occurred, glm.fit: fitted probabilities
## numerically 0 or 1 occurred, glm.fit: fitted probabilities numerically 0 or 1
## occurred, and glm.fit: fitted probabilities numerically 0 or 1 occurred
Characteristic |
N |
OR |
95% CI |
p-value |
age |
824 |
0.99 |
0.97, 1.00 |
0.10 |
gender |
824 |
|
|
|
Ā Ā Ā Ā 1 |
|
ā |
ā |
|
Ā Ā Ā Ā 2 |
|
1.23 |
0.82, 1.85 |
0.31 |
hypertension |
824 |
|
|
|
Ā Ā Ā Ā 0 |
|
ā |
ā |
|
Ā Ā Ā Ā 1 |
|
1.63 |
1.07, 2.48 |
0.022 |
a_fib |
824 |
|
|
|
Ā Ā Ā Ā 0 |
|
ā |
ā |
|
Ā Ā Ā Ā 1 |
|
0.53 |
0.35, 0.80 |
0.003 |
CHD |
824 |
|
|
|
Ā Ā Ā Ā 0 |
|
ā |
ā |
|
Ā Ā Ā Ā 1 |
|
1.00 |
0.52, 2.12 |
0.99 |
diabetes |
824 |
|
|
|
Ā Ā Ā Ā 0 |
|
ā |
ā |
|
Ā Ā Ā Ā 1 |
|
1.20 |
0.80, 1.83 |
0.39 |
anemia |
824 |
|
|
|
Ā Ā Ā Ā 0 |
|
ā |
ā |
|
Ā Ā Ā Ā 1 |
|
2.31 |
1.44, 3.86 |
<0.001 |
depression |
824 |
|
|
|
Ā Ā Ā Ā 0 |
|
ā |
ā |
|
Ā Ā Ā Ā 1 |
|
1.80 |
0.90, 4.13 |
0.13 |
Hyperlipemia |
824 |
|
|
|
Ā Ā Ā Ā 0 |
|
ā |
ā |
|
Ā Ā Ā Ā 1 |
|
1.12 |
0.74, 1.72 |
0.59 |
CKD |
824 |
|
|
|
Ā Ā Ā Ā 0 |
|
ā |
ā |
|
Ā Ā Ā Ā 1 |
|
2.20 |
1.38, 3.61 |
0.001 |
COPD |
824 |
|
|
|
Ā Ā Ā Ā 0 |
|
ā |
ā |
|
Ā Ā Ā Ā 1 |
|
3.44 |
1.25, 14.2 |
0.040 |
temperature |
824 |
1.82 |
1.30, 2.57 |
<0.001 |
SP O2 |
824 |
1.08 |
1.00, 1.18 |
0.057 |
hematocrit |
824 |
1.00 |
0.96, 1.04 |
0.91 |
Leucocyte |
824 |
0.90 |
0.87, 0.93 |
<0.001 |
Platelets |
824 |
1.00 |
1.00, 1.01 |
0.003 |
INR |
824 |
0.65 |
0.54, 0.78 |
<0.001 |
Creatinine |
824 |
0.87 |
0.76, 1.01 |
0.051 |
glucose |
824 |
1.00 |
1.00, 1.00 |
0.62 |
Chloride |
824 |
0.96 |
0.92, 1.0 |
0.026 |
PH |
824 |
893 |
36.6, 22,910 |
<0.001 |
Bicarbonate |
824 |
1.19 |
1.14, 1.25 |
<0.001 |
PCO2 |
824 |
1.02 |
1.00, 1.04 |
0.053 |
heart |
824 |
0.98 |
0.97, 1.00 |
0.007 |
syst |
824 |
1.04 |
1.02, 1.05 |
<0.001 |
dias |
824 |
1.02 |
1.00, 1.04 |
0.034 |
sat |
824 |
1.08 |
1.00, 1.18 |
0.057 |
magn |
824 |
0.34 |
0.16, 0.73 |
0.005 |
probnp |
824 |
1.00 |
1.00, 1.00 |
<0.001 |
resp |
824 |
0.93 |
0.89, 0.98 |
0.005 |
ureanit |
824 |
0.98 |
0.97, 0.99 |
<0.001 |
urine |
824 |
1.00 |
1.00, 1.00 |
<0.001 |
sodio |
824 |
1.05 |
1.00, 1.09 |
0.053 |
lactico |
824 |
0.51 |
0.41, 0.62 |
<0.001 |
calcio |
824 |
2.75 |
1.90, 4.04 |
<0.001 |
potasio |
824 |
0.38 |
0.24, 0.59 |
<0.001 |
muerte |
824 |
|
|
|
Ā Ā Ā Ā 0 |
|
ā |
ā |
|
Ā Ā Ā Ā muerte1 |
|
118,848,047,226,233,318,016,086 |
0.00, Inf |
>0.99 |
Abbreviations: CI = Confidence Interval, OR = Odds Ratio |
##Variables lineales. Comportamiento
#resp NO ES LINEAL. baja en el Ćŗltimo quintilo. Puede usarse igualmente como lineal p=0.82
DIED0<- DIED0 %>% mutate(resp_q = ntile(resp, 5))
DIED0%>%
dplyr::group_by(resp_q) %>%
dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
ggplot(aes(x = resp_q, y = tar)) +
geom_point() +
geom_smooth(method = "lm", col = "blue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
dplyr::group_by(resp_q) %>%
dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
ggplot(aes(x = resp_q, y = tar)) +
geom_col(fill = "steelblue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
labs(x = "Cuartiles resp", y = "Proporción de muertes") +
theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(resp ~ rcs(urine, 3), data = DIED0)
anova(fit)
## Wald Statistics Response: resp
##
## Factor Chi-Square d.f. P
## urine 1.46 2 0.483
## Nonlinear 0.05 1 0.828
## TOTAL 1.46 2 0.483
#dicotomizar resp
quantile(DIED0$resp,0.80)
## 80%
## 23.9
describe(DIED0$resp)
## DIED0$resp
## n missing distinct Info Mean pMedian Gmd .05
## 824 0 725 1 20.66 20.49 4.451 14.66
## .10 .25 .50 .75 .90 .95
## 15.97 17.86 20.20 23.25 25.76 27.55
##
## lowest : 11.1379 11.8182 12 12.2121 12.3333
## highest: 33.08 33.1154 33.85 34.6934 40.9
DIED0 <- DIED0 %>% mutate(respfactor = as.factor(case_when(resp< 23.9 ~ "0",resp>= 23.9 ~"1")))
describe(DIED0$respfactor)
## DIED0$respfactor
## n missing distinct
## 824 0 2
##
## Value 0 1
## Frequency 661 163
## Proportion 0.802 0.198
levels(DIED0$respfactor)
## [1] "0" "1"
modresp1<-glm(muerte~respfactor, family = "binomial", data=DIED0)
tab_model(modresp1)
Ā
|
muerte
|
Predictors
|
Odds Ratios
|
CI
|
p
|
(Intercept)
|
8.18
|
6.45Ā āĀ 10.53
|
<0.001
|
respfactor [1]
|
0.43
|
0.28Ā āĀ 0.68
|
<0.001
|
Observations
|
824
|
R2 Tjur
|
0.017
|
#temperatura. El primer quintilo es mƔs bajo que los demƔs. Se puede usar igualmente en forma lineal
DIED0<- DIED0 %>% mutate(temperature_q = ntile(temperature, 5))
DIED0%>%
dplyr::group_by(temperature_q) %>%
dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
ggplot(aes(x = temperature_q, y = tar)) +
geom_point() +
geom_smooth(method = "lm", col = "blue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
dplyr::group_by(temperature_q) %>%
dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
ggplot(aes(x = temperature_q, y = tar)) +
geom_col(fill = "steelblue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
labs(x = "Cuartiles temperature", y = "Proporción de muertes") +
theme_minimal()

#dicotomizar temp
quantile(DIED0$temperature,0.20)
## 20%
## 36.2
describe(DIED0$temperature)
## DIED0$temperature
## n missing distinct Info Mean pMedian Gmd .05
## 824 0 583 1 36.67 36.66 0.6547 35.80
## .10 .25 .50 .75 .90 .95
## 35.97 36.30 36.66 37.02 37.44 37.67
##
## lowest : 33.25 34.1507 34.3241 34.6056 34.6722
## highest: 38.2698 38.2778 38.3651 38.4136 38.6435
DIED0 <- DIED0 %>% mutate(tempfactor = as.factor(case_when(temperature< 36.2 ~ "0",temperature>= 36.2 ~"1")))
describe(DIED0$tempfactor)
## DIED0$tempfactor
## n missing distinct
## 824 0 2
##
## Value 0 1
## Frequency 164 660
## Proportion 0.199 0.801
levels(DIED0$tempfactor)
## [1] "0" "1"
modtemp1<-glm(muerte~tempfactor, family = "binomial", data=DIED0)
tab_model(modtemp1)
Ā
|
muerte
|
Predictors
|
Odds Ratios
|
CI
|
p
|
(Intercept)
|
4.12
|
2.84Ā āĀ 6.17
|
<0.001
|
tempfactor [1]
|
1.86
|
1.17Ā āĀ 2.91
|
0.007
|
Observations
|
824
|
R2 Tjur
|
0.009
|
dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(temperature, 3), data = DIED0)
anova(fit)
## Wald Statistics Response: muerte
##
## Factor Chi-Square d.f. P
## temperature 15.72 2 0.0004
## Nonlinear 3.21 1 0.0733
## TOTAL 15.72 2 0.0004
#leucocitos: podrĆa tomarse como lineal
DIED0<- DIED0 %>% mutate(Leucocyte_q = ntile(Leucocyte, 5))
DIED0%>%
dplyr::group_by(Leucocyte_q) %>%
dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
ggplot(aes(x = Leucocyte_q, y = tar)) +
geom_point() +
geom_smooth(method = "lm", col = "blue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
dplyr::group_by(Leucocyte_q) %>%
dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
ggplot(aes(x = Leucocyte_q, y = tar)) +
geom_col(fill = "steelblue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
labs(x = "Cuartiles leucocitos", y = "Proporción de muertes") +
theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(temperature, 3), data = DIED0)
anova(fit)
## Wald Statistics Response: muerte
##
## Factor Chi-Square d.f. P
## temperature 15.72 2 0.0004
## Nonlinear 3.21 1 0.0733
## TOTAL 15.72 2 0.0004
#plaquetas
#plaquetas no es lineal
DIED0<- DIED0 %>% mutate(Platelets_q = ntile(Platelets, 5))
DIED0%>%
dplyr::group_by(Platelets_q) %>%
dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
ggplot(aes(x = Platelets_q, y = tar)) +
geom_point() +
geom_smooth(method = "lm", col = "blue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
dplyr::group_by(Platelets_q) %>%
dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
ggplot(aes(x = Platelets_q, y = tar)) +
geom_col(fill = "steelblue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
labs(x = "Cuartiles plaquetas", y = "Proporción de muertes") +
theme_minimal()

library(rms)
dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(Platelets, 3), data = DIED0)
anova(fit)
## Wald Statistics Response: muerte
##
## Factor Chi-Square d.f. P
## Platelets 27.3 2 <.0001
## Nonlinear 18.2 1 <.0001
## TOTAL 27.3 2 <.0001
#INR puede incluirse como lineal
DIED0<- DIED0 %>% mutate(INR_q = ntile(INR, 5))
DIED0%>%
dplyr::group_by(INR_q) %>%
dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
ggplot(aes(x = INR_q, y = tar)) +
geom_point() +
geom_smooth(method = "lm", col = "blue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
dplyr::group_by(INR_q) %>%
dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
ggplot(aes(x = INR_q, y = tar)) +
geom_col(fill = "steelblue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
labs(x = "Cuartiles rin", y = "Proporción de muertes") +
theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(INR, 3), data = DIED0)
anova(fit)
## Wald Statistics Response: muerte
##
## Factor Chi-Square d.f. P
## INR 21.24 2 <.0001
## Nonlinear 0.73 1 0.393
## TOTAL 21.24 2 <.0001
#lactico. puede usarse lineal o dicotomizar el ultimo quintil
DIED0<- DIED0 %>% mutate(lactico_q = ntile(lactico, 5))
DIED0%>%
dplyr::group_by(lactico_q) %>%
dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
ggplot(aes(x =lactico_q, y = tar)) +
geom_point() +
geom_smooth(method = "lm", col = "blue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
dplyr::group_by(lactico_q) %>%
dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
ggplot(aes(x = lactico_q, y = tar)) +
geom_col(fill = "steelblue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
labs(x = "Cuartiles lactico", y = "Proporción de muertes") +
theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(lactico, 3), data = DIED0)
anova(fit)
## Wald Statistics Response: muerte
##
## Factor Chi-Square d.f. P
## lactico 43.91 2 <.0001
## Nonlinear 1.07 1 0.302
## TOTAL 43.91 2 <.0001
#dicotomizar lactico
quantile(DIED0$lactico,0.80)
## 80%
## 2.3
describe(DIED0$lactico)
## DIED0$lactico
## n missing distinct Info Mean pMedian Gmd .05
## 824 0 246 1 1.801 1.675 0.8847 0.825
## .10 .25 .50 .75 .90 .95
## 1.000 1.200 1.600 2.125 2.895 3.402
##
## lowest : 0.5 0.533333 0.6 0.625 0.65
## highest: 6.16667 6.45 6.5 6.6 7.25
DIED0 <- DIED0 %>% mutate(lacticofactor = as.factor(case_when(lactico< 2.3 ~ "0",lactico>= 2.3 ~"1")))
describe(DIED0$lacticofactor)
## DIED0$lacticofactor
## n missing distinct
## 824 0 2
##
## Value 0 1
## Frequency 657 167
## Proportion 0.797 0.203
levels(DIED0$lacticofactor)
## [1] "0" "1"
modlac1<-glm(muerte~lacticofactor, family = "binomial", data=DIED0)
tab_model(modlac1)
Ā
|
muerte
|
Predictors
|
Odds Ratios
|
CI
|
p
|
(Intercept)
|
9.77
|
7.58Ā āĀ 12.84
|
<0.001
|
lacticofactor [1]
|
0.26
|
0.17Ā āĀ 0.40
|
<0.001
|
Observations
|
824
|
R2 Tjur
|
0.050
|
#PH. No lineal. Dicotomiza en primer quintilo
DIED0<- DIED0 %>% mutate(PH_q = ntile(PH, 5))
DIED0%>%
dplyr::group_by(PH_q) %>%
dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
ggplot(aes(x =PH_q, y = tar)) +
geom_point() +
geom_smooth(method = "lm", col = "blue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
dplyr::group_by(PH_q) %>%
dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
ggplot(aes(x = PH_q, y = tar)) +
geom_col(fill = "steelblue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
labs(x = "Cuartiles PH", y = "Proporción de muertes") +
theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(PH, 3), data = DIED0)
anova(fit)
## Wald Statistics Response: muerte
##
## Factor Chi-Square d.f. P
## PH 23.20 2 <.0001
## Nonlinear 4.64 1 0.0313
## TOTAL 23.20 2 <.0001
#dicotomizar PH
quantile(DIED0$PH,0.20)
## 20%
## 7.33
describe(DIED0$PH)
## DIED0$PH
## n missing distinct Info Mean pMedian Gmd .05
## 824 0 331 1 7.379 7.38 0.06996 7.273
## .10 .25 .50 .75 .90 .95
## 7.301 7.340 7.380 7.421 7.459 7.480
##
## lowest : 7.09 7.15833 7.16923 7.182 7.1975
## highest: 7.53 7.534 7.55 7.56 7.58
DIED0 <- DIED0 %>% mutate(PHfactor = as.factor(case_when(PH< 7.33 ~ "0",PH>= 7.33 ~"1")))
describe(DIED0$PHfactor)
## DIED0$PHfactor
## n missing distinct
## 824 0 2
##
## Value 0 1
## Frequency 153 671
## Proportion 0.186 0.814
levels(DIED0$PHofactor)
## Warning: Unknown or uninitialised column: `PHofactor`.
## NULL
modPH1<-glm(muerte~PHfactor, family = "binomial", data=DIED0)
tab_model(modPH1)
Ā
|
muerte
|
Predictors
|
Odds Ratios
|
CI
|
p
|
(Intercept)
|
3.37
|
2.34Ā āĀ 4.99
|
<0.001
|
PHfactor [1]
|
2.43
|
1.54Ā āĀ 3.78
|
<0.001
|
Observations
|
824
|
R2 Tjur
|
0.019
|
#bicarbonato: nolineal dicotomizar primer quintilo
DIED0<- DIED0 %>% mutate(Bicarbonate_q = ntile(Bicarbonate, 5))
DIED0%>%
dplyr::group_by(Bicarbonate_q) %>%
dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
ggplot(aes(x =Bicarbonate_q, y = tar)) +
geom_point() +
geom_smooth(method = "lm", col = "blue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
dplyr::group_by(Bicarbonate_q) %>%
dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
ggplot(aes(x =Bicarbonate_q, y = tar)) +
geom_col(fill = "steelblue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
labs(x = "Cuartiles Bicarbonate", y = "Proporción de muertes") +
theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(Bicarbonate, 3), data = DIED0)
anova(fit)
## Wald Statistics Response: muerte
##
## Factor Chi-Square d.f. P
## Bicarbonate 66.24 2 <.0001
## Nonlinear 9.41 1 0.0022
## TOTAL 66.24 2 <.0001
#dicotomizar bicarbonato
quantile(DIED0$Bicarbonate,0.20)
## 20%
## 22.7
DIED0 <- DIED0 %>% mutate(bicarbonatefactor = as.factor(case_when(Bicarbonate< 22.7 ~ "0",Bicarbonate>= 22.7 ~"1")))
modbic1<-glm(muerte~bicarbonatefactor, family = "binomial", data=DIED0)
tab_model(modbic1)
Ā
|
muerte
|
Predictors
|
Odds Ratios
|
CI
|
p
|
(Intercept)
|
2.17
|
1.58Ā āĀ 3.03
|
<0.001
|
bicarbonatefactor [1]
|
5.04
|
3.29Ā āĀ 7.73
|
<0.001
|
Observations
|
824
|
R2 Tjur
|
0.076
|
dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(Bicarbonate, 3), data = DIED0)
anova(fit)
## Wald Statistics Response: muerte
##
## Factor Chi-Square d.f. P
## Bicarbonate 66.24 2 <.0001
## Nonlinear 9.41 1 0.0022
## TOTAL 66.24 2 <.0001
#ureanit. lineal
DIED0<- DIED0 %>% mutate(ureanit_q = ntile(ureanit, 5))
DIED0%>%
dplyr::group_by(ureanit_q) %>%
dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
ggplot(aes(x =ureanit_q, y = tar)) +
geom_point() +
geom_smooth(method = "lm", col = "blue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
dplyr::group_by(ureanit_q) %>%
dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
ggplot(aes(x =ureanit_q, y = tar)) +
geom_col(fill = "steelblue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
labs(x = "Cuartiles ureanit", y = "Proporción de muertes") +
theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(ureanit, 3), data = DIED0)
anova(fit)
## Wald Statistics Response: muerte
##
## Factor Chi-Square d.f. P
## ureanit 31.66 2 <.0001
## Nonlinear 1.01 1 0.316
## TOTAL 31.66 2 <.0001
#urine. No lineal. parto en el 3er quintilo
DIED0<- DIED0 %>% mutate(urine_q = ntile(urine, 5))
DIED0%>%
dplyr::group_by(urine_q) %>%
dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
ggplot(aes(x =urine_q, y = tar)) +
geom_point() +
geom_smooth(method = "lm", col = "blue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
dplyr::group_by(urine_q) %>%
dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
ggplot(aes(x =urine_q, y = tar)) +
geom_col(fill = "steelblue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
labs(x = "Cuartiles urine", y = "Proporción de muertes") +
theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(urine, 3), data = DIED0)
anova(fit)
## Wald Statistics Response: muerte
##
## Factor Chi-Square d.f. P
## urine 51.2 2 <.0001
## Nonlinear 12.8 1 0.0004
## TOTAL 51.2 2 <.0001
#dicotomizar urine
quantile(DIED0$urine,0.40)
## 40%
## 1372
DIED0 <- DIED0 %>% mutate(urinefactor = as.factor(case_when(urine< 1372 ~ "0",urine>= 1372 ~"1")))
modur1<-glm(muerte~urinefactor, family = "binomial", data=DIED0)
tab_model(modur1)
Ā
|
muerte
|
Predictors
|
Odds Ratios
|
CI
|
p
|
(Intercept)
|
3.52
|
2.73Ā āĀ 4.60
|
<0.001
|
urinefactor [1]
|
3.73
|
2.44Ā āĀ 5.79
|
<0.001
|
Observations
|
824
|
R2 Tjur
|
0.048
|
#Creatinine. Lineal.
DIED0<- DIED0 %>% mutate(Creatinine_q = ntile(urine, 5))
DIED0%>%
dplyr::group_by(Creatinine_q) %>%
dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
ggplot(aes(x =Creatinine_q, y = tar)) +
geom_point() +
geom_smooth(method = "lm", col = "blue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
dplyr::group_by(Creatinine_q) %>%
dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
ggplot(aes(x =Creatinine_q, y = tar)) +
geom_col(fill = "steelblue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
labs(x = "Cuartiles urine", y = "Proporción de muertes") +
theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(Creatinine, 3), data = DIED0)
anova(fit)
## Wald Statistics Response: muerte
##
## Factor Chi-Square d.f. P
## Creatinine 4.16 2 0.125
## Nonlinear 0.54 1 0.461
## TOTAL 4.16 2 0.125
#Cloro.No Lineal. Al dicotomizarlo se vuelve NS
DIED0<- DIED0 %>% mutate(Chloride_q = ntile(urine, 5))
DIED0%>%
dplyr::group_by(Chloride_q) %>%
dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
ggplot(aes(x =Chloride_q, y = tar)) +
geom_point() +
geom_smooth(method = "lm", col = "blue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
dplyr::group_by(Chloride_q) %>%
dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
ggplot(aes(x =Chloride_q, y = tar)) +
geom_col(fill = "steelblue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
labs(x = "Cuartiles urine", y = "Proporción de muertes") +
theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(Chloride, 3), data = DIED0)
anova(fit)
## Wald Statistics Response: muerte
##
## Factor Chi-Square d.f. P
## Chloride 11.01 2 0.0041
## Nonlinear 5.45 1 0.0196
## TOTAL 11.01 2 0.0041
#dicotomizar cloro
quantile(DIED0$Chloride,0.40)
## 40%
## 101
DIED0 <- DIED0 %>% mutate(clorofactor = as.factor(case_when(Chloride< 101 ~ "0",Chloride>= 101 ~"1")))
modur1<-glm(muerte~clorofactor, family = "binomial", data=DIED0)
tab_model(modur1)
Ā
|
muerte
|
Predictors
|
Odds Ratios
|
CI
|
p
|
(Intercept)
|
8.47
|
6.03Ā āĀ 12.30
|
<0.001
|
clorofactor [1]
|
0.68
|
0.44Ā āĀ 1.04
|
0.084
|
Observations
|
824
|
R2 Tjur
|
0.004
|
#syst. Baja primer quintil. no lineal. Se dicotomiza
DIED0<- DIED0 %>% mutate(syst_q = ntile(syst, 5))
DIED0%>%
dplyr::group_by(syst_q) %>%
dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
ggplot(aes(x =syst_q, y = tar)) +
geom_point() +
geom_smooth(method = "lm", col = "blue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
dplyr::group_by(syst_q) %>%
dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
ggplot(aes(x =syst_q, y = tar)) +
geom_col(fill = "steelblue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
labs(x = "Cuartiles syst", y = "Proporción de muertes") +
theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(syst, 3), data = DIED0)
anova(fit)
## Wald Statistics Response: muerte
##
## Factor Chi-Square d.f. P
## syst 31.98 2 <.0001
## Nonlinear 4.92 1 0.0266
## TOTAL 31.98 2 <.0001
#dicotomizar syst
quantile(DIED0$syst,0.20)
## 20%
## 103
DIED0 <- DIED0 %>% mutate(systfactor = as.factor(case_when(syst< 103 ~ "0",syst>= 103 ~"1")))
modur1<-glm(muerte~systfactor, family = "binomial", data=DIED0)
tab_model(modur1)
Ā
|
muerte
|
Predictors
|
Odds Ratios
|
CI
|
p
|
(Intercept)
|
3.25
|
2.30Ā āĀ 4.69
|
<0.001
|
systfactor [1]
|
2.65
|
1.71Ā āĀ 4.08
|
<0.001
|
Observations
|
824
|
R2 Tjur
|
0.025
|
#mAGNESIO. Lineal
DIED0<- DIED0 %>% mutate(magn_q = ntile(magn, 5))
DIED0%>%
dplyr::group_by(magn_q) %>%
dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
ggplot(aes(x =magn_q, y = tar)) +
geom_point() +
geom_smooth(method = "lm", col = "blue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
dplyr::group_by(magn_q) %>%
dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
ggplot(aes(x =magn_q, y = tar)) +
geom_col(fill = "steelblue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
labs(x = "Cuartiles magn", y = "Proporción de muertes") +
theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(magn, 3), data = DIED0)
anova(fit)
## Wald Statistics Response: muerte
##
## Factor Chi-Square d.f. P
## magn 11.36 2 0.0034
## Nonlinear 3.31 1 0.0688
## TOTAL 11.36 2 0.0034
#probnp lineal
DIED0<- DIED0 %>% mutate(probnp_q = ntile(probnp, 5))
DIED0%>%
dplyr::group_by(probnp_q) %>%
dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
ggplot(aes(x =probnp_q, y = tar)) +
geom_point() +
geom_smooth(method = "lm", col = "blue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
dplyr::group_by(probnp_q) %>%
dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
ggplot(aes(x =probnp_q, y = tar)) +
geom_col(fill = "steelblue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
labs(x = "Cuartiles probnp", y = "Proporción de muertes") +
theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(probnp, 3), data = DIED0)
anova(fit)
## Wald Statistics Response: muerte
##
## Factor Chi-Square d.f. P
## probnp 13.44 2 0.0012
## Nonlinear 2.73 1 0.0988
## TOTAL 13.44 2 0.0012
#heart lineal
DIED0<- DIED0 %>% mutate(heart_q = ntile(heart, 5))
DIED0%>%
dplyr::group_by(heart_q) %>%
dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
ggplot(aes(x =heart_q, y = tar)) +
geom_point() +
geom_smooth(method = "lm", col = "blue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
dplyr::group_by(heart_q) %>%
dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
ggplot(aes(x =heart_q, y = tar)) +
geom_col(fill = "steelblue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
labs(x = "Cuartiles heart", y = "Proporción de muertes") +
theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(heart, 3), data = DIED0)
anova(fit)
## Wald Statistics Response: muerte
##
## Factor Chi-Square d.f. P
## heart 8.32 2 0.0156
## Nonlinear 1.98 1 0.1592
## TOTAL 8.32 2 0.0156
#SP O2 sat no impresiona lineal
DIED0<- DIED0 %>% mutate(sat_q = ntile(sat, 5))
DIED0%>%
dplyr::group_by(sat_q) %>%
dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
ggplot(aes(x =sat_q, y = tar)) +
geom_point() +
geom_smooth(method = "lm", col = "blue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
dplyr::group_by(sat_q) %>%
dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
ggplot(aes(x =sat_q, y = tar)) +
geom_col(fill = "steelblue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
labs(x = "Cuartiles heart", y = "Proporción de muertes") +
theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(sat, 3), data = DIED0)
anova(fit)
## Wald Statistics Response: muerte
##
## Factor Chi-Square d.f. P
## sat 4.84 2 0.0891
## Nonlinear 1.15 1 0.2836
## TOTAL 4.84 2 0.0891
#calcio. no lineal. dicotomiza en el 2do quintil
DIED0<- DIED0 %>% mutate(calcio_q = ntile(calcio, 5))
DIED0%>%
dplyr::group_by(calcio_q) %>%
dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
ggplot(aes(x =calcio_q, y = tar)) +
geom_point() +
geom_smooth(method = "lm", col = "blue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
dplyr::group_by(calcio_q) %>%
dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
ggplot(aes(x =calcio_q, y = tar)) +
geom_col(fill = "steelblue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
labs(x = "Cuartiles calcio", y = "Proporción de muertes") +
theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(calcio, 3), data = DIED0)
anova(fit)
## Wald Statistics Response: muerte
##
## Factor Chi-Square d.f. P
## calcio 37.77 2 <.0001
## Nonlinear 7.36 1 0.0067
## TOTAL 37.77 2 <.0001
#dicotomizar calcio
quantile(DIED0$calcio,0.40)
## 40%
## 8.37
DIED0 <- DIED0 %>% mutate(calciofactor = as.factor(case_when(calcio< 8.37 ~ "0",calcio>= 8.37 ~"1")))
modur1<-glm(muerte~calciofactor, family = "binomial", data=DIED0)
tab_model(modur1)
Ā
|
muerte
|
Predictors
|
Odds Ratios
|
CI
|
p
|
(Intercept)
|
3.62
|
2.81Ā āĀ 4.74
|
<0.001
|
calciofactor [1]
|
3.49
|
2.29Ā āĀ 5.40
|
<0.001
|
Observations
|
824
|
R2 Tjur
|
0.043
|
#potasio. No lineal. Baja en el ultimo quintilo
DIED0<- DIED0 %>% mutate(potasio_q = ntile(potasio, 5))
DIED0%>%
dplyr::group_by(potasio_q) %>%
dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
ggplot(aes(x =potasio_q, y = tar)) +
geom_point() +
geom_smooth(method = "lm", col = "blue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
dplyr::group_by(potasio_q) %>%
dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
ggplot(aes(x =potasio_q, y = tar)) +
geom_col(fill = "steelblue") +
geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
labs(x = "Cuartiles potasio", y = "Proporción de muertes") +
theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(potasio, 3), data = DIED0)
anova(fit)
## Wald Statistics Response: muerte
##
## Factor Chi-Square d.f. P
## potasio 24.25 2 <.0001
## Nonlinear 5.18 1 0.0229
## TOTAL 24.25 2 <.0001
#dicotomizar potasio
quantile(DIED0$potasio,0.80)
## 80%
## 4.45
DIED0 <- DIED0 %>% mutate(potasiofactor = as.factor(case_when(potasio< 4.45 ~ "0",potasio>= 4.45 ~"1")))
modur1<-glm(muerte~potasiofactor, family = "binomial", data=DIED0)
tab_model(modur1)
Ā
|
muerte
|
Predictors
|
Odds Ratios
|
CI
|
p
|
(Intercept)
|
8.08
|
6.38Ā āĀ 10.41
|
<0.001
|
potasiofactor [1]
|
0.46
|
0.30Ā āĀ 0.72
|
0.001
|
Observations
|
824
|
R2 Tjur
|
0.015
|
##ingreso de variables antecedentes al modelo
#hipertension, FA, anemia, CKD, COPD
modeloa<-glm(muerte~hypertension, family = "binomial", data=DIED0)
modelob<-glm(muerte~hypertension+ a_fib, family = "binomial", data=DIED0)
modeloc<-glm(muerte~hypertension+a_fib+anemia, family = "binomial", data=DIED0)
modelod<-glm(muerte~hypertension+a_fib+anemia+ CKD, family = "binomial", data=DIED0)
modelof<-glm(muerte~hypertension+ a_fib+ anemia+ CKD+COPD, family = "binomial", data=DIED0)
#comparación de modelos
ta<-tab_model(modeloa,modelob,modeloc,modelod,modelof, transform=NULL,show.se = T, show.dev = T, show.loglik = T, show.intercept = F,show.stat = F, show.reflvl = T, digits = 2, digits.p = 3, show.r2 = F,collapse.ci = F)
knitr::asis_output(ta$knitr)
Ā
|
muerte
|
muerte
|
muerte
|
muerte
|
muerte
|
Predictors
|
Log-Odds
|
std. Error
|
CI
|
p
|
Log-Odds
|
std. Error
|
CI
|
p
|
Log-Odds
|
std. Error
|
CI
|
p
|
Log-Odds
|
std. Error
|
CI
|
p
|
Log-Odds
|
std. Error
|
CI
|
p
|
a_fib1
|
|
|
|
|
-0.64
|
0.21
|
-1.06Ā āĀ -0.23
|
0.002
|
-0.60
|
0.21
|
-1.02Ā āĀ -0.19
|
0.005
|
-0.64
|
0.21
|
-1.07Ā āĀ -0.23
|
0.003
|
-0.64
|
0.21
|
-1.06Ā āĀ -0.22
|
0.003
|
anemia1
|
|
|
|
|
|
|
|
|
0.81
|
0.25
|
0.33Ā āĀ 1.33
|
0.001
|
0.73
|
0.26
|
0.24Ā āĀ 1.25
|
0.004
|
0.74
|
0.26
|
0.26Ā āĀ 1.27
|
0.004
|
CKD1
|
|
|
|
|
|
|
|
|
|
|
|
|
0.68
|
0.25
|
0.20Ā āĀ 1.19
|
0.007
|
0.72
|
0.25
|
0.24Ā āĀ 1.23
|
0.004
|
COPD1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.32
|
0.61
|
0.29Ā āĀ 2.75
|
0.029
|
hypertension1
|
0.49
|
0.22
|
0.06Ā āĀ 0.91
|
0.022
|
0.51
|
0.22
|
0.08Ā āĀ 0.93
|
0.019
|
0.52
|
0.22
|
0.09Ā āĀ 0.95
|
0.017
|
0.41
|
0.22
|
-0.03Ā āĀ 0.84
|
0.067
|
0.39
|
0.22
|
-0.06Ā āĀ 0.82
|
0.083
|
Observations
|
824
|
824
|
824
|
824
|
824
|
Deviance
|
635.056
|
625.651
|
614.108
|
606.316
|
599.479
|
log-Likelihood
|
-317.528
|
-312.826
|
-307.054
|
-303.158
|
-299.739
|
#sin hipertensión. Se decide elimiar hipertensión
modelog<-glm(muerte~ a_fib+ anemia+ CKD+COPD, family = "binomial", data=DIED0)
anova(modelof, modelog, test="LRT")
## Analysis of Deviance Table
##
## Model 1: muerte ~ hypertension + a_fib + anemia + CKD + COPD
## Model 2: muerte ~ a_fib + anemia + CKD + COPD
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 818 599
## 2 819 602 -1 -2.94 0.087 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##ingreso de variables continuas al modelo
modeloh<-glm(muerte~ a_fib+ anemia+ CKD+COPD+tempfactor, family = "binomial", data=DIED0)
modeloi<-glm(muerte~ a_fib+ anemia+ CKD+COPD+tempfactor+ PHfactor, family = "binomial", data=DIED0)
modeloj<-glm(muerte~ a_fib+ anemia+ CKD+COPD+tempfactor+ PHfactor+bicarbonatefactor, family = "binomial", data=DIED0)
modelok<-glm(muerte~ a_fib+ anemia+ CKD+COPD+tempfactor+PHfactor+bicarbonatefactor+lacticofactor, family = "binomial", data=DIED0)
modelol<-glm(muerte~ a_fib+ anemia+ CKD+COPD+tempfactor+PHfactor+bicarbonatefactor+lacticofactor+respfactor, family = "binomial", data=DIED0)
modelom<-glm(muerte~ a_fib+ anemia+ CKD+COPD+tempfactor+PHfactor+bicarbonatefactor+lacticofactor+respfactor, family = "binomial", data=DIED0)
modelon<-glm(muerte~ a_fib+ anemia+ CKD+COPD+tempfactor+PHfactor+bicarbonatefactor+lacticofactor+respfactor+urinefactor, family = "binomial", data=DIED0)
modeloo<-glm(muerte~ a_fib+ anemia+ CKD+COPD+tempfactor+PHfactor+bicarbonatefactor+lacticofactor+respfactor+urinefactor+systfactor, family = "binomial", data=DIED0)
modelop<-glm(muerte~ a_fib+ anemia+ CKD+COPD+tempfactor+PHfactor+bicarbonatefactor+lacticofactor+respfactor+urinefactor+systfactor+calciofactor, family = "binomial", data=DIED0)
modeloq<-glm(muerte~ a_fib+ anemia+ CKD+COPD+tempfactor+PHfactor+bicarbonatefactor+lacticofactor+respfactor+urinefactor+systfactor+calciofactor+potasiofactor, family = "binomial", data=DIED0)
#comparación de modelos
ta<-tab_model(modeloh,modeloi,modeloj,modelok,modelol,modeloo,modelop, modeloq,transform=NULL,show.se = T, show.dev = T, show.loglik = T, show.intercept = F,show.stat = F, show.reflvl = T, digits = 2, digits.p = 3, show.r2 = F,collapse.ci = F)
knitr::asis_output(ta$knitr)
Ā
|
muerte
|
muerte
|
muerte
|
muerte
|
muerte
|
muerte
|
muerte
|
muerte
|
Predictors
|
Log-Odds
|
std. Error
|
CI
|
p
|
Log-Odds
|
std. Error
|
CI
|
p
|
Log-Odds
|
std. Error
|
CI
|
p
|
Log-Odds
|
std. Error
|
CI
|
p
|
Log-Odds
|
std. Error
|
CI
|
p
|
Log-Odds
|
std. Error
|
CI
|
p
|
Log-Odds
|
std. Error
|
CI
|
p
|
Log-Odds
|
std. Error
|
CI
|
p
|
a_fib1
|
-0.56
|
0.22
|
-0.99Ā āĀ -0.13
|
0.011
|
-0.62
|
0.22
|
-1.06Ā āĀ -0.19
|
0.005
|
-0.56
|
0.23
|
-1.01Ā āĀ -0.11
|
0.015
|
-0.58
|
0.23
|
-1.04Ā āĀ -0.13
|
0.012
|
-0.56
|
0.23
|
-1.02Ā āĀ -0.10
|
0.017
|
-0.40
|
0.24
|
-0.88Ā āĀ 0.07
|
0.099
|
-0.45
|
0.25
|
-0.93Ā āĀ 0.04
|
0.071
|
-0.44
|
0.25
|
-0.93Ā āĀ 0.05
|
0.077
|
anemia1
|
0.73
|
0.26
|
0.24Ā āĀ 1.25
|
0.004
|
0.76
|
0.26
|
0.27Ā āĀ 1.29
|
0.004
|
0.75
|
0.27
|
0.24Ā āĀ 1.29
|
0.005
|
0.70
|
0.27
|
0.18Ā āĀ 1.26
|
0.010
|
0.70
|
0.28
|
0.17Ā āĀ 1.25
|
0.012
|
0.73
|
0.28
|
0.20Ā āĀ 1.31
|
0.009
|
0.79
|
0.28
|
0.24Ā āĀ 1.36
|
0.006
|
0.77
|
0.28
|
0.23Ā āĀ 1.34
|
0.007
|
bicarbonatefactor1
|
|
|
|
|
|
|
|
|
1.49
|
0.24
|
1.02Ā āĀ 1.96
|
<0.001
|
1.32
|
0.24
|
0.84Ā āĀ 1.80
|
<0.001
|
1.34
|
0.25
|
0.85Ā āĀ 1.83
|
<0.001
|
1.14
|
0.26
|
0.64Ā āĀ 1.65
|
<0.001
|
0.94
|
0.27
|
0.42Ā āĀ 1.46
|
<0.001
|
0.86
|
0.27
|
0.32Ā āĀ 1.38
|
0.002
|
calciofactor1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.84
|
0.25
|
0.36Ā āĀ 1.34
|
0.001
|
0.92
|
0.26
|
0.42Ā āĀ 1.43
|
<0.001
|
CKD1
|
0.86
|
0.25
|
0.38Ā āĀ 1.37
|
0.001
|
0.92
|
0.26
|
0.43Ā āĀ 1.44
|
<0.001
|
1.05
|
0.26
|
0.55Ā āĀ 1.59
|
<0.001
|
0.92
|
0.27
|
0.40Ā āĀ 1.47
|
0.001
|
0.86
|
0.27
|
0.35Ā āĀ 1.41
|
0.001
|
0.92
|
0.28
|
0.40Ā āĀ 1.48
|
0.001
|
0.82
|
0.28
|
0.29Ā āĀ 1.39
|
0.003
|
0.95
|
0.29
|
0.40Ā āĀ 1.53
|
0.001
|
COPD1
|
1.35
|
0.61
|
0.32Ā āĀ 2.78
|
0.026
|
1.59
|
0.61
|
0.54Ā āĀ 3.03
|
0.010
|
1.28
|
0.62
|
0.20Ā āĀ 2.73
|
0.041
|
1.27
|
0.64
|
0.17Ā āĀ 2.75
|
0.046
|
1.28
|
0.65
|
0.16Ā āĀ 2.78
|
0.049
|
1.36
|
0.66
|
0.21Ā āĀ 2.88
|
0.040
|
1.37
|
0.66
|
0.23Ā āĀ 2.88
|
0.036
|
1.44
|
0.66
|
0.30Ā āĀ 2.95
|
0.029
|
lacticofactor1
|
|
|
|
|
|
|
|
|
|
|
|
|
-0.96
|
0.24
|
-1.43Ā āĀ -0.48
|
<0.001
|
-0.91
|
0.24
|
-1.39Ā āĀ -0.43
|
<0.001
|
-0.94
|
0.25
|
-1.43Ā āĀ -0.44
|
<0.001
|
-0.91
|
0.26
|
-1.41Ā āĀ -0.40
|
<0.001
|
-0.91
|
0.26
|
-1.42Ā āĀ -0.40
|
<0.001
|
PHfactor1
|
|
|
|
|
1.10
|
0.24
|
0.61Ā āĀ 1.57
|
<0.001
|
0.69
|
0.26
|
0.16Ā āĀ 1.20
|
0.009
|
0.75
|
0.27
|
0.22Ā āĀ 1.28
|
0.005
|
0.72
|
0.27
|
0.18Ā āĀ 1.25
|
0.008
|
0.55
|
0.28
|
-0.01Ā āĀ 1.09
|
0.052
|
0.51
|
0.29
|
-0.06Ā āĀ 1.06
|
0.075
|
0.28
|
0.30
|
-0.32Ā āĀ 0.87
|
0.350
|
potasiofactor1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-0.73
|
0.30
|
-1.32Ā āĀ -0.13
|
0.016
|
respfactor1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-0.72
|
0.26
|
-1.21Ā āĀ -0.21
|
0.005
|
-0.72
|
0.26
|
-1.23Ā āĀ -0.20
|
0.006
|
-0.76
|
0.27
|
-1.28Ā āĀ -0.23
|
0.005
|
-0.76
|
0.27
|
-1.28Ā āĀ -0.22
|
0.005
|
systfactor1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.71
|
0.25
|
0.20Ā āĀ 1.20
|
0.006
|
0.66
|
0.26
|
0.14Ā āĀ 1.16
|
0.011
|
0.64
|
0.26
|
0.12Ā āĀ 1.15
|
0.015
|
tempfactor1
|
0.62
|
0.24
|
0.14Ā āĀ 1.09
|
0.010
|
0.56
|
0.25
|
0.06Ā āĀ 1.04
|
0.024
|
0.47
|
0.26
|
-0.05Ā āĀ 0.97
|
0.073
|
0.33
|
0.27
|
-0.20Ā āĀ 0.85
|
0.207
|
0.35
|
0.27
|
-0.18Ā āĀ 0.87
|
0.185
|
0.19
|
0.28
|
-0.37Ā āĀ 0.72
|
0.497
|
0.24
|
0.28
|
-0.32Ā āĀ 0.78
|
0.385
|
0.22
|
0.28
|
-0.34Ā āĀ 0.77
|
0.428
|
urinefactor1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.02
|
0.25
|
0.53Ā āĀ 1.52
|
<0.001
|
0.95
|
0.26
|
0.46Ā āĀ 1.46
|
<0.001
|
0.96
|
0.26
|
0.46Ā āĀ 1.47
|
<0.001
|
Observations
|
824
|
824
|
824
|
824
|
824
|
824
|
824
|
824
|
Deviance
|
596.150
|
577.297
|
539.753
|
524.617
|
517.008
|
490.324
|
478.836
|
473.222
|
log-Likelihood
|
-298.075
|
-288.649
|
-269.876
|
-262.309
|
-258.504
|
-245.162
|
-239.418
|
-236.611
|
##Agregado de varibles continuas al modelo sin temperatura ni ph ni
fa
#modelo sin temperatura ni ph
modeloq1<-glm(muerte~ anemia+CKD+COPD+bicarbonatefactor+lacticofactor+respfactor+urinefactor+systfactor+calciofactor+potasiofactor, family = "binomial", data=DIED0)
modeloq2<-glm(muerte~ anemia+CKD+COPD+bicarbonatefactor+lacticofactor+respfactor+urinefactor+systfactor+calciofactor+potasiofactor+ureanit, family = "binomial", data=DIED0)
modeloq3<-glm(muerte~ anemia+CKD+COPD+bicarbonatefactor+lacticofactor+respfactor+urinefactor+systfactor+calciofactor+potasiofactor+ureanit+INR, family = "binomial", data=DIED0)
modeloq4<-glm(muerte~ anemia+CKD+COPD+bicarbonatefactor+lacticofactor+respfactor+urinefactor+systfactor+calciofactor+potasiofactor++ureanit+INR+Creatinine, family = "binomial", data=DIED0)
modeloq5<-glm(muerte~ anemia+CKD+COPD+bicarbonatefactor+lacticofactor+respfactor+urinefactor+systfactor+calciofactor+potasiofactor++ureanit+INR+Creatinine+magn, family = "binomial", data=DIED0)
modeloq6<-glm(muerte~ anemia+CKD+COPD+bicarbonatefactor+lacticofactor+respfactor+urinefactor+systfactor+calciofactor+potasiofactor++ureanit+INR+Creatinine+magn+probnp, family = "binomial", data=DIED0)
modeloq7<-glm(muerte~ anemia+CKD+COPD+bicarbonatefactor+lacticofactor+respfactor+urinefactor+systfactor+calciofactor+potasiofactor++ureanit+INR+Creatinine+magn+probnp+heart, family = "binomial", data=DIED0)
#comparación de modelos
ta<-tab_model(modeloq1,modeloq2,modeloq3,modeloq4,modeloq5,modeloq6,modeloq7,transform=NULL,show.se = T, show.dev = T, show.loglik = T, show.intercept = F,show.stat = F, show.reflvl = T, digits = 2, digits.p = 3, show.r2 = F,collapse.ci = F)
knitr::asis_output(ta$knitr)
Ā
|
muerte
|
muerte
|
muerte
|
muerte
|
muerte
|
muerte
|
muerte
|
Predictors
|
Log-Odds
|
std. Error
|
CI
|
p
|
Log-Odds
|
std. Error
|
CI
|
p
|
Log-Odds
|
std. Error
|
CI
|
p
|
Log-Odds
|
std. Error
|
CI
|
p
|
Log-Odds
|
std. Error
|
CI
|
p
|
Log-Odds
|
std. Error
|
CI
|
p
|
Log-Odds
|
std. Error
|
CI
|
p
|
anemia1
|
0.78
|
0.28
|
0.25Ā āĀ 1.35
|
0.005
|
0.89
|
0.29
|
0.34Ā āĀ 1.49
|
0.002
|
0.89
|
0.29
|
0.33Ā āĀ 1.49
|
0.002
|
0.91
|
0.30
|
0.35Ā āĀ 1.52
|
0.002
|
0.92
|
0.30
|
0.35Ā āĀ 1.52
|
0.002
|
0.92
|
0.30
|
0.35Ā āĀ 1.52
|
0.002
|
0.92
|
0.30
|
0.36Ā āĀ 1.52
|
0.002
|
bicarbonatefactor1
|
0.92
|
0.27
|
0.40Ā āĀ 1.44
|
0.001
|
0.63
|
0.28
|
0.07Ā āĀ 1.17
|
0.025
|
0.64
|
0.28
|
0.08Ā āĀ 1.18
|
0.023
|
0.72
|
0.29
|
0.15Ā āĀ 1.27
|
0.012
|
0.79
|
0.29
|
0.22Ā āĀ 1.36
|
0.006
|
0.80
|
0.29
|
0.22Ā āĀ 1.37
|
0.006
|
0.76
|
0.29
|
0.18Ā āĀ 1.34
|
0.010
|
calciofactor1
|
0.90
|
0.25
|
0.40Ā āĀ 1.40
|
<0.001
|
1.01
|
0.26
|
0.50Ā āĀ 1.53
|
<0.001
|
1.00
|
0.26
|
0.49Ā āĀ 1.53
|
<0.001
|
1.02
|
0.26
|
0.50Ā āĀ 1.54
|
<0.001
|
1.13
|
0.27
|
0.60Ā āĀ 1.67
|
<0.001
|
1.13
|
0.27
|
0.60Ā āĀ 1.67
|
<0.001
|
1.14
|
0.27
|
0.61Ā āĀ 1.69
|
<0.001
|
CKD1
|
0.92
|
0.29
|
0.37Ā āĀ 1.50
|
0.001
|
1.62
|
0.34
|
0.98Ā āĀ 2.31
|
<0.001
|
1.60
|
0.34
|
0.96Ā āĀ 2.29
|
<0.001
|
1.42
|
0.35
|
0.75Ā āĀ 2.13
|
<0.001
|
1.43
|
0.35
|
0.77Ā āĀ 2.14
|
<0.001
|
1.42
|
0.35
|
0.76Ā āĀ 2.14
|
<0.001
|
1.39
|
0.35
|
0.72Ā āĀ 2.11
|
<0.001
|
COPD1
|
1.40
|
0.65
|
0.27Ā āĀ 2.89
|
0.032
|
1.49
|
0.70
|
0.29Ā āĀ 3.09
|
0.033
|
1.45
|
0.70
|
0.25Ā āĀ 3.05
|
0.038
|
1.46
|
0.69
|
0.27Ā āĀ 3.04
|
0.034
|
1.55
|
0.70
|
0.35Ā āĀ 3.16
|
0.027
|
1.55
|
0.70
|
0.35Ā āĀ 3.15
|
0.026
|
1.54
|
0.69
|
0.35Ā āĀ 3.14
|
0.026
|
Creatinine
|
|
|
|
|
|
|
|
|
|
|
|
|
0.31
|
0.19
|
-0.03Ā āĀ 0.70
|
0.104
|
0.29
|
0.19
|
-0.05Ā āĀ 0.68
|
0.120
|
0.29
|
0.19
|
-0.05Ā āĀ 0.68
|
0.121
|
0.29
|
0.19
|
-0.05Ā āĀ 0.69
|
0.118
|
heart
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-0.01
|
0.01
|
-0.03Ā āĀ 0.01
|
0.193
|
INR
|
|
|
|
|
|
|
|
|
-0.15
|
0.12
|
-0.40Ā āĀ 0.09
|
0.224
|
-0.16
|
0.12
|
-0.40Ā āĀ 0.08
|
0.202
|
-0.15
|
0.12
|
-0.40Ā āĀ 0.09
|
0.224
|
-0.15
|
0.12
|
-0.40Ā āĀ 0.09
|
0.224
|
-0.18
|
0.13
|
-0.43Ā āĀ 0.07
|
0.163
|
lacticofactor1
|
-0.93
|
0.26
|
-1.43Ā āĀ -0.42
|
<0.001
|
-0.93
|
0.26
|
-1.44Ā āĀ -0.41
|
<0.001
|
-0.86
|
0.27
|
-1.39Ā āĀ -0.32
|
0.002
|
-0.86
|
0.27
|
-1.39Ā āĀ -0.32
|
0.002
|
-0.85
|
0.27
|
-1.38Ā āĀ -0.30
|
0.002
|
-0.85
|
0.27
|
-1.38Ā āĀ -0.31
|
0.002
|
-0.83
|
0.28
|
-1.36Ā āĀ -0.28
|
0.003
|
magn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-1.06
|
0.52
|
-2.06Ā āĀ -0.03
|
0.041
|
-1.05
|
0.52
|
-2.06Ā āĀ -0.02
|
0.042
|
-1.05
|
0.52
|
-2.05Ā āĀ -0.02
|
0.042
|
potasiofactor1
|
-0.82
|
0.29
|
-1.38Ā āĀ -0.26
|
0.004
|
-0.49
|
0.30
|
-1.07Ā āĀ 0.12
|
0.109
|
-0.42
|
0.31
|
-1.02Ā āĀ 0.19
|
0.171
|
-0.44
|
0.31
|
-1.04Ā āĀ 0.18
|
0.158
|
-0.44
|
0.31
|
-1.05Ā āĀ 0.18
|
0.153
|
-0.45
|
0.31
|
-1.05Ā āĀ 0.17
|
0.152
|
-0.43
|
0.31
|
-1.04Ā āĀ 0.19
|
0.162
|
probnp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.00
|
0.00
|
-0.00Ā āĀ 0.00
|
0.876
|
0.00
|
0.00
|
-0.00Ā āĀ 0.00
|
0.752
|
respfactor1
|
-0.76
|
0.27
|
-1.28Ā āĀ -0.23
|
0.004
|
-0.64
|
0.28
|
-1.19Ā āĀ -0.09
|
0.022
|
-0.62
|
0.28
|
-1.17Ā āĀ -0.06
|
0.027
|
-0.61
|
0.28
|
-1.15Ā āĀ -0.05
|
0.031
|
-0.61
|
0.28
|
-1.16Ā āĀ -0.05
|
0.030
|
-0.61
|
0.28
|
-1.16Ā āĀ -0.05
|
0.031
|
-0.50
|
0.29
|
-1.07Ā āĀ 0.09
|
0.090
|
systfactor1
|
0.66
|
0.26
|
0.14Ā āĀ 1.17
|
0.011
|
0.69
|
0.27
|
0.15Ā āĀ 1.21
|
0.011
|
0.67
|
0.27
|
0.13Ā āĀ 1.19
|
0.014
|
0.64
|
0.27
|
0.10Ā āĀ 1.17
|
0.018
|
0.72
|
0.28
|
0.17Ā āĀ 1.26
|
0.009
|
0.72
|
0.28
|
0.17Ā āĀ 1.26
|
0.009
|
0.65
|
0.28
|
0.09Ā āĀ 1.20
|
0.021
|
ureanit
|
|
|
|
|
-0.03
|
0.01
|
-0.04Ā āĀ -0.02
|
<0.001
|
-0.03
|
0.01
|
-0.04Ā āĀ -0.02
|
<0.001
|
-0.04
|
0.01
|
-0.05Ā āĀ -0.02
|
<0.001
|
-0.03
|
0.01
|
-0.05Ā āĀ -0.02
|
<0.001
|
-0.03
|
0.01
|
-0.05Ā āĀ -0.02
|
<0.001
|
-0.04
|
0.01
|
-0.05Ā āĀ -0.02
|
<0.001
|
urinefactor1
|
1.08
|
0.25
|
0.59Ā āĀ 1.57
|
<0.001
|
0.92
|
0.26
|
0.42Ā āĀ 1.43
|
<0.001
|
0.91
|
0.26
|
0.41Ā āĀ 1.43
|
<0.001
|
0.96
|
0.26
|
0.45Ā āĀ 1.48
|
<0.001
|
0.90
|
0.26
|
0.39Ā āĀ 1.42
|
0.001
|
0.90
|
0.26
|
0.39Ā āĀ 1.43
|
0.001
|
0.92
|
0.26
|
0.41Ā āĀ 1.45
|
<0.001
|
Observations
|
824
|
824
|
824
|
824
|
824
|
824
|
824
|
Deviance
|
478.073
|
449.584
|
448.082
|
445.040
|
441.010
|
440.985
|
439.292
|
log-Likelihood
|
-239.037
|
-224.792
|
-224.041
|
-222.520
|
-220.505
|
-220.492
|
-219.646
|
##Efectos principales
modEFPRINC<- glm(muerte ~ a_fib+COPD + CKD + lacticofactor + bicarbonatefactor+ ureanit+urinefactor+ calcio+ respfactor +anemia, family = "binomial", data = DIED0)
summary(modEFPRINC)
##
## Call:
## glm(formula = muerte ~ a_fib + COPD + CKD + lacticofactor + bicarbonatefactor +
## ureanit + urinefactor + calcio + respfactor + anemia, family = "binomial",
## data = DIED0)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.8647 1.8703 -2.60 0.00930 **
## a_fib1 -0.3640 0.2490 -1.46 0.14377
## COPD1 1.4549 0.7120 2.04 0.04100 *
## CKD1 1.5426 0.3308 4.66 0.000003108 ***
## lacticofactor1 -0.9415 0.2603 -3.62 0.00030 ***
## bicarbonatefactor1 0.7288 0.2733 2.67 0.00766 **
## ureanit -0.0325 0.0058 -5.60 0.000000022 ***
## urinefactor1 0.9257 0.2571 3.60 0.00032 ***
## calcio 0.8262 0.2325 3.55 0.00038 ***
## respfactor1 -0.6461 0.2760 -2.34 0.01923 *
## anemia1 0.9072 0.2936 3.09 0.00200 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 640.10 on 823 degrees of freedom
## Residual deviance: 459.33 on 813 degrees of freedom
## AIC: 481.3
##
## Number of Fisher Scoring iterations: 6
tab_model(modEFPRINC)
Ā
|
muerte
|
Predictors
|
Odds Ratios
|
CI
|
p
|
(Intercept)
|
0.01
|
0.00Ā āĀ 0.29
|
0.009
|
a fib [1]
|
0.69
|
0.42Ā āĀ 1.13
|
0.144
|
COPD [1]
|
4.28
|
1.27Ā āĀ 22.23
|
0.041
|
CKD [1]
|
4.68
|
2.50Ā āĀ 9.18
|
<0.001
|
lacticofactor [1]
|
0.39
|
0.23Ā āĀ 0.65
|
<0.001
|
bicarbonatefactor [1]
|
2.07
|
1.21Ā āĀ 3.53
|
0.008
|
ureanit
|
0.97
|
0.96Ā āĀ 0.98
|
<0.001
|
urinefactor [1]
|
2.52
|
1.53Ā āĀ 4.20
|
<0.001
|
calcio
|
2.28
|
1.46Ā āĀ 3.64
|
<0.001
|
respfactor [1]
|
0.52
|
0.31Ā āĀ 0.91
|
0.019
|
anemia [1]
|
2.48
|
1.42Ā āĀ 4.50
|
0.002
|
Observations
|
824
|
R2 Tjur
|
0.279
|
anova(modEFPRINC)
## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: muerte
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 823 640
## a_fib 1 9.1 822 631 0.00254 **
## COPD 1 5.5 821 626 0.01948 *
## CKD 1 14.0 820 612 0.00018 ***
## lacticofactor 1 29.2 819 582 0.00000006411 ***
## bicarbonatefactor 1 41.5 818 541 0.00000000012 ***
## ureanit 1 37.3 817 503 0.00000000103 ***
## urinefactor 1 16.8 816 487 0.00004123349 ***
## calcio 1 11.3 815 475 0.00079 ***
## respfactor 1 5.5 814 470 0.01856 *
## anemia 1 10.5 813 459 0.00119 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Calibración modelo efectos principales
modEFPRINC<- glm(muerte ~ a_fib+COPD + CKD + lacticofactor + bicarbonatefactor+ ureanit+urinefactor+ calcio+ respfactor +anemia, family = "binomial", data = DIED0)
#HOSMER & LEMERSHOW. LA P ME DA . NO RECHAZA LA HIPĆTESIS NULA.ES COMO QUIERO QUE ME DE
pred_modelo <- as.data.frame(predict(modEFPRINC, DIED0, type = "response")) %>% rename(pred = `predict(modEFPRINC, DIED0, type = "response")`)
pred_modelo$verdad <- DIED0$muerte
H_L <- HLtest(modEFPRINC,10)
HL_DF <- cbind(as.data.frame(H_L$table), indice = as.factor(c(1,2,3,4,5,6,7,8,9,10)))
H_L
## Hosmer and Lemeshow Goodness-of-Fit Test
##
## Call:
## glm(formula = muerte ~ a_fib + COPD + CKD + lacticofactor + bicarbonatefactor +
## ureanit + urinefactor + calcio + respfactor + anemia, family = "binomial",
## data = DIED0)
## ChiSquare df P_value
## 13.8 8 0.0881
HL_DF[,1:4]
## cut total obs exp
## 1 [0.0269,0.647] 83 47 48.382
## 2 (0.647,0.807] 82 23 21.873
## 3 (0.807,0.88] 82 13 12.816
## 4 (0.88,0.917] 83 5 8.279
## 5 (0.917,0.942] 82 8 5.731
## 6 (0.942,0.958] 82 5 4.031
## 7 (0.958,0.971] 83 1 2.869
## 8 (0.971,0.98] 82 6 2.065
## 9 (0.98,0.988] 82 0 1.320
## 10 (0.988,0.999] 83 0 0.634
HL_DF %>% knitr::kable()
[0.0269,0.647] |
83 |
47 |
48.382 |
-0.199 |
1 |
(0.647,0.807] |
82 |
23 |
21.873 |
0.241 |
2 |
(0.807,0.88] |
82 |
13 |
12.816 |
0.051 |
3 |
(0.88,0.917] |
83 |
5 |
8.279 |
-1.140 |
4 |
(0.917,0.942] |
82 |
8 |
5.731 |
0.948 |
5 |
(0.942,0.958] |
82 |
5 |
4.031 |
0.482 |
6 |
(0.958,0.971] |
83 |
1 |
2.869 |
-1.103 |
7 |
(0.971,0.98] |
82 |
6 |
2.065 |
2.739 |
8 |
(0.98,0.988] |
82 |
0 |
1.320 |
-1.149 |
9 |
(0.988,0.999] |
83 |
0 |
0.634 |
-0.796 |
10 |
ggplot(HL_DF, aes(x=indice))+geom_point(aes(y=exp, color = "blue"))+geom_point(aes(y=obs, color = "red"))+scale_color_manual(labels = c("Esperado", "Observado"), values = c("blue", "red"))

#slope e intercept
table(pred_modelo$verdad)
##
## 0 1
## 108 716
str(pred_modelo$verdad)
## Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
pred_modelo$verdad <- as.numeric(as.character(pred_modelo$verdad))
pred_modelo <- pred_modelo# esta parece ser una observacion duplicada
a <- valProbggplot(pred_modelo$pred, pred_modelo$verdad)
a$ggPlot

#curva roc. Area 0.83 sin temperatura.vamos con este modelo prueba i3
roc<-roc(pred_modelo$verdad, pred_modelo$pred)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
plot(roc, main = "Curva ROC", col = "red", lwd = 3)
text(0.8, 0.2, paste("AUC ROC =", round(roc$auc, 3)), adj = c(0, 1))
##MODELO DE EFECTOS PRINCIPALES SIN A_FIB. SON MENOS VARIABLES
modEFPRINC1<- glm(muerte ~ COPD + CKD + lacticofactor + bicarbonatefactor+ ureanit+urinefactor+ calcio+ respfactor +anemia, family = "binomial", data = DIED0)
summary(modEFPRINC1)
##
## Call:
## glm(formula = muerte ~ COPD + CKD + lacticofactor + bicarbonatefactor +
## ureanit + urinefactor + calcio + respfactor + anemia, family = "binomial",
## data = DIED0)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.87256 1.86854 -2.61 0.00912 **
## COPD1 1.44229 0.70565 2.04 0.04096 *
## CKD1 1.55474 0.33179 4.69 0.000002788 ***
## lacticofactor1 -0.95172 0.26026 -3.66 0.00026 ***
## bicarbonatefactor1 0.71961 0.27418 2.62 0.00867 **
## ureanit -0.03320 0.00581 -5.71 0.000000011 ***
## urinefactor1 0.97211 0.25497 3.81 0.00014 ***
## calcio 0.80482 0.23171 3.47 0.00051 ***
## respfactor1 -0.64954 0.27565 -2.36 0.01845 *
## anemia1 0.94086 0.29229 3.22 0.00129 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 640.10 on 823 degrees of freedom
## Residual deviance: 461.48 on 814 degrees of freedom
## AIC: 481.5
##
## Number of Fisher Scoring iterations: 6
anova(modEFPRINC1)
## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: muerte
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 823 640
## COPD 1 6.1 822 634 0.01386 *
## CKD 1 12.6 821 621 0.00038 ***
## lacticofactor 1 30.3 820 591 0.000000036271 ***
## bicarbonatefactor 1 42.9 819 548 0.000000000058 ***
## ureanit 1 40.5 818 508 0.000000000192 ***
## urinefactor 1 18.8 817 489 0.000014227547 ***
## calcio 1 10.3 816 479 0.00134 **
## respfactor 1 5.6 815 473 0.01826 *
## anemia 1 11.5 814 461 0.00071 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#HOSMER & LEMERSHOW. LA P ME DA . NO RECHAZA LA HIPĆTESIS NULA.ES COMO QUIERO QUE ME DE
pred_modelo <- as.data.frame(predict(modEFPRINC1, DIED0, type = "response")) %>% rename(pred = `predict(modEFPRINC1, DIED0, type = "response")`)
pred_modelo$verdad <- DIED0$muerte
H_L <- HLtest(modEFPRINC1,10)
HL_DF <- cbind(as.data.frame(H_L$table), indice = as.factor(c(1,2,3,4,5,6,7,8,9,10)))
H_L
## Hosmer and Lemeshow Goodness-of-Fit Test
##
## Call:
## glm(formula = muerte ~ COPD + CKD + lacticofactor + bicarbonatefactor +
## ureanit + urinefactor + calcio + respfactor + anemia, family = "binomial",
## data = DIED0)
## ChiSquare df P_value
## 4.75 8 0.784
HL_DF[,1:4]
## cut total obs exp
## 1 [0.0297,0.662] 83 45 48.187
## 2 (0.662,0.808] 82 22 21.732
## 3 (0.808,0.879] 82 16 12.646
## 4 (0.879,0.916] 83 7 8.264
## 5 (0.916,0.941] 82 7 5.912
## 6 (0.941,0.959] 82 3 4.085
## 7 (0.959,0.969] 83 3 2.998
## 8 (0.969,0.979] 82 4 2.129
## 9 (0.979,0.988] 82 1 1.403
## 10 (0.988,0.999] 83 0 0.644
HL_DF %>% knitr::kable()
[0.0297,0.662] |
83 |
45 |
48.187 |
-0.459 |
1 |
(0.662,0.808] |
82 |
22 |
21.732 |
0.057 |
2 |
(0.808,0.879] |
82 |
16 |
12.646 |
0.943 |
3 |
(0.879,0.916] |
83 |
7 |
8.264 |
-0.440 |
4 |
(0.916,0.941] |
82 |
7 |
5.912 |
0.448 |
5 |
(0.941,0.959] |
82 |
3 |
4.085 |
-0.537 |
6 |
(0.959,0.969] |
83 |
3 |
2.998 |
0.001 |
7 |
(0.969,0.979] |
82 |
4 |
2.129 |
1.282 |
8 |
(0.979,0.988] |
82 |
1 |
1.403 |
-0.340 |
9 |
(0.988,0.999] |
83 |
0 |
0.644 |
-0.803 |
10 |
ggplot(HL_DF, aes(x=indice))+geom_point(aes(y=exp, color = "blue"))+geom_point(aes(y=obs, color = "red"))+scale_color_manual(labels = c("Esperado", "Observado"), values = c("blue", "red"))

#slope e intercept
table(pred_modelo$verdad)
##
## 0 1
## 108 716
str(pred_modelo$verdad)
## Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
pred_modelo$verdad <- as.numeric(as.character(pred_modelo$verdad))
pred_modelo <- pred_modelo# esta parece ser una observacion duplicada
a <- valProbggplot(pred_modelo$pred, pred_modelo$verdad)
a$ggPlot

#curva roc. Area 0.83 sin temperatura.vamos con este modelo prueba i3
roc<-roc(pred_modelo$verdad, pred_modelo$pred)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
plot(roc, main = "Curva ROC", col = "red", lwd = 3)
text(0.8, 0.2, paste("AUC ROC =", round(roc$auc, 3)), adj = c(0, 1))
##AGREGA DIABETES : MODELO DE EFECTOS PRINCIPALES. DIABETES AGREGA
VALIDEZ EXTERNA
modEFPRINC1diab<- glm(muerte ~ COPD + diabetes+CKD + lacticofactor + bicarbonatefactor+ ureanit+urinefactor+ calcio+ respfactor +anemia, family = "binomial", data = DIED0)
summary(modEFPRINC1diab)
##
## Call:
## glm(formula = muerte ~ COPD + diabetes + CKD + lacticofactor +
## bicarbonatefactor + ureanit + urinefactor + calcio + respfactor +
## anemia, family = "binomial", data = DIED0)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.90681 1.87882 -2.61 0.00901 **
## COPD1 1.50434 0.71412 2.11 0.03515 *
## diabetes1 0.26903 0.26733 1.01 0.31426
## CKD1 1.52540 0.33317 4.58 0.0000046848 ***
## lacticofactor1 -0.95906 0.26057 -3.68 0.00023 ***
## bicarbonatefactor1 0.70080 0.27451 2.55 0.01068 *
## ureanit -0.03471 0.00603 -5.76 0.0000000086 ***
## urinefactor1 0.94203 0.25695 3.67 0.00025 ***
## calcio 0.80753 0.23311 3.46 0.00053 ***
## respfactor1 -0.64876 0.27608 -2.35 0.01878 *
## anemia1 0.94009 0.29296 3.21 0.00133 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 640.10 on 823 degrees of freedom
## Residual deviance: 460.46 on 813 degrees of freedom
## AIC: 482.5
##
## Number of Fisher Scoring iterations: 6
anova(modEFPRINC1diab)
## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: muerte
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 823 640
## COPD 1 6.1 822 634 0.01386 *
## diabetes 1 1.2 821 633 0.27214
## CKD 1 11.6 820 621 0.00065 ***
## lacticofactor 1 30.5 819 591 0.000000033002 ***
## bicarbonatefactor 1 42.6 818 548 0.000000000066 ***
## ureanit 1 43.3 817 505 0.000000000047 ***
## urinefactor 1 17.4 816 487 0.000030689495 ***
## calcio 1 10.0 815 477 0.00154 **
## respfactor 1 5.5 814 472 0.01914 *
## anemia 1 11.4 813 460 0.00074 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(modEFPRINC1,modEFPRINC1diab, test="LRT")
## Analysis of Deviance Table
##
## Model 1: muerte ~ COPD + CKD + lacticofactor + bicarbonatefactor + ureanit +
## urinefactor + calcio + respfactor + anemia
## Model 2: muerte ~ COPD + diabetes + CKD + lacticofactor + bicarbonatefactor +
## ureanit + urinefactor + calcio + respfactor + anemia
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 814 461
## 2 813 460 1 1.02 0.31
#HOSMER & LEMERSHOW. LA P ME DA . NO RECHAZA LA HIPĆTESIS NULA.ES COMO QUIERO QUE ME DE
pred_modelo <- as.data.frame(predict(modEFPRINC1diab, DIED0, type = "response")) %>% rename(pred = `predict(modEFPRINC1diab, DIED0, type = "response")`)
pred_modelo$verdad <- DIED0$muerte
H_L <- HLtest(modEFPRINC1diab,10)
HL_DF <- cbind(as.data.frame(H_L$table), indice = as.factor(c(1,2,3,4,5,6,7,8,9,10)))
H_L
## Hosmer and Lemeshow Goodness-of-Fit Test
##
## Call:
## glm(formula = muerte ~ COPD + diabetes + CKD + lacticofactor +
## bicarbonatefactor + ureanit + urinefactor + calcio + respfactor +
## anemia, family = "binomial", data = DIED0)
## ChiSquare df P_value
## 5.31 8 0.724
HL_DF[,1:4]
## cut total obs exp
## 1 [0.0245,0.654] 83 47 48.154
## 2 (0.654,0.805] 82 22 21.981
## 3 (0.805,0.881] 82 16 12.587
## 4 (0.881,0.915] 83 4 8.330
## 5 (0.915,0.94] 82 7 5.869
## 6 (0.94,0.958] 82 5 4.046
## 7 (0.958,0.97] 83 3 2.977
## 8 (0.97,0.979] 82 3 2.065
## 9 (0.979,0.988] 82 1 1.350
## 10 (0.988,0.999] 83 0 0.641
HL_DF %>% knitr::kable()
[0.0245,0.654] |
83 |
47 |
48.154 |
-0.166 |
1 |
(0.654,0.805] |
82 |
22 |
21.981 |
0.004 |
2 |
(0.805,0.881] |
82 |
16 |
12.587 |
0.962 |
3 |
(0.881,0.915] |
83 |
4 |
8.330 |
-1.500 |
4 |
(0.915,0.94] |
82 |
7 |
5.869 |
0.467 |
5 |
(0.94,0.958] |
82 |
5 |
4.046 |
0.475 |
6 |
(0.958,0.97] |
83 |
3 |
2.977 |
0.014 |
7 |
(0.97,0.979] |
82 |
3 |
2.065 |
0.651 |
8 |
(0.979,0.988] |
82 |
1 |
1.350 |
-0.301 |
9 |
(0.988,0.999] |
83 |
0 |
0.641 |
-0.801 |
10 |
ggplot(HL_DF, aes(x=indice))+geom_point(aes(y=exp, color = "blue"))+geom_point(aes(y=obs, color = "red"))+scale_color_manual(labels = c("Esperado", "Observado"), values = c("blue", "red"))

#slope e intercept
table(pred_modelo$verdad)
##
## 0 1
## 108 716
str(pred_modelo$verdad)
## Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
pred_modelo$verdad <- as.numeric(as.character(pred_modelo$verdad))
pred_modelo <- pred_modelo# esta parece ser una observacion duplicada
a <- valProbggplot(pred_modelo$pred, pred_modelo$verdad)
a$ggPlot

#curva roc. Area 0.83 sin temperatura.vamos con este modelo prueba i3
roc<-roc(pred_modelo$verdad, pred_modelo$pred)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
plot(roc, main = "Curva ROC", col = "red", lwd = 3)
text(0.8, 0.2, paste("AUC ROC =", round(roc$auc, 3)), adj = c(0, 1))

##Modelo efectos principales + diabetes: interacción con ckd
#EL TERMINO DE INTERACCIĆN NO ES SIGNIFICATIVO. DEJO DIABETES PARA AUMENTAR VALIDEZ EXTERNA PERO SACO EL TĆRMINO DE INTERACCIĆN
modEFPRINC1diabCKD<- glm(muerte ~ COPD + diabetes+CKD + lacticofactor + bicarbonatefactor+ ureanit+urinefactor+ calcio+ respfactor +anemia + diabetes:CKD, family = "binomial", data = DIED0)
summary(modEFPRINC1diabCKD)
##
## Call:
## glm(formula = muerte ~ COPD + diabetes + CKD + lacticofactor +
## bicarbonatefactor + ureanit + urinefactor + calcio + respfactor +
## anemia + diabetes:CKD, family = "binomial", data = DIED0)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.91274 1.87952 -2.61 0.00895 **
## COPD1 1.49550 0.71266 2.10 0.03586 *
## diabetes1 0.15439 0.30854 0.50 0.61680
## CKD1 1.32565 0.42319 3.13 0.00173 **
## lacticofactor1 -0.96386 0.26110 -3.69 0.00022 ***
## bicarbonatefactor1 0.70983 0.27491 2.58 0.00982 **
## ureanit -0.03487 0.00604 -5.78 0.0000000077 ***
## urinefactor1 0.94276 0.25725 3.66 0.00025 ***
## calcio 0.81326 0.23328 3.49 0.00049 ***
## respfactor1 -0.65393 0.27660 -2.36 0.01807 *
## anemia1 0.93287 0.29286 3.19 0.00145 **
## diabetes1:CKD1 0.41363 0.56833 0.73 0.46674
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 640.10 on 823 degrees of freedom
## Residual deviance: 459.93 on 812 degrees of freedom
## AIC: 483.9
##
## Number of Fisher Scoring iterations: 6
anova(modEFPRINC1diabCKD)
## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: muerte
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 823 640
## COPD 1 6.1 822 634 0.01386 *
## diabetes 1 1.2 821 633 0.27214
## CKD 1 11.6 820 621 0.00065 ***
## lacticofactor 1 30.5 819 591 0.000000033002 ***
## bicarbonatefactor 1 42.6 818 548 0.000000000066 ***
## ureanit 1 43.3 817 505 0.000000000047 ***
## urinefactor 1 17.4 816 487 0.000030689495 ***
## calcio 1 10.0 815 477 0.00154 **
## respfactor 1 5.5 814 472 0.01914 *
## anemia 1 11.4 813 460 0.00074 ***
## diabetes:CKD 1 0.5 812 460 0.46760
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(modEFPRINC1,modEFPRINC1diabCKD, test="LRT")
## Analysis of Deviance Table
##
## Model 1: muerte ~ COPD + CKD + lacticofactor + bicarbonatefactor + ureanit +
## urinefactor + calcio + respfactor + anemia
## Model 2: muerte ~ COPD + diabetes + CKD + lacticofactor + bicarbonatefactor +
## ureanit + urinefactor + calcio + respfactor + anemia + diabetes:CKD
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 814 461
## 2 812 460 2 1.55 0.46
#HOSMER & LEMERSHOW. LA P ME DA . NO RECHAZA LA HIPĆTESIS NULA.ES COMO QUIERO QUE ME DE
pred_modelo <- as.data.frame(predict(modEFPRINC1diabCKD, DIED0, type = "response")) %>% rename(pred = `predict(modEFPRINC1diabCKD, DIED0, type = "response")`)
pred_modelo$verdad <- DIED0$muerte
H_L <- HLtest(modEFPRINC1diabCKD,10)
HL_DF <- cbind(as.data.frame(H_L$table), indice = as.factor(c(1,2,3,4,5,6,7,8,9,10)))
H_L
## Hosmer and Lemeshow Goodness-of-Fit Test
##
## Call:
## glm(formula = muerte ~ COPD + diabetes + CKD + lacticofactor +
## bicarbonatefactor + ureanit + urinefactor + calcio + respfactor +
## anemia + diabetes:CKD, family = "binomial", data = DIED0)
## ChiSquare df P_value
## 5.11 8 0.746
HL_DF[,1:4]
## cut total obs exp
## 1 [0.0248,0.661] 83 47 48.356
## 2 (0.661,0.803] 82 21 21.726
## 3 (0.803,0.878] 82 16 12.593
## 4 (0.878,0.915] 83 6 8.423
## 5 (0.915,0.942] 82 6 5.841
## 6 (0.942,0.959] 82 5 4.074
## 7 (0.959,0.97] 83 2 2.921
## 8 (0.97,0.98] 82 4 2.069
## 9 (0.98,0.988] 82 1 1.356
## 10 (0.988,0.999] 83 0 0.641
HL_DF %>% knitr::kable()
[0.0248,0.661] |
83 |
47 |
48.356 |
-0.195 |
1 |
(0.661,0.803] |
82 |
21 |
21.726 |
-0.156 |
2 |
(0.803,0.878] |
82 |
16 |
12.593 |
0.960 |
3 |
(0.878,0.915] |
83 |
6 |
8.423 |
-0.835 |
4 |
(0.915,0.942] |
82 |
6 |
5.841 |
0.066 |
5 |
(0.942,0.959] |
82 |
5 |
4.074 |
0.459 |
6 |
(0.959,0.97] |
83 |
2 |
2.921 |
-0.539 |
7 |
(0.97,0.98] |
82 |
4 |
2.069 |
1.343 |
8 |
(0.98,0.988] |
82 |
1 |
1.356 |
-0.305 |
9 |
(0.988,0.999] |
83 |
0 |
0.641 |
-0.801 |
10 |
ggplot(HL_DF, aes(x=indice))+geom_point(aes(y=exp, color = "blue"))+geom_point(aes(y=obs, color = "red"))+scale_color_manual(labels = c("Esperado", "Observado"), values = c("blue", "red"))

#slope e intercept
table(pred_modelo$verdad)
##
## 0 1
## 108 716
str(pred_modelo$verdad)
## Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
pred_modelo$verdad <- as.numeric(as.character(pred_modelo$verdad))
pred_modelo <- pred_modelo# esta parece ser una observacion duplicada
a <- valProbggplot(pred_modelo$pred, pred_modelo$verdad)
a$ggPlot

#curva roc. Area 0.83 sin temperatura.vamos con este modelo prueba i3
roc<-roc(pred_modelo$verdad, pred_modelo$pred)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
plot(roc, main = "Curva ROC", col = "red", lwd = 3)
text(0.8, 0.2, paste("AUC ROC =", round(roc$auc, 3)), adj = c(0, 1))
##CREO QUE EL MODELO DE EFECTOS PRINCIPALES ES MODEFECPRIN
modEFPRINC1diab<- glm(muerte ~ COPD + diabetes+CKD + lacticofactor + bicarbonatefactor+ ureanit+urinefactor+ calcio+ respfactor +anemia, family = "binomial", data = DIED0)
summary(modEFPRINC1diab)
##
## Call:
## glm(formula = muerte ~ COPD + diabetes + CKD + lacticofactor +
## bicarbonatefactor + ureanit + urinefactor + calcio + respfactor +
## anemia, family = "binomial", data = DIED0)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.90681 1.87882 -2.61 0.00901 **
## COPD1 1.50434 0.71412 2.11 0.03515 *
## diabetes1 0.26903 0.26733 1.01 0.31426
## CKD1 1.52540 0.33317 4.58 0.0000046848 ***
## lacticofactor1 -0.95906 0.26057 -3.68 0.00023 ***
## bicarbonatefactor1 0.70080 0.27451 2.55 0.01068 *
## ureanit -0.03471 0.00603 -5.76 0.0000000086 ***
## urinefactor1 0.94203 0.25695 3.67 0.00025 ***
## calcio 0.80753 0.23311 3.46 0.00053 ***
## respfactor1 -0.64876 0.27608 -2.35 0.01878 *
## anemia1 0.94009 0.29296 3.21 0.00133 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 640.10 on 823 degrees of freedom
## Residual deviance: 460.46 on 813 degrees of freedom
## AIC: 482.5
##
## Number of Fisher Scoring iterations: 6
anova(modEFPRINC1diab)
## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: muerte
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 823 640
## COPD 1 6.1 822 634 0.01386 *
## diabetes 1 1.2 821 633 0.27214
## CKD 1 11.6 820 621 0.00065 ***
## lacticofactor 1 30.5 819 591 0.000000033002 ***
## bicarbonatefactor 1 42.6 818 548 0.000000000066 ***
## ureanit 1 43.3 817 505 0.000000000047 ***
## urinefactor 1 17.4 816 487 0.000030689495 ***
## calcio 1 10.0 815 477 0.00154 **
## respfactor 1 5.5 814 472 0.01914 *
## anemia 1 11.4 813 460 0.00074 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modEFPRINC1diab)
Ā
|
muerte
|
Predictors
|
Odds Ratios
|
CI
|
p
|
(Intercept)
|
0.01
|
0.00Ā āĀ 0.28
|
0.009
|
COPD [1]
|
4.50
|
1.33Ā āĀ 23.54
|
0.035
|
diabetes [1]
|
1.31
|
0.78Ā āĀ 2.23
|
0.314
|
CKD [1]
|
4.60
|
2.45Ā āĀ 9.07
|
<0.001
|
lacticofactor [1]
|
0.38
|
0.23Ā āĀ 0.64
|
<0.001
|
bicarbonatefactor [1]
|
2.02
|
1.17Ā āĀ 3.44
|
0.011
|
ureanit
|
0.97
|
0.95Ā āĀ 0.98
|
<0.001
|
urinefactor [1]
|
2.57
|
1.56Ā āĀ 4.27
|
<0.001
|
calcio
|
2.24
|
1.43Ā āĀ 3.58
|
0.001
|
respfactor [1]
|
0.52
|
0.31Ā āĀ 0.91
|
0.019
|
anemia [1]
|
2.56
|
1.47Ā āĀ 4.65
|
0.001
|
Observations
|
824
|
R2 Tjur
|
0.277
|
MODEFECPRIN=modEFPRINC1diab
##Base test
library(readr)
test_TH <- read_csv("C:/Users/Administrador/Downloads/test_TH.csv")
## Rows: 352 Columns: 36
## āā Column specification āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā
## Delimiter: ","
## dbl (36): Died, age, gender, hypertension, a_fib, CHD, diabetes, anemia, dep...
##
## ā¹ Use `spec()` to retrieve the full column specification for this data.
## ā¹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
View(test_TH)
test_TH1=test_TH
#preparación de la base test
test_TH1$heart=test_TH$`heart rate`
test_TH1$syst=test_TH$`Systolic blood pressure`
test_TH1$dias=test_TH$`Diastolic blood pressure`
test_TH1$magn=test_TH$`Magnesium ion`
test_TH1$probnp=test_TH$`NT-proBNP`
test_TH1$resp=test_TH$`Respiratory rate`
test_TH1$ureanit=test_TH$`Urea nitrogen`
test_TH1$urine=test_TH$`Urine output`
test_TH1$sodio=test_TH$`Blood sodium`
test_TH1$lactico=test_TH$`Lactic acid`
test_TH1$calcio=test_TH$`Blood calcium`
test_TH1$potasio=test_TH$`Blood potassium`
summary(test_TH1$lactico)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.50 1.23 1.60 1.85 2.15 8.33
quantile(test_TH1$lactico,0.60)
## 60%
## 1.79
test_TH1 <- test_TH1 %>% mutate_at(vars(Died, gender, hypertension, a_fib, CHD, diabetes, anemia, depression, Hyperlipemia, CKD, COPD ),~as.factor(.))
#dicotomizar resp
quantile(test_TH1$resp,0.80)
## 80%
## 24.4
describe(test_TH1$resp)
## test_TH1$resp
## n missing distinct Info Mean pMedian Gmd .05
## 352 0 337 1 21.05 20.88 4.496 15.00
## .10 .25 .50 .75 .90 .95
## 16.07 18.05 20.80 23.68 26.00 28.46
##
## lowest : 12.5 12.6 12.697 13 13.5758
## highest: 30.8667 32 33.1034 35.2667 35.75
test_TH1 <- test_TH1 %>% mutate(respfactor = as.factor(case_when(resp< 23.9 ~ "0",resp>= 23.9 ~"1")))
#dicotomizar urine
quantile(test_TH1$urine,0.40)
## 40%
## 1301
test_TH1 <- test_TH1 %>% mutate(urinefactor = as.factor(case_when(urine< 1372 ~ "0",urine>= 1372 ~"1")))
#dicotomizar bicarbonato
quantile(test_TH1$Bicarbonate,0.20)
## 20%
## 22.8
test_TH1 <- test_TH1 %>% mutate(bicarbonatefactor = as.factor(case_when(Bicarbonate< 22.7 ~ "0",Bicarbonate>= 22.7 ~"1")))
#dicotomizar lactico
quantile(test_TH1$lactico,0.80)
## 80%
## 2.3
describe(test_TH1$lactico)
## test_TH1$lactico
## n missing distinct Info Mean pMedian Gmd .05
## 352 0 154 1 1.85 1.692 0.95 0.8386
## .10 .25 .50 .75 .90 .95
## 1.0000 1.2312 1.6000 2.1479 2.8129 3.6858
##
## lowest : 0.5 0.6 0.7 0.74 0.79
## highest: 6.12222 6.725 6.77778 7.9 8.33333
test_TH1 <- test_TH1 %>% mutate(lacticofactor = as.factor(case_when(lactico< 2.3 ~ "0",lactico>= 2.3 ~"1")))
#crear muerte en TH1
test_TH1 <- test_TH1 %>% mutate(muerte = as.factor(case_when(
Died == "1" ~ "0",
Died == "0" ~ "1"
)))
##predict
#Predict
test_TH1$prediccion_prob <- predict(MODEFECPRIN, newdata = test_TH1, type = "response")
summary(test_TH1$prediccion_prob)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.085 0.854 0.935 0.862 0.972 0.998
roc_obj <- roc(test_TH1$muerte, test_TH1$prediccion_prob)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
auc(roc_obj)
## Area under the curve: 0.755
roc<-roc(test_TH1$muerte, test_TH1$prediccion_prob)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
plot(roc, main = "Curva ROC", col = "red", lwd = 3)
text(0.8, 0.2, paste("AUC ROC =", round(roc$auc, 3)), adj = c(0, 1))

#slope e intercept
#HOSMER & LEMERSHOW.
pred_modelo <- as.data.frame(predict(MODEFECPRIN, test_TH1, type = "response")) %>% rename(pred = `predict(MODEFECPRIN, test_TH1, type = "response")`)
pred_modelo$verdad <- test_TH1$muerte
H_L <- HLtest(MODEFECPRIN,10)
HL_DF <- cbind(as.data.frame(H_L$table), indice = as.factor(c(1,2,3,4,5,6,7,8,9,10)))
H_L
## Hosmer and Lemeshow Goodness-of-Fit Test
##
## Call:
## glm(formula = muerte ~ COPD + diabetes + CKD + lacticofactor +
## bicarbonatefactor + ureanit + urinefactor + calcio + respfactor +
## anemia, family = "binomial", data = DIED0)
## ChiSquare df P_value
## 5.31 8 0.724
HL_DF[,1:4]
## cut total obs exp
## 1 [0.0245,0.654] 83 47 48.154
## 2 (0.654,0.805] 82 22 21.981
## 3 (0.805,0.881] 82 16 12.587
## 4 (0.881,0.915] 83 4 8.330
## 5 (0.915,0.94] 82 7 5.869
## 6 (0.94,0.958] 82 5 4.046
## 7 (0.958,0.97] 83 3 2.977
## 8 (0.97,0.979] 82 3 2.065
## 9 (0.979,0.988] 82 1 1.350
## 10 (0.988,0.999] 83 0 0.641
HL_DF %>% knitr::kable()
[0.0245,0.654] |
83 |
47 |
48.154 |
-0.166 |
1 |
(0.654,0.805] |
82 |
22 |
21.981 |
0.004 |
2 |
(0.805,0.881] |
82 |
16 |
12.587 |
0.962 |
3 |
(0.881,0.915] |
83 |
4 |
8.330 |
-1.500 |
4 |
(0.915,0.94] |
82 |
7 |
5.869 |
0.467 |
5 |
(0.94,0.958] |
82 |
5 |
4.046 |
0.475 |
6 |
(0.958,0.97] |
83 |
3 |
2.977 |
0.014 |
7 |
(0.97,0.979] |
82 |
3 |
2.065 |
0.651 |
8 |
(0.979,0.988] |
82 |
1 |
1.350 |
-0.301 |
9 |
(0.988,0.999] |
83 |
0 |
0.641 |
-0.801 |
10 |
ggplot(HL_DF, aes(x=indice))+geom_point(aes(y=exp, color = "blue"))+geom_point(aes(y=obs, color = "red"))+scale_color_manual(labels = c("Esperado", "Observado"), values = c("blue", "red"))

#slope e intercept
table(pred_modelo$verdad)
##
## 0 1
## 51 301
str(pred_modelo$verdad)
## Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
pred_modelo$verdad <- as.numeric(as.character(pred_modelo$verdad))
pred_modelo <- pred_modelo# esta parece ser una observacion duplicada
a <- valProbggplot(pred_modelo$pred, pred_modelo$verdad)
a$ggPlot

##comparacion coeficiente
modelo_test <- glm(formula(MODEFECPRIN), data = test_TH1, family = binomial)
coef_train <- coef(MODEFECPRIN)
ic_train <- confint(MODEFECPRIN)
## Waiting for profiling to be done...
coef_test <- coef(modelo_test)
comparacion_coef <- data.frame(
Coeficiente = names(coef_train),
Beta_train = round(coef_train, 3),
IC95_inf = round(ic_train[, 1], 3),
IC95_sup = round(ic_train[, 2], 3),
Beta_test = round(coef_test, 3),
Test_dentro_del_IC95 = coef_test >= ic_train[, 1] & coef_test <= ic_train[, 2]
)
comparacion_coef
## Coeficiente Beta_train IC95_inf IC95_sup Beta_test
## (Intercept) (Intercept) -4.907 -8.652 -1.276 -2.499
## COPD1 COPD1 1.504 0.287 3.159 -0.401
## diabetes1 diabetes1 0.269 -0.250 0.801 0.543
## CKD1 CKD1 1.525 0.895 2.205 0.816
## lacticofactor1 lacticofactor1 -0.959 -1.468 -0.444 -0.837
## bicarbonatefactor1 bicarbonatefactor1 0.701 0.157 1.235 0.126
## ureanit ureanit -0.035 -0.047 -0.023 -0.027
## urinefactor1 urinefactor1 0.942 0.442 1.452 1.140
## calcio calcio 0.808 0.360 1.275 0.541
## respfactor1 respfactor1 -0.649 -1.185 -0.099 -0.601
## anemia1 anemia1 0.940 0.384 1.537 0.401
## Test_dentro_del_IC95
## (Intercept) TRUE
## COPD1 FALSE
## diabetes1 TRUE
## CKD1 FALSE
## lacticofactor1 TRUE
## bicarbonatefactor1 FALSE
## ureanit TRUE
## urinefactor1 TRUE
## calcio TRUE
## respfactor1 TRUE
## anemia1 TRUE
knitr::kable(comparacion_coef, caption = "Comparación de coeficientes entre Train y Test")
Comparación de coeficientes entre Train y Test
(Intercept) |
(Intercept) |
-4.907 |
-8.652 |
-1.276 |
-2.499 |
TRUE |
COPD1 |
COPD1 |
1.504 |
0.287 |
3.159 |
-0.401 |
FALSE |
diabetes1 |
diabetes1 |
0.269 |
-0.250 |
0.801 |
0.543 |
TRUE |
CKD1 |
CKD1 |
1.525 |
0.895 |
2.205 |
0.816 |
FALSE |
lacticofactor1 |
lacticofactor1 |
-0.959 |
-1.468 |
-0.444 |
-0.837 |
TRUE |
bicarbonatefactor1 |
bicarbonatefactor1 |
0.701 |
0.157 |
1.235 |
0.126 |
FALSE |
ureanit |
ureanit |
-0.035 |
-0.047 |
-0.023 |
-0.027 |
TRUE |
urinefactor1 |
urinefactor1 |
0.942 |
0.442 |
1.452 |
1.140 |
TRUE |
calcio |
calcio |
0.808 |
0.360 |
1.275 |
0.541 |
TRUE |
respfactor1 |
respfactor1 |
-0.649 |
-1.185 |
-0.099 |
-0.601 |
TRUE |
anemia1 |
anemia1 |
0.940 |
0.384 |
1.537 |
0.401 |
TRUE |
##modelo sin false
modjao<- glm(muerte ~ diabetes + lacticofactor + ureanit+urinefactor+ calcio+ respfactor +anemia, family = "binomial", data = DIED0)
tab_model(modjao)
Ā
|
muerte
|
Predictors
|
Odds Ratios
|
CI
|
p
|
(Intercept)
|
0.00
|
0.00Ā āĀ 0.08
|
0.001
|
diabetes [1]
|
1.42
|
0.87Ā āĀ 2.34
|
0.166
|
lacticofactor [1]
|
0.29
|
0.18Ā āĀ 0.48
|
<0.001
|
ureanit
|
0.97
|
0.96Ā āĀ 0.98
|
<0.001
|
urinefactor [1]
|
2.62
|
1.63Ā āĀ 4.25
|
<0.001
|
calcio
|
2.79
|
1.84Ā āĀ 4.30
|
<0.001
|
respfactor [1]
|
0.47
|
0.28Ā āĀ 0.79
|
0.004
|
anemia [1]
|
2.89
|
1.69Ā āĀ 5.14
|
<0.001
|
Observations
|
824
|
R2 Tjur
|
0.211
|
summary(modjao)
##
## Call:
## glm(formula = muerte ~ diabetes + lacticofactor + ureanit + urinefactor +
## calcio + respfactor + anemia, family = "binomial", data = DIED0)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.99948 1.77773 -3.37 0.00074 ***
## diabetes1 0.34819 0.25123 1.39 0.16575
## lacticofactor1 -1.22293 0.24518 -4.99 0.000000610 ***
## ureanit -0.02614 0.00488 -5.35 0.000000086 ***
## urinefactor1 0.96140 0.24437 3.93 0.000083475 ***
## calcio 1.02495 0.21643 4.74 0.000002183 ***
## respfactor1 -0.76008 0.26091 -2.91 0.00358 **
## anemia1 1.06076 0.28235 3.76 0.00017 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 640.10 on 823 degrees of freedom
## Residual deviance: 498.38 on 816 degrees of freedom
## AIC: 514.4
##
## Number of Fisher Scoring iterations: 6
#HOSMER & LEMERSHOW. LA P ME DA . NO RECHAZA LA HIPĆTESIS NULA.ES COMO QUIERO QUE ME DE
pred_modelo <- as.data.frame(predict(modjao, DIED0, type = "response")) %>% rename(pred = `predict(modjao, DIED0, type = "response")`)
pred_modelo$verdad <- DIED0$muerte
H_L <- HLtest(modjao,10)
HL_DF <- cbind(as.data.frame(H_L$table), indice = as.factor(c(1,2,3,4,5,6,7,8,9,10)))
H_L
## Hosmer and Lemeshow Goodness-of-Fit Test
##
## Call:
## glm(formula = muerte ~ diabetes + lacticofactor + ureanit + urinefactor +
## calcio + respfactor + anemia, family = "binomial", data = DIED0)
## ChiSquare df P_value
## 3.89 8 0.867
HL_DF[,1:4]
## cut total obs exp
## 1 [0.101,0.672] 83 42 42.98
## 2 (0.672,0.791] 82 20 21.12
## 3 (0.791,0.866] 82 12 13.57
## 4 (0.866,0.905] 83 11 9.42
## 5 (0.905,0.93] 82 9 6.79
## 6 (0.93,0.949] 82 7 4.91
## 7 (0.949,0.962] 83 4 3.69
## 8 (0.962,0.973] 82 1 2.69
## 9 (0.973,0.982] 82 1 1.84
## 10 (0.982,0.999] 83 1 1.00
HL_DF %>% knitr::kable()
[0.101,0.672] |
83 |
42 |
42.98 |
-0.150 |
1 |
(0.672,0.791] |
82 |
20 |
21.12 |
-0.243 |
2 |
(0.791,0.866] |
82 |
12 |
13.57 |
-0.425 |
3 |
(0.866,0.905] |
83 |
11 |
9.42 |
0.515 |
4 |
(0.905,0.93] |
82 |
9 |
6.79 |
0.846 |
5 |
(0.93,0.949] |
82 |
7 |
4.91 |
0.946 |
6 |
(0.949,0.962] |
83 |
4 |
3.69 |
0.163 |
7 |
(0.962,0.973] |
82 |
1 |
2.69 |
-1.029 |
8 |
(0.973,0.982] |
82 |
1 |
1.84 |
-0.618 |
9 |
(0.982,0.999] |
83 |
1 |
1.00 |
0.000 |
10 |
ggplot(HL_DF, aes(x=indice))+geom_point(aes(y=exp, color = "blue"))+geom_point(aes(y=obs, color = "red"))+scale_color_manual(labels = c("Esperado", "Observado"), values = c("blue", "red"))

#slope e intercept
table(pred_modelo$verdad)
##
## 0 1
## 108 716
str(pred_modelo$verdad)
## Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
pred_modelo$verdad <- as.numeric(as.character(pred_modelo$verdad))
pred_modelo <- pred_modelo# esta parece ser una observacion duplicada
a <- valProbggplot(pred_modelo$pred, pred_modelo$verdad)
a$ggPlot

#curva roc. Area 0.83 sin temperatura.vamos con este modelo prueba i3
roc<-roc(pred_modelo$verdad, pred_modelo$pred)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
plot(roc, main = "Curva ROC", col = "red", lwd = 3)
text(0.8, 0.2, paste("AUC ROC =", round(roc$auc, 3)), adj = c(0, 1))
##predict modjao
#Predict
test_TH1$prediccion_prob <- predict(modjao, newdata = test_TH1, type = "response")
summary(test_TH1$prediccion_prob)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.129 0.839 0.929 0.864 0.964 0.994
roc_obj <- roc(test_TH1$muerte, test_TH1$prediccion_prob)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
auc(roc_obj)
## Area under the curve: 0.76
roc<-roc(test_TH1$muerte, test_TH1$prediccion_prob)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
plot(roc, main = "Curva ROC", col = "red", lwd = 3)
text(0.8, 0.2, paste("AUC ROC =", round(roc$auc, 3)), adj = c(0, 1))

#slope e intercept
#HOSMER & LEMERSHOW.
pred_modelo <- as.data.frame(predict(modjao, test_TH1, type = "response")) %>% rename(pred = `predict(modjao, test_TH1, type = "response")`)
pred_modelo$verdad <- test_TH1$muerte
H_L <- HLtest(modjao,10)
HL_DF <- cbind(as.data.frame(H_L$table), indice = as.factor(c(1,2,3,4,5,6,7,8,9,10)))
H_L
## Hosmer and Lemeshow Goodness-of-Fit Test
##
## Call:
## glm(formula = muerte ~ diabetes + lacticofactor + ureanit + urinefactor +
## calcio + respfactor + anemia, family = "binomial", data = DIED0)
## ChiSquare df P_value
## 3.89 8 0.867
HL_DF[,1:4]
## cut total obs exp
## 1 [0.101,0.672] 83 42 42.98
## 2 (0.672,0.791] 82 20 21.12
## 3 (0.791,0.866] 82 12 13.57
## 4 (0.866,0.905] 83 11 9.42
## 5 (0.905,0.93] 82 9 6.79
## 6 (0.93,0.949] 82 7 4.91
## 7 (0.949,0.962] 83 4 3.69
## 8 (0.962,0.973] 82 1 2.69
## 9 (0.973,0.982] 82 1 1.84
## 10 (0.982,0.999] 83 1 1.00
HL_DF %>% knitr::kable()
[0.101,0.672] |
83 |
42 |
42.98 |
-0.150 |
1 |
(0.672,0.791] |
82 |
20 |
21.12 |
-0.243 |
2 |
(0.791,0.866] |
82 |
12 |
13.57 |
-0.425 |
3 |
(0.866,0.905] |
83 |
11 |
9.42 |
0.515 |
4 |
(0.905,0.93] |
82 |
9 |
6.79 |
0.846 |
5 |
(0.93,0.949] |
82 |
7 |
4.91 |
0.946 |
6 |
(0.949,0.962] |
83 |
4 |
3.69 |
0.163 |
7 |
(0.962,0.973] |
82 |
1 |
2.69 |
-1.029 |
8 |
(0.973,0.982] |
82 |
1 |
1.84 |
-0.618 |
9 |
(0.982,0.999] |
83 |
1 |
1.00 |
0.000 |
10 |
ggplot(HL_DF, aes(x=indice))+geom_point(aes(y=exp, color = "blue"))+geom_point(aes(y=obs, color = "red"))+scale_color_manual(labels = c("Esperado", "Observado"), values = c("blue", "red"))

#slope e intercept
table(pred_modelo$verdad)
##
## 0 1
## 51 301
str(pred_modelo$verdad)
## Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
pred_modelo$verdad <- as.numeric(as.character(pred_modelo$verdad))
pred_modelo <- pred_modelo# esta parece ser una observacion duplicada
a <- valProbggplot(pred_modelo$pred, pred_modelo$verdad)
a$ggPlot

modelo_test <- glm(formula(modjao), data = test_TH1, family = binomial)
coef_train <- coef(modjao)
ic_train <- confint(modjao)
## Waiting for profiling to be done...
coef_test <- coef(modelo_test)
comparacion_coef <- data.frame(
Coeficiente = names(coef_train),
Beta_train = round(coef_train, 3),
IC95_inf = round(ic_train[, 1], 3),
IC95_sup = round(ic_train[, 2], 3),
Beta_test = round(coef_test, 3),
Test_dentro_del_IC95 = coef_test >= ic_train[, 1] & coef_test <= ic_train[, 2]
)
comparacion_coef
## Coeficiente Beta_train IC95_inf IC95_sup Beta_test
## (Intercept) (Intercept) -5.999 -9.544 -2.563 -3.286
## diabetes1 diabetes1 0.348 -0.139 0.849 0.658
## lacticofactor1 lacticofactor1 -1.223 -1.704 -0.740 -0.813
## ureanit ureanit -0.026 -0.036 -0.017 -0.023
## urinefactor1 urinefactor1 0.961 0.487 1.448 1.154
## calcio calcio 1.025 0.609 1.459 0.645
## respfactor1 respfactor1 -0.760 -1.267 -0.242 -0.661
## anemia1 anemia1 1.061 0.526 1.637 0.533
## Test_dentro_del_IC95
## (Intercept) TRUE
## diabetes1 TRUE
## lacticofactor1 TRUE
## ureanit TRUE
## urinefactor1 TRUE
## calcio TRUE
## respfactor1 TRUE
## anemia1 TRUE
knitr::kable(comparacion_coef, caption = "Comparación de coeficientes entre Train y Test")
Comparación de coeficientes entre Train y Test
(Intercept) |
(Intercept) |
-5.999 |
-9.544 |
-2.563 |
-3.286 |
TRUE |
diabetes1 |
diabetes1 |
0.348 |
-0.139 |
0.849 |
0.658 |
TRUE |
lacticofactor1 |
lacticofactor1 |
-1.223 |
-1.704 |
-0.740 |
-0.813 |
TRUE |
ureanit |
ureanit |
-0.026 |
-0.036 |
-0.017 |
-0.023 |
TRUE |
urinefactor1 |
urinefactor1 |
0.961 |
0.487 |
1.448 |
1.154 |
TRUE |
calcio |
calcio |
1.025 |
0.609 |
1.459 |
0.645 |
TRUE |
respfactor1 |
respfactor1 |
-0.760 |
-1.267 |
-0.242 |
-0.661 |
TRUE |
anemia1 |
anemia1 |
1.061 |
0.526 |
1.637 |
0.533 |
TRUE |