##Variables como factor y cambio de nombres

train <- train %>% mutate_at(vars(Died, gender, hypertension, a_fib, CHD, diabetes, anemia, depression, Hyperlipemia, CKD, COPD ),~as.factor(.))
train$heart=train$`heart rate`
train$syst=train$`Systolic blood pressure`
train$dias=train$`Diastolic blood pressure`
train$sat=train$`SP O2`
train$magn=train$`Magnesium ion`
train$probnp=train$`NT-proBNP`
train$resp=train$`Respiratory rate`
train$ureanit=train$`Urea nitrogen`
train$urine=train$`Urine output`
train$sodio=train$`Blood sodium`
train$lactico=train$`Lactic acid`
train$calcio=train$`Blood calcium`
train$potasio=train$`Blood potassium`
train <- train %>% select(-`heart rate`)
train <- train %>% select(-`Systolic blood pressure`)
train <- train %>% select(-`Diastolic blood pressure`,- `Respiratory rate`, -`Magnesium ion`)
train <- train %>% select(-`Urea nitrogen`, -`Urine output`, -`Blood sodium`)

train <- train %>% select(-`Blood calcium`, -`Blood potassium`, -`Lactic acid`, -`NT-proBNP`)

##Hago base nueva DIED0, donde la variable muerte=1 es muertos y muerte=0 es vivos al revés de Died según lo hablado con Diego

DIED0=train
DIED0<- DIED0 %>%
mutate(muerte = as.factor(case_when(
Died== 1 ~ "0", Died == 0 ~ "1")))
levels(DIED0$muerte)
## [1] "0" "1"
describe(DIED0$muerte)
## DIED0$muerte 
##        n  missing distinct 
##      824        0        2 
##                       
## Value          0     1
## Frequency    108   716
## Proportion 0.131 0.869
describe(train$Died)
## train$Died 
##        n  missing distinct 
##      824        0        2 
##                       
## Value          0     1
## Frequency    716   108
## Proportion 0.869 0.131

##Tabla 1a Antecedentes Tabla 1b Continuas

#Creo variable muerte 1 si/no para que la tabla se vea mejor
DIED0<- DIED0 %>% select(-`Died`)

DIED0$muerte1=DIED0$muerte
DIED0$muerte1 <- factor(DIED0$muerte1,
                       levels = c(0, 1),
                       labels = c("No muerte", "Muerte"))

catvars = c( "gender", "hypertension", "a_fib", "CHD", "diabetes", "anemia", "depression", "Hyperlipemia", "CKD", "COPD")


vars = c("gender", "hypertension", "a_fib", "CHD", "diabetes", "anemia", "depression", "Hyperlipemia", "CKD", "COPD")


tabla_1a <- CreateTableOne(vars = vars, strata = "muerte1", factorVars = catvars, data = DIED0)

print(tabla_1a)
##                       Stratified by muerte1
##                        No muerte   Muerte      p      test
##   n                    108         716                    
##   gender = 2 (%)        52 (48.1)  382 (53.4)   0.365     
##   hypertension = 1 (%)  67 (62.0)  521 (72.8)   0.029     
##   a_fib = 1 (%)         64 (59.3)  313 (43.7)   0.004     
##   CHD = 1 (%)           10 ( 9.3)   66 ( 9.2)   1.000     
##   diabetes = 1 (%)      42 (38.9)  310 (43.3)   0.448     
##   anemia = 1 (%)        22 (20.4)  266 (37.2)   0.001     
##   depression = 1 (%)     8 ( 7.4)   90 (12.6)   0.166     
##   Hyperlipemia = 1 (%)  39 (36.1)  278 (38.8)   0.664     
##   CKD = 1 (%)           24 (22.2)  276 (38.5)   0.001     
##   COPD = 1 (%)           3 ( 2.8)   64 ( 8.9)   0.046
library(dplyr)
kableone(tabla_1a)
No muerte Muerte p test
n 108 716
gender = 2 (%) 52 (48.1) 382 (53.4) 0.365
hypertension = 1 (%) 67 (62.0) 521 (72.8) 0.029
a_fib = 1 (%) 64 (59.3) 313 (43.7) 0.004
CHD = 1 (%) 10 ( 9.3) 66 ( 9.2) 1.000
diabetes = 1 (%) 42 (38.9) 310 (43.3) 0.448
anemia = 1 (%) 22 (20.4) 266 (37.2) 0.001
depression = 1 (%) 8 ( 7.4) 90 (12.6) 0.166
Hyperlipemia = 1 (%) 39 (36.1) 278 (38.8) 0.664
CKD = 1 (%) 24 (22.2) 276 (38.5) 0.001
COPD = 1 (%) 3 ( 2.8) 64 ( 8.9) 0.046
catvars = c( "gender", "hypertension", "a_fib", "CHD", "diabetes", "anemia", "depression", "Hyperlipemia", "CKD", "COPD")

#edad y enojo son continuas
vars = c("age","temperature", "hematocrit","Leucocyte","Platelets","INR","Creatinine","glucose","Chloride","PH","Bicarbonate","PCO2","heart","syst","dias","sat","magn","probnp","resp","ureanit","urine","sodio","lactico", "calcio","potasio", "SP O2")


tabla_2a <- CreateTableOne(vars = vars, strata = "muerte1", factorVars = catvars, data = DIED0)

print(tabla_2a)
##                          Stratified by muerte1
##                           No muerte           Muerte              p      test
##   n                            108                 716                       
##   age (mean (SD))            75.98 (14.01)       73.76 (13.01)     0.102     
##   temperature (mean (SD))    36.48 (0.73)        36.70 (0.57)     <0.001     
##   hematocrit (mean (SD))     31.97 (5.43)        31.91 (5.11)      0.913     
##   Leucocyte (mean (SD))      13.84 (7.96)        10.37 (4.52)     <0.001     
##   Platelets (mean (SD))     214.03 (133.44)     248.72 (108.03)    0.003     
##   INR (mean (SD))             2.02 (1.40)         1.58 (0.75)     <0.001     
##   Creatinine (mean (SD))      1.84 (1.20)         1.60 (1.21)      0.046     
##   glucose (mean (SD))       151.15 (52.98)      148.52 (50.57)     0.617     
##   Chloride (mean (SD))      103.36 (6.04)       102.12 (5.28)      0.026     
##   PH (mean (SD))              7.36 (0.08)         7.38 (0.06)     <0.001     
##   Bicarbonate (mean (SD))    23.48 (5.32)        27.41 (5.01)     <0.001     
##   PCO2 (mean (SD))           43.16 (12.22)       45.49 (11.54)     0.053     
##   heart (mean (SD))          88.24 (14.68)       83.80 (15.83)     0.006     
##   syst (mean (SD))          110.39 (16.75)      119.21 (17.05)    <0.001     
##   dias (mean (SD))           57.67 (9.21)        60.00 (10.84)     0.034     
##   sat (mean (SD))            95.90 (3.01)        96.35 (2.14)      0.054     
##   magn (mean (SD))            2.18 (0.31)         2.10 (0.24)      0.004     
##   probnp (mean (SD))      15554.25 (14867.09) 10814.14 (12818.97) <0.001     
##   resp (mean (SD))           21.68 (4.27)        20.51 (3.93)      0.005     
##   ureanit (mean (SD))        48.71 (28.71)       34.83 (20.81)    <0.001     
##   urine (mean (SD))        1251.19 (1042.46)   1999.65 (1271.35)  <0.001     
##   sodio (mean (SD))         138.18 (5.35)       139.02 (3.97)      0.052     
##   lactico (mean (SD))         2.40 (1.36)         1.71 (0.75)     <0.001     
##   calcio (mean (SD))          8.23 (0.63)         8.54 (0.55)     <0.001     
##   potasio (mean (SD))         4.34 (0.58)         4.15 (0.38)     <0.001     
##   SP O2 (mean (SD))          95.90 (3.01)        96.35 (2.14)      0.054
kableone(tabla_2a)
No muerte Muerte p test
n 108 716
age (mean (SD)) 75.98 (14.01) 73.76 (13.01) 0.102
temperature (mean (SD)) 36.48 (0.73) 36.70 (0.57) <0.001
hematocrit (mean (SD)) 31.97 (5.43) 31.91 (5.11) 0.913
Leucocyte (mean (SD)) 13.84 (7.96) 10.37 (4.52) <0.001
Platelets (mean (SD)) 214.03 (133.44) 248.72 (108.03) 0.003
INR (mean (SD)) 2.02 (1.40) 1.58 (0.75) <0.001
Creatinine (mean (SD)) 1.84 (1.20) 1.60 (1.21) 0.046
glucose (mean (SD)) 151.15 (52.98) 148.52 (50.57) 0.617
Chloride (mean (SD)) 103.36 (6.04) 102.12 (5.28) 0.026
PH (mean (SD)) 7.36 (0.08) 7.38 (0.06) <0.001
Bicarbonate (mean (SD)) 23.48 (5.32) 27.41 (5.01) <0.001
PCO2 (mean (SD)) 43.16 (12.22) 45.49 (11.54) 0.053
heart (mean (SD)) 88.24 (14.68) 83.80 (15.83) 0.006
syst (mean (SD)) 110.39 (16.75) 119.21 (17.05) <0.001
dias (mean (SD)) 57.67 (9.21) 60.00 (10.84) 0.034
sat (mean (SD)) 95.90 (3.01) 96.35 (2.14) 0.054
magn (mean (SD)) 2.18 (0.31) 2.10 (0.24) 0.004
probnp (mean (SD)) 15554.25 (14867.09) 10814.14 (12818.97) <0.001
resp (mean (SD)) 21.68 (4.27) 20.51 (3.93) 0.005
ureanit (mean (SD)) 48.71 (28.71) 34.83 (20.81) <0.001
urine (mean (SD)) 1251.19 (1042.46) 1999.65 (1271.35) <0.001
sodio (mean (SD)) 138.18 (5.35) 139.02 (3.97) 0.052
lactico (mean (SD)) 2.40 (1.36) 1.71 (0.75) <0.001
calcio (mean (SD)) 8.23 (0.63) 8.54 (0.55) <0.001
potasio (mean (SD)) 4.34 (0.58) 4.15 (0.38) <0.001
SP O2 (mean (SD)) 95.90 (3.01) 96.35 (2.14) 0.054

##Modelo univariado

DIED0 %>%
  tbl_uvregression(
    method = glm,
    y = muerte1,
    method.args = list(family = binomial),
    exponentiate = TRUE,
    pvalue_fun = ~style_pvalue(.x, digits = 2)) %>% bold_p() %>% bold_labels()
## There was a warning constructing the model for variable "muerte". See message
## below.
## ! glm.fit: algorithm did not converge
## There was a warning running `tbl_regression()` for variable "muerte". See
## message below.
## ! glm.fit: fitted probabilities numerically 0 or 1 occurred, glm.fit: fitted
##   probabilities numerically 0 or 1 occurred, glm.fit: fitted probabilities
##   numerically 0 or 1 occurred, glm.fit: fitted probabilities numerically 0 or 1
##   occurred, glm.fit: fitted probabilities numerically 0 or 1 occurred, glm.fit:
##   fitted probabilities numerically 0 or 1 occurred, glm.fit: fitted
##   probabilities numerically 0 or 1 occurred, glm.fit: fitted probabilities
##   numerically 0 or 1 occurred, glm.fit: fitted probabilities numerically 0 or 1
##   occurred, glm.fit: fitted probabilities numerically 0 or 1 occurred, glm.fit:
##   fitted probabilities numerically 0 or 1 occurred, glm.fit: fitted
##   probabilities numerically 0 or 1 occurred, glm.fit: fitted probabilities
##   numerically 0 or 1 occurred, glm.fit: fitted probabilities numerically 0 or 1
##   occurred, glm.fit: fitted probabilities numerically 0 or 1 occurred, glm.fit:
##   fitted probabilities numerically 0 or 1 occurred, glm.fit: fitted
##   probabilities numerically 0 or 1 occurred, glm.fit: fitted probabilities
##   numerically 0 or 1 occurred, glm.fit: fitted probabilities numerically 0 or 1
##   occurred, and glm.fit: fitted probabilities numerically 0 or 1 occurred
Characteristic N OR 95% CI p-value
age 824 0.99 0.97, 1.00 0.10
gender 824


Ā Ā Ā Ā 1
— —
Ā Ā Ā Ā 2
1.23 0.82, 1.85 0.31
hypertension 824


Ā Ā Ā Ā 0
— —
Ā Ā Ā Ā 1
1.63 1.07, 2.48 0.022
a_fib 824


Ā Ā Ā Ā 0
— —
Ā Ā Ā Ā 1
0.53 0.35, 0.80 0.003
CHD 824


Ā Ā Ā Ā 0
— —
Ā Ā Ā Ā 1
1.00 0.52, 2.12 0.99
diabetes 824


Ā Ā Ā Ā 0
— —
Ā Ā Ā Ā 1
1.20 0.80, 1.83 0.39
anemia 824


Ā Ā Ā Ā 0
— —
Ā Ā Ā Ā 1
2.31 1.44, 3.86 <0.001
depression 824


Ā Ā Ā Ā 0
— —
Ā Ā Ā Ā 1
1.80 0.90, 4.13 0.13
Hyperlipemia 824


Ā Ā Ā Ā 0
— —
Ā Ā Ā Ā 1
1.12 0.74, 1.72 0.59
CKD 824


Ā Ā Ā Ā 0
— —
Ā Ā Ā Ā 1
2.20 1.38, 3.61 0.001
COPD 824


Ā Ā Ā Ā 0
— —
Ā Ā Ā Ā 1
3.44 1.25, 14.2 0.040
temperature 824 1.82 1.30, 2.57 <0.001
SP O2 824 1.08 1.00, 1.18 0.057
hematocrit 824 1.00 0.96, 1.04 0.91
Leucocyte 824 0.90 0.87, 0.93 <0.001
Platelets 824 1.00 1.00, 1.01 0.003
INR 824 0.65 0.54, 0.78 <0.001
Creatinine 824 0.87 0.76, 1.01 0.051
glucose 824 1.00 1.00, 1.00 0.62
Chloride 824 0.96 0.92, 1.0 0.026
PH 824 893 36.6, 22,910 <0.001
Bicarbonate 824 1.19 1.14, 1.25 <0.001
PCO2 824 1.02 1.00, 1.04 0.053
heart 824 0.98 0.97, 1.00 0.007
syst 824 1.04 1.02, 1.05 <0.001
dias 824 1.02 1.00, 1.04 0.034
sat 824 1.08 1.00, 1.18 0.057
magn 824 0.34 0.16, 0.73 0.005
probnp 824 1.00 1.00, 1.00 <0.001
resp 824 0.93 0.89, 0.98 0.005
ureanit 824 0.98 0.97, 0.99 <0.001
urine 824 1.00 1.00, 1.00 <0.001
sodio 824 1.05 1.00, 1.09 0.053
lactico 824 0.51 0.41, 0.62 <0.001
calcio 824 2.75 1.90, 4.04 <0.001
potasio 824 0.38 0.24, 0.59 <0.001
muerte 824


Ā Ā Ā Ā 0
— —
Ā Ā Ā Ā muerte1
118,848,047,226,233,318,016,086 0.00, Inf >0.99
Abbreviations: CI = Confidence Interval, OR = Odds Ratio

##Variables lineales. Comportamiento

#resp NO ES LINEAL. baja en el Ćŗltimo quintilo. Puede usarse igualmente como lineal p=0.82
DIED0<- DIED0 %>% mutate(resp_q = ntile(resp, 5))

DIED0%>%
  dplyr::group_by(resp_q) %>%
  dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
  ggplot(aes(x = resp_q, y = tar)) +
  geom_point() +
  geom_smooth(method = "lm", col = "blue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
  dplyr::group_by(resp_q) %>%
  dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
  ggplot(aes(x = resp_q, y = tar)) +
  geom_col(fill = "steelblue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
  labs(x = "Cuartiles resp", y = "Proporción de muertes") +
  theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(resp ~ rcs(urine, 3), data = DIED0)
anova(fit)
##                 Wald Statistics          Response: resp 
## 
##  Factor     Chi-Square d.f. P    
##  urine      1.46       2    0.483
##   Nonlinear 0.05       1    0.828
##  TOTAL      1.46       2    0.483
#dicotomizar resp

quantile(DIED0$resp,0.80)
##  80% 
## 23.9
describe(DIED0$resp)
## DIED0$resp 
##        n  missing distinct     Info     Mean  pMedian      Gmd      .05 
##      824        0      725        1    20.66    20.49    4.451    14.66 
##      .10      .25      .50      .75      .90      .95 
##    15.97    17.86    20.20    23.25    25.76    27.55 
## 
## lowest : 11.1379 11.8182 12      12.2121 12.3333
## highest: 33.08   33.1154 33.85   34.6934 40.9
DIED0 <- DIED0 %>% mutate(respfactor = as.factor(case_when(resp< 23.9 ~ "0",resp>= 23.9 ~"1")))
describe(DIED0$respfactor)
## DIED0$respfactor 
##        n  missing distinct 
##      824        0        2 
##                       
## Value          0     1
## Frequency    661   163
## Proportion 0.802 0.198
levels(DIED0$respfactor)
## [1] "0" "1"
modresp1<-glm(muerte~respfactor, family = "binomial", data=DIED0)
tab_model(modresp1)
Ā  muerte
Predictors Odds Ratios CI p
(Intercept) 8.18 6.45 – 10.53 <0.001
respfactor [1] 0.43 0.28 – 0.68 <0.001
Observations 824
R2 Tjur 0.017
#temperatura. El primer quintilo es mƔs bajo que los demƔs. Se puede usar igualmente en forma lineal
DIED0<- DIED0 %>% mutate(temperature_q = ntile(temperature, 5))

DIED0%>%
  dplyr::group_by(temperature_q) %>%
  dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
  ggplot(aes(x = temperature_q, y = tar)) +
  geom_point() +
  geom_smooth(method = "lm", col = "blue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
  dplyr::group_by(temperature_q) %>%
  dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
  ggplot(aes(x = temperature_q, y = tar)) +
  geom_col(fill = "steelblue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
  labs(x = "Cuartiles temperature", y = "Proporción de muertes") +
  theme_minimal()

#dicotomizar temp

quantile(DIED0$temperature,0.20)
##  20% 
## 36.2
describe(DIED0$temperature)
## DIED0$temperature 
##        n  missing distinct     Info     Mean  pMedian      Gmd      .05 
##      824        0      583        1    36.67    36.66   0.6547    35.80 
##      .10      .25      .50      .75      .90      .95 
##    35.97    36.30    36.66    37.02    37.44    37.67 
## 
## lowest : 33.25   34.1507 34.3241 34.6056 34.6722
## highest: 38.2698 38.2778 38.3651 38.4136 38.6435
DIED0 <- DIED0 %>% mutate(tempfactor = as.factor(case_when(temperature< 36.2 ~ "0",temperature>= 36.2 ~"1")))
describe(DIED0$tempfactor)
## DIED0$tempfactor 
##        n  missing distinct 
##      824        0        2 
##                       
## Value          0     1
## Frequency    164   660
## Proportion 0.199 0.801
levels(DIED0$tempfactor)
## [1] "0" "1"
modtemp1<-glm(muerte~tempfactor, family = "binomial", data=DIED0)
tab_model(modtemp1)
Ā  muerte
Predictors Odds Ratios CI p
(Intercept) 4.12 2.84 – 6.17 <0.001
tempfactor [1] 1.86 1.17 – 2.91 0.007
Observations 824
R2 Tjur 0.009
dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(temperature, 3), data = DIED0)
anova(fit)
##                 Wald Statistics          Response: muerte 
## 
##  Factor      Chi-Square d.f. P     
##  temperature 15.72      2    0.0004
##   Nonlinear   3.21      1    0.0733
##  TOTAL       15.72      2    0.0004
#leucocitos: podrĆ­a tomarse como lineal
DIED0<- DIED0 %>% mutate(Leucocyte_q = ntile(Leucocyte, 5))

DIED0%>%
  dplyr::group_by(Leucocyte_q) %>%
  dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
  ggplot(aes(x = Leucocyte_q, y = tar)) +
  geom_point() +
  geom_smooth(method = "lm", col = "blue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
  dplyr::group_by(Leucocyte_q) %>%
  dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
  ggplot(aes(x = Leucocyte_q, y = tar)) +
  geom_col(fill = "steelblue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
  labs(x = "Cuartiles leucocitos", y = "Proporción de muertes") +
  theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(temperature, 3), data = DIED0)
anova(fit)
##                 Wald Statistics          Response: muerte 
## 
##  Factor      Chi-Square d.f. P     
##  temperature 15.72      2    0.0004
##   Nonlinear   3.21      1    0.0733
##  TOTAL       15.72      2    0.0004
#plaquetas
#plaquetas no es lineal
DIED0<- DIED0 %>% mutate(Platelets_q = ntile(Platelets, 5))

DIED0%>%
  dplyr::group_by(Platelets_q) %>%
  dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
  ggplot(aes(x = Platelets_q, y = tar)) +
  geom_point() +
  geom_smooth(method = "lm", col = "blue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
  dplyr::group_by(Platelets_q) %>%
  dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
  ggplot(aes(x = Platelets_q, y = tar)) +
  geom_col(fill = "steelblue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
  labs(x = "Cuartiles plaquetas", y = "Proporción de muertes") +
  theme_minimal()

library(rms)
dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(Platelets, 3), data = DIED0)
anova(fit)
##                 Wald Statistics          Response: muerte 
## 
##  Factor     Chi-Square d.f. P     
##  Platelets  27.3       2    <.0001
##   Nonlinear 18.2       1    <.0001
##  TOTAL      27.3       2    <.0001
#INR puede incluirse como lineal
DIED0<- DIED0 %>% mutate(INR_q = ntile(INR, 5))

DIED0%>%
  dplyr::group_by(INR_q) %>%
  dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
  ggplot(aes(x = INR_q, y = tar)) +
  geom_point() +
  geom_smooth(method = "lm", col = "blue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
  dplyr::group_by(INR_q) %>%
  dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
  ggplot(aes(x = INR_q, y = tar)) +
  geom_col(fill = "steelblue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
  labs(x = "Cuartiles rin", y = "Proporción de muertes") +
  theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(INR, 3), data = DIED0)
anova(fit)
##                 Wald Statistics          Response: muerte 
## 
##  Factor     Chi-Square d.f. P     
##  INR        21.24      2    <.0001
##   Nonlinear  0.73      1    0.393 
##  TOTAL      21.24      2    <.0001
#lactico. puede usarse lineal o dicotomizar el ultimo quintil
DIED0<- DIED0 %>% mutate(lactico_q = ntile(lactico, 5))

DIED0%>%
  dplyr::group_by(lactico_q) %>%
  dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
  ggplot(aes(x =lactico_q, y = tar)) +
  geom_point() +
  geom_smooth(method = "lm", col = "blue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
  dplyr::group_by(lactico_q) %>%
  dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
  ggplot(aes(x = lactico_q, y = tar)) +
  geom_col(fill = "steelblue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
  labs(x = "Cuartiles lactico", y = "Proporción de muertes") +
  theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(lactico, 3), data = DIED0)
anova(fit)
##                 Wald Statistics          Response: muerte 
## 
##  Factor     Chi-Square d.f. P     
##  lactico    43.91      2    <.0001
##   Nonlinear  1.07      1    0.302 
##  TOTAL      43.91      2    <.0001
#dicotomizar lactico
quantile(DIED0$lactico,0.80)
## 80% 
## 2.3
describe(DIED0$lactico)
## DIED0$lactico 
##        n  missing distinct     Info     Mean  pMedian      Gmd      .05 
##      824        0      246        1    1.801    1.675   0.8847    0.825 
##      .10      .25      .50      .75      .90      .95 
##    1.000    1.200    1.600    2.125    2.895    3.402 
## 
## lowest : 0.5      0.533333 0.6      0.625    0.65    
## highest: 6.16667  6.45     6.5      6.6      7.25
DIED0 <- DIED0 %>% mutate(lacticofactor = as.factor(case_when(lactico< 2.3 ~ "0",lactico>= 2.3 ~"1")))
describe(DIED0$lacticofactor)
## DIED0$lacticofactor 
##        n  missing distinct 
##      824        0        2 
##                       
## Value          0     1
## Frequency    657   167
## Proportion 0.797 0.203
levels(DIED0$lacticofactor)
## [1] "0" "1"
modlac1<-glm(muerte~lacticofactor, family = "binomial", data=DIED0)
tab_model(modlac1)
Ā  muerte
Predictors Odds Ratios CI p
(Intercept) 9.77 7.58 – 12.84 <0.001
lacticofactor [1] 0.26 0.17 – 0.40 <0.001
Observations 824
R2 Tjur 0.050
#PH. No lineal. Dicotomiza en primer quintilo

DIED0<- DIED0 %>% mutate(PH_q = ntile(PH, 5))

DIED0%>%
  dplyr::group_by(PH_q) %>%
  dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
  ggplot(aes(x =PH_q, y = tar)) +
  geom_point() +
  geom_smooth(method = "lm", col = "blue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
  dplyr::group_by(PH_q) %>%
  dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
  ggplot(aes(x = PH_q, y = tar)) +
  geom_col(fill = "steelblue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
  labs(x = "Cuartiles PH", y = "Proporción de muertes") +
  theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(PH, 3), data = DIED0)
anova(fit)
##                 Wald Statistics          Response: muerte 
## 
##  Factor     Chi-Square d.f. P     
##  PH         23.20      2    <.0001
##   Nonlinear  4.64      1    0.0313
##  TOTAL      23.20      2    <.0001
#dicotomizar PH
quantile(DIED0$PH,0.20)
##  20% 
## 7.33
describe(DIED0$PH)
## DIED0$PH 
##        n  missing distinct     Info     Mean  pMedian      Gmd      .05 
##      824        0      331        1    7.379     7.38  0.06996    7.273 
##      .10      .25      .50      .75      .90      .95 
##    7.301    7.340    7.380    7.421    7.459    7.480 
## 
## lowest : 7.09    7.15833 7.16923 7.182   7.1975 
## highest: 7.53    7.534   7.55    7.56    7.58
DIED0 <- DIED0 %>% mutate(PHfactor = as.factor(case_when(PH< 7.33 ~ "0",PH>= 7.33 ~"1")))
describe(DIED0$PHfactor)
## DIED0$PHfactor 
##        n  missing distinct 
##      824        0        2 
##                       
## Value          0     1
## Frequency    153   671
## Proportion 0.186 0.814
levels(DIED0$PHofactor)
## Warning: Unknown or uninitialised column: `PHofactor`.
## NULL
modPH1<-glm(muerte~PHfactor, family = "binomial", data=DIED0)
tab_model(modPH1)
Ā  muerte
Predictors Odds Ratios CI p
(Intercept) 3.37 2.34 – 4.99 <0.001
PHfactor [1] 2.43 1.54 – 3.78 <0.001
Observations 824
R2 Tjur 0.019
#bicarbonato: nolineal dicotomizar primer quintilo
DIED0<- DIED0 %>% mutate(Bicarbonate_q = ntile(Bicarbonate, 5))

DIED0%>%
  dplyr::group_by(Bicarbonate_q) %>%
  dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
  ggplot(aes(x =Bicarbonate_q, y = tar)) +
  geom_point() +
  geom_smooth(method = "lm", col = "blue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
  dplyr::group_by(Bicarbonate_q) %>%
  dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
  ggplot(aes(x =Bicarbonate_q, y = tar)) +
  geom_col(fill = "steelblue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
  labs(x = "Cuartiles Bicarbonate", y = "Proporción de muertes") +
  theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(Bicarbonate, 3), data = DIED0)
anova(fit)
##                 Wald Statistics          Response: muerte 
## 
##  Factor      Chi-Square d.f. P     
##  Bicarbonate 66.24      2    <.0001
##   Nonlinear   9.41      1    0.0022
##  TOTAL       66.24      2    <.0001
#dicotomizar bicarbonato
quantile(DIED0$Bicarbonate,0.20)
##  20% 
## 22.7
DIED0 <- DIED0 %>% mutate(bicarbonatefactor = as.factor(case_when(Bicarbonate< 22.7 ~ "0",Bicarbonate>= 22.7 ~"1")))

modbic1<-glm(muerte~bicarbonatefactor, family = "binomial", data=DIED0)
tab_model(modbic1)
Ā  muerte
Predictors Odds Ratios CI p
(Intercept) 2.17 1.58 – 3.03 <0.001
bicarbonatefactor [1] 5.04 3.29 – 7.73 <0.001
Observations 824
R2 Tjur 0.076
dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(Bicarbonate, 3), data = DIED0)
anova(fit)
##                 Wald Statistics          Response: muerte 
## 
##  Factor      Chi-Square d.f. P     
##  Bicarbonate 66.24      2    <.0001
##   Nonlinear   9.41      1    0.0022
##  TOTAL       66.24      2    <.0001
#ureanit. lineal
DIED0<- DIED0 %>% mutate(ureanit_q = ntile(ureanit, 5))

DIED0%>%
  dplyr::group_by(ureanit_q) %>%
  dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
  ggplot(aes(x =ureanit_q, y = tar)) +
  geom_point() +
  geom_smooth(method = "lm", col = "blue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
  dplyr::group_by(ureanit_q) %>%
  dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
  ggplot(aes(x =ureanit_q, y = tar)) +
  geom_col(fill = "steelblue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
  labs(x = "Cuartiles ureanit", y = "Proporción de muertes") +
  theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(ureanit, 3), data = DIED0)
anova(fit)
##                 Wald Statistics          Response: muerte 
## 
##  Factor     Chi-Square d.f. P     
##  ureanit    31.66      2    <.0001
##   Nonlinear  1.01      1    0.316 
##  TOTAL      31.66      2    <.0001
#urine. No lineal. parto en el 3er quintilo
DIED0<- DIED0 %>% mutate(urine_q = ntile(urine, 5))

DIED0%>%
  dplyr::group_by(urine_q) %>%
  dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
  ggplot(aes(x =urine_q, y = tar)) +
  geom_point() +
  geom_smooth(method = "lm", col = "blue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
  dplyr::group_by(urine_q) %>%
  dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
  ggplot(aes(x =urine_q, y = tar)) +
  geom_col(fill = "steelblue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
  labs(x = "Cuartiles urine", y = "Proporción de muertes") +
  theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(urine, 3), data = DIED0)
anova(fit)
##                 Wald Statistics          Response: muerte 
## 
##  Factor     Chi-Square d.f. P     
##  urine      51.2       2    <.0001
##   Nonlinear 12.8       1    0.0004
##  TOTAL      51.2       2    <.0001
#dicotomizar urine
quantile(DIED0$urine,0.40)
##  40% 
## 1372
DIED0 <- DIED0 %>% mutate(urinefactor = as.factor(case_when(urine< 1372 ~ "0",urine>= 1372 ~"1")))

modur1<-glm(muerte~urinefactor, family = "binomial", data=DIED0)
tab_model(modur1)
Ā  muerte
Predictors Odds Ratios CI p
(Intercept) 3.52 2.73 – 4.60 <0.001
urinefactor [1] 3.73 2.44 – 5.79 <0.001
Observations 824
R2 Tjur 0.048
#Creatinine. Lineal. 
DIED0<- DIED0 %>% mutate(Creatinine_q = ntile(urine, 5))

DIED0%>%
  dplyr::group_by(Creatinine_q) %>%
  dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
  ggplot(aes(x =Creatinine_q, y = tar)) +
  geom_point() +
  geom_smooth(method = "lm", col = "blue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
  dplyr::group_by(Creatinine_q) %>%
  dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
  ggplot(aes(x =Creatinine_q, y = tar)) +
  geom_col(fill = "steelblue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
  labs(x = "Cuartiles urine", y = "Proporción de muertes") +
  theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(Creatinine, 3), data = DIED0)
anova(fit)
##                 Wald Statistics          Response: muerte 
## 
##  Factor     Chi-Square d.f. P    
##  Creatinine 4.16       2    0.125
##   Nonlinear 0.54       1    0.461
##  TOTAL      4.16       2    0.125
#Cloro.No Lineal. Al dicotomizarlo se vuelve NS
DIED0<- DIED0 %>% mutate(Chloride_q = ntile(urine, 5))

DIED0%>%
  dplyr::group_by(Chloride_q) %>%
  dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
  ggplot(aes(x =Chloride_q, y = tar)) +
  geom_point() +
  geom_smooth(method = "lm", col = "blue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
  dplyr::group_by(Chloride_q) %>%
  dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
  ggplot(aes(x =Chloride_q, y = tar)) +
  geom_col(fill = "steelblue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
  labs(x = "Cuartiles urine", y = "Proporción de muertes") +
  theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(Chloride, 3), data = DIED0)
anova(fit)
##                 Wald Statistics          Response: muerte 
## 
##  Factor     Chi-Square d.f. P     
##  Chloride   11.01      2    0.0041
##   Nonlinear  5.45      1    0.0196
##  TOTAL      11.01      2    0.0041
#dicotomizar cloro
quantile(DIED0$Chloride,0.40)
## 40% 
## 101
DIED0 <- DIED0 %>% mutate(clorofactor = as.factor(case_when(Chloride< 101 ~ "0",Chloride>= 101 ~"1")))

modur1<-glm(muerte~clorofactor, family = "binomial", data=DIED0)
tab_model(modur1)
Ā  muerte
Predictors Odds Ratios CI p
(Intercept) 8.47 6.03 – 12.30 <0.001
clorofactor [1] 0.68 0.44 – 1.04 0.084
Observations 824
R2 Tjur 0.004
#syst. Baja primer quintil. no lineal. Se dicotomiza
DIED0<- DIED0 %>% mutate(syst_q = ntile(syst, 5))

DIED0%>%
  dplyr::group_by(syst_q) %>%
  dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
  ggplot(aes(x =syst_q, y = tar)) +
  geom_point() +
  geom_smooth(method = "lm", col = "blue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
  dplyr::group_by(syst_q) %>%
  dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
  ggplot(aes(x =syst_q, y = tar)) +
  geom_col(fill = "steelblue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
  labs(x = "Cuartiles syst", y = "Proporción de muertes") +
  theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(syst, 3), data = DIED0)
anova(fit)
##                 Wald Statistics          Response: muerte 
## 
##  Factor     Chi-Square d.f. P     
##  syst       31.98      2    <.0001
##   Nonlinear  4.92      1    0.0266
##  TOTAL      31.98      2    <.0001
#dicotomizar syst
quantile(DIED0$syst,0.20)
## 20% 
## 103
DIED0 <- DIED0 %>% mutate(systfactor = as.factor(case_when(syst< 103 ~ "0",syst>= 103 ~"1")))

modur1<-glm(muerte~systfactor, family = "binomial", data=DIED0)
tab_model(modur1)
Ā  muerte
Predictors Odds Ratios CI p
(Intercept) 3.25 2.30 – 4.69 <0.001
systfactor [1] 2.65 1.71 – 4.08 <0.001
Observations 824
R2 Tjur 0.025
#mAGNESIO. Lineal
DIED0<- DIED0 %>% mutate(magn_q = ntile(magn, 5))

DIED0%>%
  dplyr::group_by(magn_q) %>%
  dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
  ggplot(aes(x =magn_q, y = tar)) +
  geom_point() +
  geom_smooth(method = "lm", col = "blue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
  dplyr::group_by(magn_q) %>%
  dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
  ggplot(aes(x =magn_q, y = tar)) +
  geom_col(fill = "steelblue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
  labs(x = "Cuartiles magn", y = "Proporción de muertes") +
  theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(magn, 3), data = DIED0)
anova(fit)
##                 Wald Statistics          Response: muerte 
## 
##  Factor     Chi-Square d.f. P     
##  magn       11.36      2    0.0034
##   Nonlinear  3.31      1    0.0688
##  TOTAL      11.36      2    0.0034
#probnp lineal 
DIED0<- DIED0 %>% mutate(probnp_q = ntile(probnp, 5))

DIED0%>%
  dplyr::group_by(probnp_q) %>%
  dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
  ggplot(aes(x =probnp_q, y = tar)) +
  geom_point() +
  geom_smooth(method = "lm", col = "blue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
  dplyr::group_by(probnp_q) %>%
  dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
  ggplot(aes(x =probnp_q, y = tar)) +
  geom_col(fill = "steelblue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
  labs(x = "Cuartiles probnp", y = "Proporción de muertes") +
  theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(probnp, 3), data = DIED0)
anova(fit)
##                 Wald Statistics          Response: muerte 
## 
##  Factor     Chi-Square d.f. P     
##  probnp     13.44      2    0.0012
##   Nonlinear  2.73      1    0.0988
##  TOTAL      13.44      2    0.0012
#heart lineal
DIED0<- DIED0 %>% mutate(heart_q = ntile(heart, 5))

DIED0%>%
  dplyr::group_by(heart_q) %>%
  dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
  ggplot(aes(x =heart_q, y = tar)) +
  geom_point() +
  geom_smooth(method = "lm", col = "blue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
  dplyr::group_by(heart_q) %>%
  dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
  ggplot(aes(x =heart_q, y = tar)) +
  geom_col(fill = "steelblue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
  labs(x = "Cuartiles heart", y = "Proporción de muertes") +
  theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(heart, 3), data = DIED0)
anova(fit)
##                 Wald Statistics          Response: muerte 
## 
##  Factor     Chi-Square d.f. P     
##  heart      8.32       2    0.0156
##   Nonlinear 1.98       1    0.1592
##  TOTAL      8.32       2    0.0156
#SP O2 sat no impresiona lineal
DIED0<- DIED0 %>% mutate(sat_q = ntile(sat, 5))

DIED0%>%
  dplyr::group_by(sat_q) %>%
  dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
  ggplot(aes(x =sat_q, y = tar)) +
  geom_point() +
  geom_smooth(method = "lm", col = "blue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
  dplyr::group_by(sat_q) %>%
  dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
  ggplot(aes(x =sat_q, y = tar)) +
  geom_col(fill = "steelblue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
  labs(x = "Cuartiles heart", y = "Proporción de muertes") +
  theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(sat, 3), data = DIED0)
anova(fit)
##                 Wald Statistics          Response: muerte 
## 
##  Factor     Chi-Square d.f. P     
##  sat        4.84       2    0.0891
##   Nonlinear 1.15       1    0.2836
##  TOTAL      4.84       2    0.0891
#calcio. no lineal. dicotomiza en el 2do quintil
DIED0<- DIED0 %>% mutate(calcio_q = ntile(calcio, 5))

DIED0%>%
  dplyr::group_by(calcio_q) %>%
  dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
  ggplot(aes(x =calcio_q, y = tar)) +
  geom_point() +
  geom_smooth(method = "lm", col = "blue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
  dplyr::group_by(calcio_q) %>%
  dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
  ggplot(aes(x =calcio_q, y = tar)) +
  geom_col(fill = "steelblue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
  labs(x = "Cuartiles calcio", y = "Proporción de muertes") +
  theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(calcio, 3), data = DIED0)
anova(fit)
##                 Wald Statistics          Response: muerte 
## 
##  Factor     Chi-Square d.f. P     
##  calcio     37.77      2    <.0001
##   Nonlinear  7.36      1    0.0067
##  TOTAL      37.77      2    <.0001
#dicotomizar calcio
quantile(DIED0$calcio,0.40)
##  40% 
## 8.37
DIED0 <- DIED0 %>% mutate(calciofactor = as.factor(case_when(calcio< 8.37 ~ "0",calcio>= 8.37 ~"1")))

modur1<-glm(muerte~calciofactor, family = "binomial", data=DIED0)
tab_model(modur1)
Ā  muerte
Predictors Odds Ratios CI p
(Intercept) 3.62 2.81 – 4.74 <0.001
calciofactor [1] 3.49 2.29 – 5.40 <0.001
Observations 824
R2 Tjur 0.043
#potasio. No lineal. Baja en el ultimo quintilo
DIED0<- DIED0 %>% mutate(potasio_q = ntile(potasio, 5))

DIED0%>%
  dplyr::group_by(potasio_q) %>%
  dplyr::summarise(tar = mean (as.numeric(muerte)-1)) %>%
  ggplot(aes(x =potasio_q, y = tar)) +
  geom_point() +
  geom_smooth(method = "lm", col = "blue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.5)
## `geom_smooth()` using formula = 'y ~ x'

DIED0 %>%
  dplyr::group_by(potasio_q) %>%
  dplyr::summarise(tar = mean(as.numeric(muerte)-1)) %>%
  ggplot(aes(x =potasio_q, y = tar)) +
  geom_col(fill = "steelblue") +
  geom_text(aes(label = round(tar, 2)), vjust = -0.3) +
  labs(x = "Cuartiles potasio", y = "Proporción de muertes") +
  theme_minimal()

dd <- datadist(DIED0); options(datadist = 'dd')
fit <- lrm(muerte ~ rcs(potasio, 3), data = DIED0)
anova(fit)
##                 Wald Statistics          Response: muerte 
## 
##  Factor     Chi-Square d.f. P     
##  potasio    24.25      2    <.0001
##   Nonlinear  5.18      1    0.0229
##  TOTAL      24.25      2    <.0001
#dicotomizar potasio
quantile(DIED0$potasio,0.80)
##  80% 
## 4.45
DIED0 <- DIED0 %>% mutate(potasiofactor = as.factor(case_when(potasio< 4.45 ~ "0",potasio>= 4.45 ~"1")))

modur1<-glm(muerte~potasiofactor, family = "binomial", data=DIED0)
tab_model(modur1)
Ā  muerte
Predictors Odds Ratios CI p
(Intercept) 8.08 6.38 – 10.41 <0.001
potasiofactor [1] 0.46 0.30 – 0.72 0.001
Observations 824
R2 Tjur 0.015

##ingreso de variables antecedentes al modelo

#hipertension, FA, anemia, CKD, COPD
modeloa<-glm(muerte~hypertension, family = "binomial", data=DIED0)
modelob<-glm(muerte~hypertension+ a_fib, family = "binomial", data=DIED0)
modeloc<-glm(muerte~hypertension+a_fib+anemia, family = "binomial", data=DIED0)
modelod<-glm(muerte~hypertension+a_fib+anemia+ CKD, family = "binomial", data=DIED0)
modelof<-glm(muerte~hypertension+ a_fib+ anemia+ CKD+COPD, family = "binomial", data=DIED0)

#comparación de modelos
ta<-tab_model(modeloa,modelob,modeloc,modelod,modelof, transform=NULL,show.se = T, show.dev = T, show.loglik = T, show.intercept = F,show.stat = F, show.reflvl = T, digits = 2, digits.p = 3, show.r2 = F,collapse.ci = F) 

knitr::asis_output(ta$knitr)
Ā  muerte muerte muerte muerte muerte
Predictors Log-Odds std. Error CI p Log-Odds std. Error CI p Log-Odds std. Error CI p Log-Odds std. Error CI p Log-Odds std. Error CI p
a_fib1 -0.64 0.21 -1.06 – -0.23 0.002 -0.60 0.21 -1.02 – -0.19 0.005 -0.64 0.21 -1.07 – -0.23 0.003 -0.64 0.21 -1.06 – -0.22 0.003
anemia1 0.81 0.25 0.33 – 1.33 0.001 0.73 0.26 0.24 – 1.25 0.004 0.74 0.26 0.26 – 1.27 0.004
CKD1 0.68 0.25 0.20 – 1.19 0.007 0.72 0.25 0.24 – 1.23 0.004
COPD1 1.32 0.61 0.29 – 2.75 0.029
hypertension1 0.49 0.22 0.06 – 0.91 0.022 0.51 0.22 0.08 – 0.93 0.019 0.52 0.22 0.09 – 0.95 0.017 0.41 0.22 -0.03 – 0.84 0.067 0.39 0.22 -0.06 – 0.82 0.083
Observations 824 824 824 824 824
Deviance 635.056 625.651 614.108 606.316 599.479
log-Likelihood -317.528 -312.826 -307.054 -303.158 -299.739
#sin hipertensión. Se decide elimiar hipertensión
modelog<-glm(muerte~ a_fib+ anemia+ CKD+COPD, family = "binomial", data=DIED0)
anova(modelof, modelog, test="LRT")
## Analysis of Deviance Table
## 
## Model 1: muerte ~ hypertension + a_fib + anemia + CKD + COPD
## Model 2: muerte ~ a_fib + anemia + CKD + COPD
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)  
## 1       818        599                       
## 2       819        602 -1    -2.94    0.087 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##ingreso de variables continuas al modelo

modeloh<-glm(muerte~ a_fib+ anemia+ CKD+COPD+tempfactor, family = "binomial", data=DIED0)
modeloi<-glm(muerte~ a_fib+ anemia+ CKD+COPD+tempfactor+ PHfactor, family = "binomial", data=DIED0)
modeloj<-glm(muerte~ a_fib+ anemia+ CKD+COPD+tempfactor+ PHfactor+bicarbonatefactor, family = "binomial", data=DIED0)
modelok<-glm(muerte~ a_fib+ anemia+ CKD+COPD+tempfactor+PHfactor+bicarbonatefactor+lacticofactor, family = "binomial", data=DIED0)
modelol<-glm(muerte~ a_fib+ anemia+ CKD+COPD+tempfactor+PHfactor+bicarbonatefactor+lacticofactor+respfactor, family = "binomial", data=DIED0)
modelom<-glm(muerte~ a_fib+ anemia+ CKD+COPD+tempfactor+PHfactor+bicarbonatefactor+lacticofactor+respfactor, family = "binomial", data=DIED0)
modelon<-glm(muerte~ a_fib+ anemia+ CKD+COPD+tempfactor+PHfactor+bicarbonatefactor+lacticofactor+respfactor+urinefactor, family = "binomial", data=DIED0)
modeloo<-glm(muerte~ a_fib+ anemia+ CKD+COPD+tempfactor+PHfactor+bicarbonatefactor+lacticofactor+respfactor+urinefactor+systfactor, family = "binomial", data=DIED0)
modelop<-glm(muerte~ a_fib+ anemia+ CKD+COPD+tempfactor+PHfactor+bicarbonatefactor+lacticofactor+respfactor+urinefactor+systfactor+calciofactor, family = "binomial", data=DIED0)
modeloq<-glm(muerte~ a_fib+ anemia+ CKD+COPD+tempfactor+PHfactor+bicarbonatefactor+lacticofactor+respfactor+urinefactor+systfactor+calciofactor+potasiofactor, family = "binomial", data=DIED0)

#comparación de modelos
ta<-tab_model(modeloh,modeloi,modeloj,modelok,modelol,modeloo,modelop, modeloq,transform=NULL,show.se = T, show.dev = T, show.loglik = T, show.intercept = F,show.stat = F, show.reflvl = T, digits = 2, digits.p = 3, show.r2 = F,collapse.ci = F) 

knitr::asis_output(ta$knitr)
Ā  muerte muerte muerte muerte muerte muerte muerte muerte
Predictors Log-Odds std. Error CI p Log-Odds std. Error CI p Log-Odds std. Error CI p Log-Odds std. Error CI p Log-Odds std. Error CI p Log-Odds std. Error CI p Log-Odds std. Error CI p Log-Odds std. Error CI p
a_fib1 -0.56 0.22 -0.99 – -0.13 0.011 -0.62 0.22 -1.06 – -0.19 0.005 -0.56 0.23 -1.01 – -0.11 0.015 -0.58 0.23 -1.04 – -0.13 0.012 -0.56 0.23 -1.02 – -0.10 0.017 -0.40 0.24 -0.88 – 0.07 0.099 -0.45 0.25 -0.93 – 0.04 0.071 -0.44 0.25 -0.93 – 0.05 0.077
anemia1 0.73 0.26 0.24 – 1.25 0.004 0.76 0.26 0.27 – 1.29 0.004 0.75 0.27 0.24 – 1.29 0.005 0.70 0.27 0.18 – 1.26 0.010 0.70 0.28 0.17 – 1.25 0.012 0.73 0.28 0.20 – 1.31 0.009 0.79 0.28 0.24 – 1.36 0.006 0.77 0.28 0.23 – 1.34 0.007
bicarbonatefactor1 1.49 0.24 1.02 – 1.96 <0.001 1.32 0.24 0.84 – 1.80 <0.001 1.34 0.25 0.85 – 1.83 <0.001 1.14 0.26 0.64 – 1.65 <0.001 0.94 0.27 0.42 – 1.46 <0.001 0.86 0.27 0.32 – 1.38 0.002
calciofactor1 0.84 0.25 0.36 – 1.34 0.001 0.92 0.26 0.42 – 1.43 <0.001
CKD1 0.86 0.25 0.38 – 1.37 0.001 0.92 0.26 0.43 – 1.44 <0.001 1.05 0.26 0.55 – 1.59 <0.001 0.92 0.27 0.40 – 1.47 0.001 0.86 0.27 0.35 – 1.41 0.001 0.92 0.28 0.40 – 1.48 0.001 0.82 0.28 0.29 – 1.39 0.003 0.95 0.29 0.40 – 1.53 0.001
COPD1 1.35 0.61 0.32 – 2.78 0.026 1.59 0.61 0.54 – 3.03 0.010 1.28 0.62 0.20 – 2.73 0.041 1.27 0.64 0.17 – 2.75 0.046 1.28 0.65 0.16 – 2.78 0.049 1.36 0.66 0.21 – 2.88 0.040 1.37 0.66 0.23 – 2.88 0.036 1.44 0.66 0.30 – 2.95 0.029
lacticofactor1 -0.96 0.24 -1.43 – -0.48 <0.001 -0.91 0.24 -1.39 – -0.43 <0.001 -0.94 0.25 -1.43 – -0.44 <0.001 -0.91 0.26 -1.41 – -0.40 <0.001 -0.91 0.26 -1.42 – -0.40 <0.001
PHfactor1 1.10 0.24 0.61 – 1.57 <0.001 0.69 0.26 0.16 – 1.20 0.009 0.75 0.27 0.22 – 1.28 0.005 0.72 0.27 0.18 – 1.25 0.008 0.55 0.28 -0.01 – 1.09 0.052 0.51 0.29 -0.06 – 1.06 0.075 0.28 0.30 -0.32 – 0.87 0.350
potasiofactor1 -0.73 0.30 -1.32 – -0.13 0.016
respfactor1 -0.72 0.26 -1.21 – -0.21 0.005 -0.72 0.26 -1.23 – -0.20 0.006 -0.76 0.27 -1.28 – -0.23 0.005 -0.76 0.27 -1.28 – -0.22 0.005
systfactor1 0.71 0.25 0.20 – 1.20 0.006 0.66 0.26 0.14 – 1.16 0.011 0.64 0.26 0.12 – 1.15 0.015
tempfactor1 0.62 0.24 0.14 – 1.09 0.010 0.56 0.25 0.06 – 1.04 0.024 0.47 0.26 -0.05 – 0.97 0.073 0.33 0.27 -0.20 – 0.85 0.207 0.35 0.27 -0.18 – 0.87 0.185 0.19 0.28 -0.37 – 0.72 0.497 0.24 0.28 -0.32 – 0.78 0.385 0.22 0.28 -0.34 – 0.77 0.428
urinefactor1 1.02 0.25 0.53 – 1.52 <0.001 0.95 0.26 0.46 – 1.46 <0.001 0.96 0.26 0.46 – 1.47 <0.001
Observations 824 824 824 824 824 824 824 824
Deviance 596.150 577.297 539.753 524.617 517.008 490.324 478.836 473.222
log-Likelihood -298.075 -288.649 -269.876 -262.309 -258.504 -245.162 -239.418 -236.611

##Agregado de varibles continuas al modelo sin temperatura ni ph ni fa

#modelo sin temperatura ni ph
modeloq1<-glm(muerte~  anemia+CKD+COPD+bicarbonatefactor+lacticofactor+respfactor+urinefactor+systfactor+calciofactor+potasiofactor, family = "binomial", data=DIED0)

modeloq2<-glm(muerte~  anemia+CKD+COPD+bicarbonatefactor+lacticofactor+respfactor+urinefactor+systfactor+calciofactor+potasiofactor+ureanit, family = "binomial", data=DIED0)

modeloq3<-glm(muerte~  anemia+CKD+COPD+bicarbonatefactor+lacticofactor+respfactor+urinefactor+systfactor+calciofactor+potasiofactor+ureanit+INR, family = "binomial", data=DIED0)

modeloq4<-glm(muerte~  anemia+CKD+COPD+bicarbonatefactor+lacticofactor+respfactor+urinefactor+systfactor+calciofactor+potasiofactor++ureanit+INR+Creatinine, family = "binomial", data=DIED0)

modeloq5<-glm(muerte~  anemia+CKD+COPD+bicarbonatefactor+lacticofactor+respfactor+urinefactor+systfactor+calciofactor+potasiofactor++ureanit+INR+Creatinine+magn, family = "binomial", data=DIED0)

modeloq6<-glm(muerte~  anemia+CKD+COPD+bicarbonatefactor+lacticofactor+respfactor+urinefactor+systfactor+calciofactor+potasiofactor++ureanit+INR+Creatinine+magn+probnp, family = "binomial", data=DIED0)

modeloq7<-glm(muerte~  anemia+CKD+COPD+bicarbonatefactor+lacticofactor+respfactor+urinefactor+systfactor+calciofactor+potasiofactor++ureanit+INR+Creatinine+magn+probnp+heart, family = "binomial", data=DIED0)

#comparación de modelos
ta<-tab_model(modeloq1,modeloq2,modeloq3,modeloq4,modeloq5,modeloq6,modeloq7,transform=NULL,show.se = T, show.dev = T, show.loglik = T, show.intercept = F,show.stat = F, show.reflvl = T, digits = 2, digits.p = 3, show.r2 = F,collapse.ci = F) 

knitr::asis_output(ta$knitr)
Ā  muerte muerte muerte muerte muerte muerte muerte
Predictors Log-Odds std. Error CI p Log-Odds std. Error CI p Log-Odds std. Error CI p Log-Odds std. Error CI p Log-Odds std. Error CI p Log-Odds std. Error CI p Log-Odds std. Error CI p
anemia1 0.78 0.28 0.25 – 1.35 0.005 0.89 0.29 0.34 – 1.49 0.002 0.89 0.29 0.33 – 1.49 0.002 0.91 0.30 0.35 – 1.52 0.002 0.92 0.30 0.35 – 1.52 0.002 0.92 0.30 0.35 – 1.52 0.002 0.92 0.30 0.36 – 1.52 0.002
bicarbonatefactor1 0.92 0.27 0.40 – 1.44 0.001 0.63 0.28 0.07 – 1.17 0.025 0.64 0.28 0.08 – 1.18 0.023 0.72 0.29 0.15 – 1.27 0.012 0.79 0.29 0.22 – 1.36 0.006 0.80 0.29 0.22 – 1.37 0.006 0.76 0.29 0.18 – 1.34 0.010
calciofactor1 0.90 0.25 0.40 – 1.40 <0.001 1.01 0.26 0.50 – 1.53 <0.001 1.00 0.26 0.49 – 1.53 <0.001 1.02 0.26 0.50 – 1.54 <0.001 1.13 0.27 0.60 – 1.67 <0.001 1.13 0.27 0.60 – 1.67 <0.001 1.14 0.27 0.61 – 1.69 <0.001
CKD1 0.92 0.29 0.37 – 1.50 0.001 1.62 0.34 0.98 – 2.31 <0.001 1.60 0.34 0.96 – 2.29 <0.001 1.42 0.35 0.75 – 2.13 <0.001 1.43 0.35 0.77 – 2.14 <0.001 1.42 0.35 0.76 – 2.14 <0.001 1.39 0.35 0.72 – 2.11 <0.001
COPD1 1.40 0.65 0.27 – 2.89 0.032 1.49 0.70 0.29 – 3.09 0.033 1.45 0.70 0.25 – 3.05 0.038 1.46 0.69 0.27 – 3.04 0.034 1.55 0.70 0.35 – 3.16 0.027 1.55 0.70 0.35 – 3.15 0.026 1.54 0.69 0.35 – 3.14 0.026
Creatinine 0.31 0.19 -0.03 – 0.70 0.104 0.29 0.19 -0.05 – 0.68 0.120 0.29 0.19 -0.05 – 0.68 0.121 0.29 0.19 -0.05 – 0.69 0.118
heart -0.01 0.01 -0.03 – 0.01 0.193
INR -0.15 0.12 -0.40 – 0.09 0.224 -0.16 0.12 -0.40 – 0.08 0.202 -0.15 0.12 -0.40 – 0.09 0.224 -0.15 0.12 -0.40 – 0.09 0.224 -0.18 0.13 -0.43 – 0.07 0.163
lacticofactor1 -0.93 0.26 -1.43 – -0.42 <0.001 -0.93 0.26 -1.44 – -0.41 <0.001 -0.86 0.27 -1.39 – -0.32 0.002 -0.86 0.27 -1.39 – -0.32 0.002 -0.85 0.27 -1.38 – -0.30 0.002 -0.85 0.27 -1.38 – -0.31 0.002 -0.83 0.28 -1.36 – -0.28 0.003
magn -1.06 0.52 -2.06 – -0.03 0.041 -1.05 0.52 -2.06 – -0.02 0.042 -1.05 0.52 -2.05 – -0.02 0.042
potasiofactor1 -0.82 0.29 -1.38 – -0.26 0.004 -0.49 0.30 -1.07 – 0.12 0.109 -0.42 0.31 -1.02 – 0.19 0.171 -0.44 0.31 -1.04 – 0.18 0.158 -0.44 0.31 -1.05 – 0.18 0.153 -0.45 0.31 -1.05 – 0.17 0.152 -0.43 0.31 -1.04 – 0.19 0.162
probnp 0.00 0.00 -0.00 – 0.00 0.876 0.00 0.00 -0.00 – 0.00 0.752
respfactor1 -0.76 0.27 -1.28 – -0.23 0.004 -0.64 0.28 -1.19 – -0.09 0.022 -0.62 0.28 -1.17 – -0.06 0.027 -0.61 0.28 -1.15 – -0.05 0.031 -0.61 0.28 -1.16 – -0.05 0.030 -0.61 0.28 -1.16 – -0.05 0.031 -0.50 0.29 -1.07 – 0.09 0.090
systfactor1 0.66 0.26 0.14 – 1.17 0.011 0.69 0.27 0.15 – 1.21 0.011 0.67 0.27 0.13 – 1.19 0.014 0.64 0.27 0.10 – 1.17 0.018 0.72 0.28 0.17 – 1.26 0.009 0.72 0.28 0.17 – 1.26 0.009 0.65 0.28 0.09 – 1.20 0.021
ureanit -0.03 0.01 -0.04 – -0.02 <0.001 -0.03 0.01 -0.04 – -0.02 <0.001 -0.04 0.01 -0.05 – -0.02 <0.001 -0.03 0.01 -0.05 – -0.02 <0.001 -0.03 0.01 -0.05 – -0.02 <0.001 -0.04 0.01 -0.05 – -0.02 <0.001
urinefactor1 1.08 0.25 0.59 – 1.57 <0.001 0.92 0.26 0.42 – 1.43 <0.001 0.91 0.26 0.41 – 1.43 <0.001 0.96 0.26 0.45 – 1.48 <0.001 0.90 0.26 0.39 – 1.42 0.001 0.90 0.26 0.39 – 1.43 0.001 0.92 0.26 0.41 – 1.45 <0.001
Observations 824 824 824 824 824 824 824
Deviance 478.073 449.584 448.082 445.040 441.010 440.985 439.292
log-Likelihood -239.037 -224.792 -224.041 -222.520 -220.505 -220.492 -219.646

##Efectos principales

modEFPRINC<- glm(muerte ~ a_fib+COPD + CKD + lacticofactor + bicarbonatefactor+ ureanit+urinefactor+ calcio+ respfactor +anemia, family = "binomial", data = DIED0)
summary(modEFPRINC)
## 
## Call:
## glm(formula = muerte ~ a_fib + COPD + CKD + lacticofactor + bicarbonatefactor + 
##     ureanit + urinefactor + calcio + respfactor + anemia, family = "binomial", 
##     data = DIED0)
## 
## Coefficients:
##                    Estimate Std. Error z value    Pr(>|z|)    
## (Intercept)         -4.8647     1.8703   -2.60     0.00930 ** 
## a_fib1              -0.3640     0.2490   -1.46     0.14377    
## COPD1                1.4549     0.7120    2.04     0.04100 *  
## CKD1                 1.5426     0.3308    4.66 0.000003108 ***
## lacticofactor1      -0.9415     0.2603   -3.62     0.00030 ***
## bicarbonatefactor1   0.7288     0.2733    2.67     0.00766 ** 
## ureanit             -0.0325     0.0058   -5.60 0.000000022 ***
## urinefactor1         0.9257     0.2571    3.60     0.00032 ***
## calcio               0.8262     0.2325    3.55     0.00038 ***
## respfactor1         -0.6461     0.2760   -2.34     0.01923 *  
## anemia1              0.9072     0.2936    3.09     0.00200 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 640.10  on 823  degrees of freedom
## Residual deviance: 459.33  on 813  degrees of freedom
## AIC: 481.3
## 
## Number of Fisher Scoring iterations: 6
tab_model(modEFPRINC)
Ā  muerte
Predictors Odds Ratios CI p
(Intercept) 0.01 0.00 – 0.29 0.009
a fib [1] 0.69 0.42 – 1.13 0.144
COPD [1] 4.28 1.27 – 22.23 0.041
CKD [1] 4.68 2.50 – 9.18 <0.001
lacticofactor [1] 0.39 0.23 – 0.65 <0.001
bicarbonatefactor [1] 2.07 1.21 – 3.53 0.008
ureanit 0.97 0.96 – 0.98 <0.001
urinefactor [1] 2.52 1.53 – 4.20 <0.001
calcio 2.28 1.46 – 3.64 <0.001
respfactor [1] 0.52 0.31 – 0.91 0.019
anemia [1] 2.48 1.42 – 4.50 0.002
Observations 824
R2 Tjur 0.279
anova(modEFPRINC)
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: muerte
## 
## Terms added sequentially (first to last)
## 
## 
##                   Df Deviance Resid. Df Resid. Dev      Pr(>Chi)    
## NULL                                823        640                  
## a_fib              1      9.1       822        631       0.00254 ** 
## COPD               1      5.5       821        626       0.01948 *  
## CKD                1     14.0       820        612       0.00018 ***
## lacticofactor      1     29.2       819        582 0.00000006411 ***
## bicarbonatefactor  1     41.5       818        541 0.00000000012 ***
## ureanit            1     37.3       817        503 0.00000000103 ***
## urinefactor        1     16.8       816        487 0.00004123349 ***
## calcio             1     11.3       815        475       0.00079 ***
## respfactor         1      5.5       814        470       0.01856 *  
## anemia             1     10.5       813        459       0.00119 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##Calibración modelo efectos principales

modEFPRINC<- glm(muerte ~ a_fib+COPD + CKD + lacticofactor + bicarbonatefactor+ ureanit+urinefactor+ calcio+ respfactor +anemia, family = "binomial", data = DIED0)
#HOSMER & LEMERSHOW. LA P ME DA . NO RECHAZA LA HIPƓTESIS NULA.ES COMO QUIERO QUE ME DE 
pred_modelo <- as.data.frame(predict(modEFPRINC, DIED0, type = "response")) %>% rename(pred = `predict(modEFPRINC, DIED0, type = "response")`)

pred_modelo$verdad <- DIED0$muerte

H_L <- HLtest(modEFPRINC,10)
HL_DF <- cbind(as.data.frame(H_L$table), indice = as.factor(c(1,2,3,4,5,6,7,8,9,10)))

H_L
## Hosmer and Lemeshow Goodness-of-Fit Test 
## 
## Call:
## glm(formula = muerte ~ a_fib + COPD + CKD + lacticofactor + bicarbonatefactor + 
##     ureanit + urinefactor + calcio + respfactor + anemia, family = "binomial", 
##     data = DIED0)
##  ChiSquare df P_value
##       13.8  8  0.0881
HL_DF[,1:4]
##               cut total obs    exp
## 1  [0.0269,0.647]    83  47 48.382
## 2   (0.647,0.807]    82  23 21.873
## 3    (0.807,0.88]    82  13 12.816
## 4    (0.88,0.917]    83   5  8.279
## 5   (0.917,0.942]    82   8  5.731
## 6   (0.942,0.958]    82   5  4.031
## 7   (0.958,0.971]    83   1  2.869
## 8    (0.971,0.98]    82   6  2.065
## 9    (0.98,0.988]    82   0  1.320
## 10  (0.988,0.999]    83   0  0.634
HL_DF %>% knitr::kable()
cut total obs exp chi indice
[0.0269,0.647] 83 47 48.382 -0.199 1
(0.647,0.807] 82 23 21.873 0.241 2
(0.807,0.88] 82 13 12.816 0.051 3
(0.88,0.917] 83 5 8.279 -1.140 4
(0.917,0.942] 82 8 5.731 0.948 5
(0.942,0.958] 82 5 4.031 0.482 6
(0.958,0.971] 83 1 2.869 -1.103 7
(0.971,0.98] 82 6 2.065 2.739 8
(0.98,0.988] 82 0 1.320 -1.149 9
(0.988,0.999] 83 0 0.634 -0.796 10
ggplot(HL_DF, aes(x=indice))+geom_point(aes(y=exp, color = "blue"))+geom_point(aes(y=obs, color = "red"))+scale_color_manual(labels = c("Esperado", "Observado"), values = c("blue", "red"))

#slope e intercept
table(pred_modelo$verdad)
## 
##   0   1 
## 108 716
str(pred_modelo$verdad)
##  Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
pred_modelo$verdad <- as.numeric(as.character(pred_modelo$verdad))

pred_modelo <- pred_modelo# esta parece ser una observacion duplicada

a <- valProbggplot(pred_modelo$pred, pred_modelo$verdad)
a$ggPlot

#curva roc. Area 0.83 sin temperatura.vamos con este modelo prueba i3
roc<-roc(pred_modelo$verdad, pred_modelo$pred)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
plot(roc, main = "Curva ROC", col = "red", lwd = 3)

text(0.8, 0.2, paste("AUC ROC =", round(roc$auc, 3)), adj = c(0, 1))

##MODELO DE EFECTOS PRINCIPALES SIN A_FIB. SON MENOS VARIABLES

modEFPRINC1<- glm(muerte ~ COPD + CKD + lacticofactor + bicarbonatefactor+ ureanit+urinefactor+ calcio+ respfactor +anemia, family = "binomial", data = DIED0)
summary(modEFPRINC1)
## 
## Call:
## glm(formula = muerte ~ COPD + CKD + lacticofactor + bicarbonatefactor + 
##     ureanit + urinefactor + calcio + respfactor + anemia, family = "binomial", 
##     data = DIED0)
## 
## Coefficients:
##                    Estimate Std. Error z value    Pr(>|z|)    
## (Intercept)        -4.87256    1.86854   -2.61     0.00912 ** 
## COPD1               1.44229    0.70565    2.04     0.04096 *  
## CKD1                1.55474    0.33179    4.69 0.000002788 ***
## lacticofactor1     -0.95172    0.26026   -3.66     0.00026 ***
## bicarbonatefactor1  0.71961    0.27418    2.62     0.00867 ** 
## ureanit            -0.03320    0.00581   -5.71 0.000000011 ***
## urinefactor1        0.97211    0.25497    3.81     0.00014 ***
## calcio              0.80482    0.23171    3.47     0.00051 ***
## respfactor1        -0.64954    0.27565   -2.36     0.01845 *  
## anemia1             0.94086    0.29229    3.22     0.00129 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 640.10  on 823  degrees of freedom
## Residual deviance: 461.48  on 814  degrees of freedom
## AIC: 481.5
## 
## Number of Fisher Scoring iterations: 6
anova(modEFPRINC1)
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: muerte
## 
## Terms added sequentially (first to last)
## 
## 
##                   Df Deviance Resid. Df Resid. Dev       Pr(>Chi)    
## NULL                                823        640                   
## COPD               1      6.1       822        634        0.01386 *  
## CKD                1     12.6       821        621        0.00038 ***
## lacticofactor      1     30.3       820        591 0.000000036271 ***
## bicarbonatefactor  1     42.9       819        548 0.000000000058 ***
## ureanit            1     40.5       818        508 0.000000000192 ***
## urinefactor        1     18.8       817        489 0.000014227547 ***
## calcio             1     10.3       816        479        0.00134 ** 
## respfactor         1      5.6       815        473        0.01826 *  
## anemia             1     11.5       814        461        0.00071 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#HOSMER & LEMERSHOW. LA P ME DA . NO RECHAZA LA HIPƓTESIS NULA.ES COMO QUIERO QUE ME DE 
pred_modelo <- as.data.frame(predict(modEFPRINC1, DIED0, type = "response")) %>% rename(pred = `predict(modEFPRINC1, DIED0, type = "response")`)

pred_modelo$verdad <- DIED0$muerte

H_L <- HLtest(modEFPRINC1,10)
HL_DF <- cbind(as.data.frame(H_L$table), indice = as.factor(c(1,2,3,4,5,6,7,8,9,10)))

H_L
## Hosmer and Lemeshow Goodness-of-Fit Test 
## 
## Call:
## glm(formula = muerte ~ COPD + CKD + lacticofactor + bicarbonatefactor + 
##     ureanit + urinefactor + calcio + respfactor + anemia, family = "binomial", 
##     data = DIED0)
##  ChiSquare df P_value
##       4.75  8   0.784
HL_DF[,1:4]
##               cut total obs    exp
## 1  [0.0297,0.662]    83  45 48.187
## 2   (0.662,0.808]    82  22 21.732
## 3   (0.808,0.879]    82  16 12.646
## 4   (0.879,0.916]    83   7  8.264
## 5   (0.916,0.941]    82   7  5.912
## 6   (0.941,0.959]    82   3  4.085
## 7   (0.959,0.969]    83   3  2.998
## 8   (0.969,0.979]    82   4  2.129
## 9   (0.979,0.988]    82   1  1.403
## 10  (0.988,0.999]    83   0  0.644
HL_DF %>% knitr::kable()
cut total obs exp chi indice
[0.0297,0.662] 83 45 48.187 -0.459 1
(0.662,0.808] 82 22 21.732 0.057 2
(0.808,0.879] 82 16 12.646 0.943 3
(0.879,0.916] 83 7 8.264 -0.440 4
(0.916,0.941] 82 7 5.912 0.448 5
(0.941,0.959] 82 3 4.085 -0.537 6
(0.959,0.969] 83 3 2.998 0.001 7
(0.969,0.979] 82 4 2.129 1.282 8
(0.979,0.988] 82 1 1.403 -0.340 9
(0.988,0.999] 83 0 0.644 -0.803 10
ggplot(HL_DF, aes(x=indice))+geom_point(aes(y=exp, color = "blue"))+geom_point(aes(y=obs, color = "red"))+scale_color_manual(labels = c("Esperado", "Observado"), values = c("blue", "red"))

#slope e intercept
table(pred_modelo$verdad)
## 
##   0   1 
## 108 716
str(pred_modelo$verdad)
##  Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
pred_modelo$verdad <- as.numeric(as.character(pred_modelo$verdad))

pred_modelo <- pred_modelo# esta parece ser una observacion duplicada

a <- valProbggplot(pred_modelo$pred, pred_modelo$verdad)
a$ggPlot

#curva roc. Area 0.83 sin temperatura.vamos con este modelo prueba i3
roc<-roc(pred_modelo$verdad, pred_modelo$pred)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
plot(roc, main = "Curva ROC", col = "red", lwd = 3)

text(0.8, 0.2, paste("AUC ROC =", round(roc$auc, 3)), adj = c(0, 1))

##AGREGA DIABETES : MODELO DE EFECTOS PRINCIPALES. DIABETES AGREGA VALIDEZ EXTERNA

modEFPRINC1diab<- glm(muerte ~ COPD + diabetes+CKD + lacticofactor + bicarbonatefactor+ ureanit+urinefactor+ calcio+ respfactor +anemia, family = "binomial", data = DIED0)
summary(modEFPRINC1diab)
## 
## Call:
## glm(formula = muerte ~ COPD + diabetes + CKD + lacticofactor + 
##     bicarbonatefactor + ureanit + urinefactor + calcio + respfactor + 
##     anemia, family = "binomial", data = DIED0)
## 
## Coefficients:
##                    Estimate Std. Error z value     Pr(>|z|)    
## (Intercept)        -4.90681    1.87882   -2.61      0.00901 ** 
## COPD1               1.50434    0.71412    2.11      0.03515 *  
## diabetes1           0.26903    0.26733    1.01      0.31426    
## CKD1                1.52540    0.33317    4.58 0.0000046848 ***
## lacticofactor1     -0.95906    0.26057   -3.68      0.00023 ***
## bicarbonatefactor1  0.70080    0.27451    2.55      0.01068 *  
## ureanit            -0.03471    0.00603   -5.76 0.0000000086 ***
## urinefactor1        0.94203    0.25695    3.67      0.00025 ***
## calcio              0.80753    0.23311    3.46      0.00053 ***
## respfactor1        -0.64876    0.27608   -2.35      0.01878 *  
## anemia1             0.94009    0.29296    3.21      0.00133 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 640.10  on 823  degrees of freedom
## Residual deviance: 460.46  on 813  degrees of freedom
## AIC: 482.5
## 
## Number of Fisher Scoring iterations: 6
anova(modEFPRINC1diab)
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: muerte
## 
## Terms added sequentially (first to last)
## 
## 
##                   Df Deviance Resid. Df Resid. Dev       Pr(>Chi)    
## NULL                                823        640                   
## COPD               1      6.1       822        634        0.01386 *  
## diabetes           1      1.2       821        633        0.27214    
## CKD                1     11.6       820        621        0.00065 ***
## lacticofactor      1     30.5       819        591 0.000000033002 ***
## bicarbonatefactor  1     42.6       818        548 0.000000000066 ***
## ureanit            1     43.3       817        505 0.000000000047 ***
## urinefactor        1     17.4       816        487 0.000030689495 ***
## calcio             1     10.0       815        477        0.00154 ** 
## respfactor         1      5.5       814        472        0.01914 *  
## anemia             1     11.4       813        460        0.00074 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(modEFPRINC1,modEFPRINC1diab, test="LRT")
## Analysis of Deviance Table
## 
## Model 1: muerte ~ COPD + CKD + lacticofactor + bicarbonatefactor + ureanit + 
##     urinefactor + calcio + respfactor + anemia
## Model 2: muerte ~ COPD + diabetes + CKD + lacticofactor + bicarbonatefactor + 
##     ureanit + urinefactor + calcio + respfactor + anemia
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       814        461                     
## 2       813        460  1     1.02     0.31
#HOSMER & LEMERSHOW. LA P ME DA . NO RECHAZA LA HIPƓTESIS NULA.ES COMO QUIERO QUE ME DE 
pred_modelo <- as.data.frame(predict(modEFPRINC1diab, DIED0, type = "response")) %>% rename(pred = `predict(modEFPRINC1diab, DIED0, type = "response")`)

pred_modelo$verdad <- DIED0$muerte

H_L <- HLtest(modEFPRINC1diab,10)
HL_DF <- cbind(as.data.frame(H_L$table), indice = as.factor(c(1,2,3,4,5,6,7,8,9,10)))

H_L
## Hosmer and Lemeshow Goodness-of-Fit Test 
## 
## Call:
## glm(formula = muerte ~ COPD + diabetes + CKD + lacticofactor + 
##     bicarbonatefactor + ureanit + urinefactor + calcio + respfactor + 
##     anemia, family = "binomial", data = DIED0)
##  ChiSquare df P_value
##       5.31  8   0.724
HL_DF[,1:4]
##               cut total obs    exp
## 1  [0.0245,0.654]    83  47 48.154
## 2   (0.654,0.805]    82  22 21.981
## 3   (0.805,0.881]    82  16 12.587
## 4   (0.881,0.915]    83   4  8.330
## 5    (0.915,0.94]    82   7  5.869
## 6    (0.94,0.958]    82   5  4.046
## 7    (0.958,0.97]    83   3  2.977
## 8    (0.97,0.979]    82   3  2.065
## 9   (0.979,0.988]    82   1  1.350
## 10  (0.988,0.999]    83   0  0.641
HL_DF %>% knitr::kable()
cut total obs exp chi indice
[0.0245,0.654] 83 47 48.154 -0.166 1
(0.654,0.805] 82 22 21.981 0.004 2
(0.805,0.881] 82 16 12.587 0.962 3
(0.881,0.915] 83 4 8.330 -1.500 4
(0.915,0.94] 82 7 5.869 0.467 5
(0.94,0.958] 82 5 4.046 0.475 6
(0.958,0.97] 83 3 2.977 0.014 7
(0.97,0.979] 82 3 2.065 0.651 8
(0.979,0.988] 82 1 1.350 -0.301 9
(0.988,0.999] 83 0 0.641 -0.801 10
ggplot(HL_DF, aes(x=indice))+geom_point(aes(y=exp, color = "blue"))+geom_point(aes(y=obs, color = "red"))+scale_color_manual(labels = c("Esperado", "Observado"), values = c("blue", "red"))

#slope e intercept
table(pred_modelo$verdad)
## 
##   0   1 
## 108 716
str(pred_modelo$verdad)
##  Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
pred_modelo$verdad <- as.numeric(as.character(pred_modelo$verdad))

pred_modelo <- pred_modelo# esta parece ser una observacion duplicada

a <- valProbggplot(pred_modelo$pred, pred_modelo$verdad)
a$ggPlot

#curva roc. Area 0.83 sin temperatura.vamos con este modelo prueba i3
roc<-roc(pred_modelo$verdad, pred_modelo$pred)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
plot(roc, main = "Curva ROC", col = "red", lwd = 3)

text(0.8, 0.2, paste("AUC ROC =", round(roc$auc, 3)), adj = c(0, 1))

##Modelo efectos principales + diabetes: interacción con ckd

#EL TERMINO DE INTERACCIƓN NO ES SIGNIFICATIVO. DEJO DIABETES PARA AUMENTAR VALIDEZ EXTERNA PERO SACO EL TƉRMINO DE INTERACCIƓN
modEFPRINC1diabCKD<- glm(muerte ~ COPD + diabetes+CKD + lacticofactor + bicarbonatefactor+ ureanit+urinefactor+ calcio+ respfactor +anemia + diabetes:CKD, family = "binomial", data = DIED0)
summary(modEFPRINC1diabCKD)
## 
## Call:
## glm(formula = muerte ~ COPD + diabetes + CKD + lacticofactor + 
##     bicarbonatefactor + ureanit + urinefactor + calcio + respfactor + 
##     anemia + diabetes:CKD, family = "binomial", data = DIED0)
## 
## Coefficients:
##                    Estimate Std. Error z value     Pr(>|z|)    
## (Intercept)        -4.91274    1.87952   -2.61      0.00895 ** 
## COPD1               1.49550    0.71266    2.10      0.03586 *  
## diabetes1           0.15439    0.30854    0.50      0.61680    
## CKD1                1.32565    0.42319    3.13      0.00173 ** 
## lacticofactor1     -0.96386    0.26110   -3.69      0.00022 ***
## bicarbonatefactor1  0.70983    0.27491    2.58      0.00982 ** 
## ureanit            -0.03487    0.00604   -5.78 0.0000000077 ***
## urinefactor1        0.94276    0.25725    3.66      0.00025 ***
## calcio              0.81326    0.23328    3.49      0.00049 ***
## respfactor1        -0.65393    0.27660   -2.36      0.01807 *  
## anemia1             0.93287    0.29286    3.19      0.00145 ** 
## diabetes1:CKD1      0.41363    0.56833    0.73      0.46674    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 640.10  on 823  degrees of freedom
## Residual deviance: 459.93  on 812  degrees of freedom
## AIC: 483.9
## 
## Number of Fisher Scoring iterations: 6
anova(modEFPRINC1diabCKD)
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: muerte
## 
## Terms added sequentially (first to last)
## 
## 
##                   Df Deviance Resid. Df Resid. Dev       Pr(>Chi)    
## NULL                                823        640                   
## COPD               1      6.1       822        634        0.01386 *  
## diabetes           1      1.2       821        633        0.27214    
## CKD                1     11.6       820        621        0.00065 ***
## lacticofactor      1     30.5       819        591 0.000000033002 ***
## bicarbonatefactor  1     42.6       818        548 0.000000000066 ***
## ureanit            1     43.3       817        505 0.000000000047 ***
## urinefactor        1     17.4       816        487 0.000030689495 ***
## calcio             1     10.0       815        477        0.00154 ** 
## respfactor         1      5.5       814        472        0.01914 *  
## anemia             1     11.4       813        460        0.00074 ***
## diabetes:CKD       1      0.5       812        460        0.46760    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(modEFPRINC1,modEFPRINC1diabCKD, test="LRT")
## Analysis of Deviance Table
## 
## Model 1: muerte ~ COPD + CKD + lacticofactor + bicarbonatefactor + ureanit + 
##     urinefactor + calcio + respfactor + anemia
## Model 2: muerte ~ COPD + diabetes + CKD + lacticofactor + bicarbonatefactor + 
##     ureanit + urinefactor + calcio + respfactor + anemia + diabetes:CKD
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       814        461                     
## 2       812        460  2     1.55     0.46
#HOSMER & LEMERSHOW. LA P ME DA . NO RECHAZA LA HIPƓTESIS NULA.ES COMO QUIERO QUE ME DE 
pred_modelo <- as.data.frame(predict(modEFPRINC1diabCKD, DIED0, type = "response")) %>% rename(pred = `predict(modEFPRINC1diabCKD, DIED0, type = "response")`)

pred_modelo$verdad <- DIED0$muerte

H_L <- HLtest(modEFPRINC1diabCKD,10)
HL_DF <- cbind(as.data.frame(H_L$table), indice = as.factor(c(1,2,3,4,5,6,7,8,9,10)))

H_L
## Hosmer and Lemeshow Goodness-of-Fit Test 
## 
## Call:
## glm(formula = muerte ~ COPD + diabetes + CKD + lacticofactor + 
##     bicarbonatefactor + ureanit + urinefactor + calcio + respfactor + 
##     anemia + diabetes:CKD, family = "binomial", data = DIED0)
##  ChiSquare df P_value
##       5.11  8   0.746
HL_DF[,1:4]
##               cut total obs    exp
## 1  [0.0248,0.661]    83  47 48.356
## 2   (0.661,0.803]    82  21 21.726
## 3   (0.803,0.878]    82  16 12.593
## 4   (0.878,0.915]    83   6  8.423
## 5   (0.915,0.942]    82   6  5.841
## 6   (0.942,0.959]    82   5  4.074
## 7    (0.959,0.97]    83   2  2.921
## 8     (0.97,0.98]    82   4  2.069
## 9    (0.98,0.988]    82   1  1.356
## 10  (0.988,0.999]    83   0  0.641
HL_DF %>% knitr::kable()
cut total obs exp chi indice
[0.0248,0.661] 83 47 48.356 -0.195 1
(0.661,0.803] 82 21 21.726 -0.156 2
(0.803,0.878] 82 16 12.593 0.960 3
(0.878,0.915] 83 6 8.423 -0.835 4
(0.915,0.942] 82 6 5.841 0.066 5
(0.942,0.959] 82 5 4.074 0.459 6
(0.959,0.97] 83 2 2.921 -0.539 7
(0.97,0.98] 82 4 2.069 1.343 8
(0.98,0.988] 82 1 1.356 -0.305 9
(0.988,0.999] 83 0 0.641 -0.801 10
ggplot(HL_DF, aes(x=indice))+geom_point(aes(y=exp, color = "blue"))+geom_point(aes(y=obs, color = "red"))+scale_color_manual(labels = c("Esperado", "Observado"), values = c("blue", "red"))

#slope e intercept
table(pred_modelo$verdad)
## 
##   0   1 
## 108 716
str(pred_modelo$verdad)
##  Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
pred_modelo$verdad <- as.numeric(as.character(pred_modelo$verdad))

pred_modelo <- pred_modelo# esta parece ser una observacion duplicada

a <- valProbggplot(pred_modelo$pred, pred_modelo$verdad)
a$ggPlot

#curva roc. Area 0.83 sin temperatura.vamos con este modelo prueba i3
roc<-roc(pred_modelo$verdad, pred_modelo$pred)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
plot(roc, main = "Curva ROC", col = "red", lwd = 3)

text(0.8, 0.2, paste("AUC ROC =", round(roc$auc, 3)), adj = c(0, 1))

##CREO QUE EL MODELO DE EFECTOS PRINCIPALES ES MODEFECPRIN

modEFPRINC1diab<- glm(muerte ~ COPD + diabetes+CKD + lacticofactor + bicarbonatefactor+ ureanit+urinefactor+ calcio+ respfactor +anemia, family = "binomial", data = DIED0)
summary(modEFPRINC1diab)
## 
## Call:
## glm(formula = muerte ~ COPD + diabetes + CKD + lacticofactor + 
##     bicarbonatefactor + ureanit + urinefactor + calcio + respfactor + 
##     anemia, family = "binomial", data = DIED0)
## 
## Coefficients:
##                    Estimate Std. Error z value     Pr(>|z|)    
## (Intercept)        -4.90681    1.87882   -2.61      0.00901 ** 
## COPD1               1.50434    0.71412    2.11      0.03515 *  
## diabetes1           0.26903    0.26733    1.01      0.31426    
## CKD1                1.52540    0.33317    4.58 0.0000046848 ***
## lacticofactor1     -0.95906    0.26057   -3.68      0.00023 ***
## bicarbonatefactor1  0.70080    0.27451    2.55      0.01068 *  
## ureanit            -0.03471    0.00603   -5.76 0.0000000086 ***
## urinefactor1        0.94203    0.25695    3.67      0.00025 ***
## calcio              0.80753    0.23311    3.46      0.00053 ***
## respfactor1        -0.64876    0.27608   -2.35      0.01878 *  
## anemia1             0.94009    0.29296    3.21      0.00133 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 640.10  on 823  degrees of freedom
## Residual deviance: 460.46  on 813  degrees of freedom
## AIC: 482.5
## 
## Number of Fisher Scoring iterations: 6
anova(modEFPRINC1diab)
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: muerte
## 
## Terms added sequentially (first to last)
## 
## 
##                   Df Deviance Resid. Df Resid. Dev       Pr(>Chi)    
## NULL                                823        640                   
## COPD               1      6.1       822        634        0.01386 *  
## diabetes           1      1.2       821        633        0.27214    
## CKD                1     11.6       820        621        0.00065 ***
## lacticofactor      1     30.5       819        591 0.000000033002 ***
## bicarbonatefactor  1     42.6       818        548 0.000000000066 ***
## ureanit            1     43.3       817        505 0.000000000047 ***
## urinefactor        1     17.4       816        487 0.000030689495 ***
## calcio             1     10.0       815        477        0.00154 ** 
## respfactor         1      5.5       814        472        0.01914 *  
## anemia             1     11.4       813        460        0.00074 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modEFPRINC1diab)
Ā  muerte
Predictors Odds Ratios CI p
(Intercept) 0.01 0.00 – 0.28 0.009
COPD [1] 4.50 1.33 – 23.54 0.035
diabetes [1] 1.31 0.78 – 2.23 0.314
CKD [1] 4.60 2.45 – 9.07 <0.001
lacticofactor [1] 0.38 0.23 – 0.64 <0.001
bicarbonatefactor [1] 2.02 1.17 – 3.44 0.011
ureanit 0.97 0.95 – 0.98 <0.001
urinefactor [1] 2.57 1.56 – 4.27 <0.001
calcio 2.24 1.43 – 3.58 0.001
respfactor [1] 0.52 0.31 – 0.91 0.019
anemia [1] 2.56 1.47 – 4.65 0.001
Observations 824
R2 Tjur 0.277
MODEFECPRIN=modEFPRINC1diab

##Base test

library(readr)
test_TH <- read_csv("C:/Users/Administrador/Downloads/test_TH.csv")
## Rows: 352 Columns: 36
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (36): Died, age, gender, hypertension, a_fib, CHD, diabetes, anemia, dep...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
View(test_TH)
test_TH1=test_TH
#preparación de la base test

test_TH1$heart=test_TH$`heart rate`
test_TH1$syst=test_TH$`Systolic blood pressure`
test_TH1$dias=test_TH$`Diastolic blood pressure`
test_TH1$magn=test_TH$`Magnesium ion`
test_TH1$probnp=test_TH$`NT-proBNP`
test_TH1$resp=test_TH$`Respiratory rate`
test_TH1$ureanit=test_TH$`Urea nitrogen`
test_TH1$urine=test_TH$`Urine output`
test_TH1$sodio=test_TH$`Blood sodium`
test_TH1$lactico=test_TH$`Lactic acid`
test_TH1$calcio=test_TH$`Blood calcium`
test_TH1$potasio=test_TH$`Blood potassium`
summary(test_TH1$lactico)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.50    1.23    1.60    1.85    2.15    8.33
quantile(test_TH1$lactico,0.60)
##  60% 
## 1.79
test_TH1 <- test_TH1 %>% mutate_at(vars(Died, gender, hypertension, a_fib, CHD, diabetes, anemia, depression, Hyperlipemia, CKD, COPD ),~as.factor(.))

#dicotomizar resp

quantile(test_TH1$resp,0.80)
##  80% 
## 24.4
describe(test_TH1$resp)
## test_TH1$resp 
##        n  missing distinct     Info     Mean  pMedian      Gmd      .05 
##      352        0      337        1    21.05    20.88    4.496    15.00 
##      .10      .25      .50      .75      .90      .95 
##    16.07    18.05    20.80    23.68    26.00    28.46 
## 
## lowest : 12.5    12.6    12.697  13      13.5758
## highest: 30.8667 32      33.1034 35.2667 35.75
test_TH1 <- test_TH1 %>% mutate(respfactor = as.factor(case_when(resp< 23.9 ~ "0",resp>= 23.9 ~"1")))


#dicotomizar urine
quantile(test_TH1$urine,0.40)
##  40% 
## 1301
test_TH1 <- test_TH1 %>% mutate(urinefactor = as.factor(case_when(urine< 1372 ~ "0",urine>= 1372 ~"1")))

#dicotomizar bicarbonato
quantile(test_TH1$Bicarbonate,0.20)
##  20% 
## 22.8
test_TH1 <- test_TH1 %>% mutate(bicarbonatefactor = as.factor(case_when(Bicarbonate< 22.7 ~ "0",Bicarbonate>= 22.7 ~"1")))
#dicotomizar lactico
quantile(test_TH1$lactico,0.80)
## 80% 
## 2.3
describe(test_TH1$lactico)
## test_TH1$lactico 
##        n  missing distinct     Info     Mean  pMedian      Gmd      .05 
##      352        0      154        1     1.85    1.692     0.95   0.8386 
##      .10      .25      .50      .75      .90      .95 
##   1.0000   1.2312   1.6000   2.1479   2.8129   3.6858 
## 
## lowest : 0.5     0.6     0.7     0.74    0.79   
## highest: 6.12222 6.725   6.77778 7.9     8.33333
test_TH1 <- test_TH1 %>% mutate(lacticofactor = as.factor(case_when(lactico< 2.3 ~ "0",lactico>= 2.3 ~"1")))

#crear muerte en TH1
test_TH1 <- test_TH1 %>% mutate(muerte = as.factor(case_when(
  Died == "1" ~ "0",
  Died == "0" ~ "1"
)))

##predict

#Predict 
test_TH1$prediccion_prob <- predict(MODEFECPRIN, newdata = test_TH1, type = "response")
summary(test_TH1$prediccion_prob)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.085   0.854   0.935   0.862   0.972   0.998
roc_obj <- roc(test_TH1$muerte, test_TH1$prediccion_prob)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
auc(roc_obj)
## Area under the curve: 0.755
roc<-roc(test_TH1$muerte, test_TH1$prediccion_prob)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
plot(roc, main = "Curva ROC", col = "red", lwd = 3)

text(0.8, 0.2, paste("AUC ROC =", round(roc$auc, 3)), adj = c(0, 1))

#slope e intercept
#HOSMER & LEMERSHOW.  
pred_modelo <- as.data.frame(predict(MODEFECPRIN, test_TH1, type = "response")) %>% rename(pred = `predict(MODEFECPRIN, test_TH1, type = "response")`)

pred_modelo$verdad <- test_TH1$muerte

H_L <- HLtest(MODEFECPRIN,10)
HL_DF <- cbind(as.data.frame(H_L$table), indice = as.factor(c(1,2,3,4,5,6,7,8,9,10)))

H_L
## Hosmer and Lemeshow Goodness-of-Fit Test 
## 
## Call:
## glm(formula = muerte ~ COPD + diabetes + CKD + lacticofactor + 
##     bicarbonatefactor + ureanit + urinefactor + calcio + respfactor + 
##     anemia, family = "binomial", data = DIED0)
##  ChiSquare df P_value
##       5.31  8   0.724
HL_DF[,1:4]
##               cut total obs    exp
## 1  [0.0245,0.654]    83  47 48.154
## 2   (0.654,0.805]    82  22 21.981
## 3   (0.805,0.881]    82  16 12.587
## 4   (0.881,0.915]    83   4  8.330
## 5    (0.915,0.94]    82   7  5.869
## 6    (0.94,0.958]    82   5  4.046
## 7    (0.958,0.97]    83   3  2.977
## 8    (0.97,0.979]    82   3  2.065
## 9   (0.979,0.988]    82   1  1.350
## 10  (0.988,0.999]    83   0  0.641
HL_DF %>% knitr::kable()
cut total obs exp chi indice
[0.0245,0.654] 83 47 48.154 -0.166 1
(0.654,0.805] 82 22 21.981 0.004 2
(0.805,0.881] 82 16 12.587 0.962 3
(0.881,0.915] 83 4 8.330 -1.500 4
(0.915,0.94] 82 7 5.869 0.467 5
(0.94,0.958] 82 5 4.046 0.475 6
(0.958,0.97] 83 3 2.977 0.014 7
(0.97,0.979] 82 3 2.065 0.651 8
(0.979,0.988] 82 1 1.350 -0.301 9
(0.988,0.999] 83 0 0.641 -0.801 10
ggplot(HL_DF, aes(x=indice))+geom_point(aes(y=exp, color = "blue"))+geom_point(aes(y=obs, color = "red"))+scale_color_manual(labels = c("Esperado", "Observado"), values = c("blue", "red"))

#slope e intercept
table(pred_modelo$verdad)
## 
##   0   1 
##  51 301
str(pred_modelo$verdad)
##  Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
pred_modelo$verdad <- as.numeric(as.character(pred_modelo$verdad))

pred_modelo <- pred_modelo# esta parece ser una observacion duplicada

a <- valProbggplot(pred_modelo$pred, pred_modelo$verdad)
a$ggPlot



##comparacion coeficiente

modelo_test <- glm(formula(MODEFECPRIN), data = test_TH1, family = binomial)
coef_train <- coef(MODEFECPRIN)
ic_train <- confint(MODEFECPRIN)
## Waiting for profiling to be done...
coef_test <- coef(modelo_test)
comparacion_coef <- data.frame(
  Coeficiente = names(coef_train),
  Beta_train = round(coef_train, 3),
  IC95_inf = round(ic_train[, 1], 3),
  IC95_sup = round(ic_train[, 2], 3),
  Beta_test = round(coef_test, 3),
  Test_dentro_del_IC95 = coef_test >= ic_train[, 1] & coef_test <= ic_train[, 2]
)
comparacion_coef
##                           Coeficiente Beta_train IC95_inf IC95_sup Beta_test
## (Intercept)               (Intercept)     -4.907   -8.652   -1.276    -2.499
## COPD1                           COPD1      1.504    0.287    3.159    -0.401
## diabetes1                   diabetes1      0.269   -0.250    0.801     0.543
## CKD1                             CKD1      1.525    0.895    2.205     0.816
## lacticofactor1         lacticofactor1     -0.959   -1.468   -0.444    -0.837
## bicarbonatefactor1 bicarbonatefactor1      0.701    0.157    1.235     0.126
## ureanit                       ureanit     -0.035   -0.047   -0.023    -0.027
## urinefactor1             urinefactor1      0.942    0.442    1.452     1.140
## calcio                         calcio      0.808    0.360    1.275     0.541
## respfactor1               respfactor1     -0.649   -1.185   -0.099    -0.601
## anemia1                       anemia1      0.940    0.384    1.537     0.401
##                    Test_dentro_del_IC95
## (Intercept)                        TRUE
## COPD1                             FALSE
## diabetes1                          TRUE
## CKD1                              FALSE
## lacticofactor1                     TRUE
## bicarbonatefactor1                FALSE
## ureanit                            TRUE
## urinefactor1                       TRUE
## calcio                             TRUE
## respfactor1                        TRUE
## anemia1                            TRUE
knitr::kable(comparacion_coef, caption = "Comparación de coeficientes entre Train y Test")
Comparación de coeficientes entre Train y Test
Coeficiente Beta_train IC95_inf IC95_sup Beta_test Test_dentro_del_IC95
(Intercept) (Intercept) -4.907 -8.652 -1.276 -2.499 TRUE
COPD1 COPD1 1.504 0.287 3.159 -0.401 FALSE
diabetes1 diabetes1 0.269 -0.250 0.801 0.543 TRUE
CKD1 CKD1 1.525 0.895 2.205 0.816 FALSE
lacticofactor1 lacticofactor1 -0.959 -1.468 -0.444 -0.837 TRUE
bicarbonatefactor1 bicarbonatefactor1 0.701 0.157 1.235 0.126 FALSE
ureanit ureanit -0.035 -0.047 -0.023 -0.027 TRUE
urinefactor1 urinefactor1 0.942 0.442 1.452 1.140 TRUE
calcio calcio 0.808 0.360 1.275 0.541 TRUE
respfactor1 respfactor1 -0.649 -1.185 -0.099 -0.601 TRUE
anemia1 anemia1 0.940 0.384 1.537 0.401 TRUE

##modelo sin false

modjao<- glm(muerte ~ diabetes + lacticofactor + ureanit+urinefactor+ calcio+ respfactor +anemia, family = "binomial", data = DIED0)
tab_model(modjao)
Ā  muerte
Predictors Odds Ratios CI p
(Intercept) 0.00 0.00 – 0.08 0.001
diabetes [1] 1.42 0.87 – 2.34 0.166
lacticofactor [1] 0.29 0.18 – 0.48 <0.001
ureanit 0.97 0.96 – 0.98 <0.001
urinefactor [1] 2.62 1.63 – 4.25 <0.001
calcio 2.79 1.84 – 4.30 <0.001
respfactor [1] 0.47 0.28 – 0.79 0.004
anemia [1] 2.89 1.69 – 5.14 <0.001
Observations 824
R2 Tjur 0.211
summary(modjao)
## 
## Call:
## glm(formula = muerte ~ diabetes + lacticofactor + ureanit + urinefactor + 
##     calcio + respfactor + anemia, family = "binomial", data = DIED0)
## 
## Coefficients:
##                Estimate Std. Error z value    Pr(>|z|)    
## (Intercept)    -5.99948    1.77773   -3.37     0.00074 ***
## diabetes1       0.34819    0.25123    1.39     0.16575    
## lacticofactor1 -1.22293    0.24518   -4.99 0.000000610 ***
## ureanit        -0.02614    0.00488   -5.35 0.000000086 ***
## urinefactor1    0.96140    0.24437    3.93 0.000083475 ***
## calcio          1.02495    0.21643    4.74 0.000002183 ***
## respfactor1    -0.76008    0.26091   -2.91     0.00358 ** 
## anemia1         1.06076    0.28235    3.76     0.00017 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 640.10  on 823  degrees of freedom
## Residual deviance: 498.38  on 816  degrees of freedom
## AIC: 514.4
## 
## Number of Fisher Scoring iterations: 6
#HOSMER & LEMERSHOW. LA P ME DA . NO RECHAZA LA HIPƓTESIS NULA.ES COMO QUIERO QUE ME DE 
pred_modelo <- as.data.frame(predict(modjao, DIED0, type = "response")) %>% rename(pred = `predict(modjao, DIED0, type = "response")`)

pred_modelo$verdad <- DIED0$muerte

H_L <- HLtest(modjao,10)
HL_DF <- cbind(as.data.frame(H_L$table), indice = as.factor(c(1,2,3,4,5,6,7,8,9,10)))

H_L
## Hosmer and Lemeshow Goodness-of-Fit Test 
## 
## Call:
## glm(formula = muerte ~ diabetes + lacticofactor + ureanit + urinefactor + 
##     calcio + respfactor + anemia, family = "binomial", data = DIED0)
##  ChiSquare df P_value
##       3.89  8   0.867
HL_DF[,1:4]
##              cut total obs   exp
## 1  [0.101,0.672]    83  42 42.98
## 2  (0.672,0.791]    82  20 21.12
## 3  (0.791,0.866]    82  12 13.57
## 4  (0.866,0.905]    83  11  9.42
## 5   (0.905,0.93]    82   9  6.79
## 6   (0.93,0.949]    82   7  4.91
## 7  (0.949,0.962]    83   4  3.69
## 8  (0.962,0.973]    82   1  2.69
## 9  (0.973,0.982]    82   1  1.84
## 10 (0.982,0.999]    83   1  1.00
HL_DF %>% knitr::kable()
cut total obs exp chi indice
[0.101,0.672] 83 42 42.98 -0.150 1
(0.672,0.791] 82 20 21.12 -0.243 2
(0.791,0.866] 82 12 13.57 -0.425 3
(0.866,0.905] 83 11 9.42 0.515 4
(0.905,0.93] 82 9 6.79 0.846 5
(0.93,0.949] 82 7 4.91 0.946 6
(0.949,0.962] 83 4 3.69 0.163 7
(0.962,0.973] 82 1 2.69 -1.029 8
(0.973,0.982] 82 1 1.84 -0.618 9
(0.982,0.999] 83 1 1.00 0.000 10
ggplot(HL_DF, aes(x=indice))+geom_point(aes(y=exp, color = "blue"))+geom_point(aes(y=obs, color = "red"))+scale_color_manual(labels = c("Esperado", "Observado"), values = c("blue", "red"))

#slope e intercept
table(pred_modelo$verdad)
## 
##   0   1 
## 108 716
str(pred_modelo$verdad)
##  Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
pred_modelo$verdad <- as.numeric(as.character(pred_modelo$verdad))

pred_modelo <- pred_modelo# esta parece ser una observacion duplicada

a <- valProbggplot(pred_modelo$pred, pred_modelo$verdad)
a$ggPlot

#curva roc. Area 0.83 sin temperatura.vamos con este modelo prueba i3
roc<-roc(pred_modelo$verdad, pred_modelo$pred)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
plot(roc, main = "Curva ROC", col = "red", lwd = 3)

text(0.8, 0.2, paste("AUC ROC =", round(roc$auc, 3)), adj = c(0, 1))

##predict modjao

#Predict 
test_TH1$prediccion_prob <- predict(modjao, newdata = test_TH1, type = "response")
summary(test_TH1$prediccion_prob)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.129   0.839   0.929   0.864   0.964   0.994
roc_obj <- roc(test_TH1$muerte, test_TH1$prediccion_prob)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
auc(roc_obj)
## Area under the curve: 0.76
roc<-roc(test_TH1$muerte, test_TH1$prediccion_prob)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
plot(roc, main = "Curva ROC", col = "red", lwd = 3)

text(0.8, 0.2, paste("AUC ROC =", round(roc$auc, 3)), adj = c(0, 1))

#slope e intercept
#HOSMER & LEMERSHOW.  
pred_modelo <- as.data.frame(predict(modjao, test_TH1, type = "response")) %>% rename(pred = `predict(modjao, test_TH1, type = "response")`)

pred_modelo$verdad <- test_TH1$muerte

H_L <- HLtest(modjao,10)
HL_DF <- cbind(as.data.frame(H_L$table), indice = as.factor(c(1,2,3,4,5,6,7,8,9,10)))

H_L
## Hosmer and Lemeshow Goodness-of-Fit Test 
## 
## Call:
## glm(formula = muerte ~ diabetes + lacticofactor + ureanit + urinefactor + 
##     calcio + respfactor + anemia, family = "binomial", data = DIED0)
##  ChiSquare df P_value
##       3.89  8   0.867
HL_DF[,1:4]
##              cut total obs   exp
## 1  [0.101,0.672]    83  42 42.98
## 2  (0.672,0.791]    82  20 21.12
## 3  (0.791,0.866]    82  12 13.57
## 4  (0.866,0.905]    83  11  9.42
## 5   (0.905,0.93]    82   9  6.79
## 6   (0.93,0.949]    82   7  4.91
## 7  (0.949,0.962]    83   4  3.69
## 8  (0.962,0.973]    82   1  2.69
## 9  (0.973,0.982]    82   1  1.84
## 10 (0.982,0.999]    83   1  1.00
HL_DF %>% knitr::kable()
cut total obs exp chi indice
[0.101,0.672] 83 42 42.98 -0.150 1
(0.672,0.791] 82 20 21.12 -0.243 2
(0.791,0.866] 82 12 13.57 -0.425 3
(0.866,0.905] 83 11 9.42 0.515 4
(0.905,0.93] 82 9 6.79 0.846 5
(0.93,0.949] 82 7 4.91 0.946 6
(0.949,0.962] 83 4 3.69 0.163 7
(0.962,0.973] 82 1 2.69 -1.029 8
(0.973,0.982] 82 1 1.84 -0.618 9
(0.982,0.999] 83 1 1.00 0.000 10
ggplot(HL_DF, aes(x=indice))+geom_point(aes(y=exp, color = "blue"))+geom_point(aes(y=obs, color = "red"))+scale_color_manual(labels = c("Esperado", "Observado"), values = c("blue", "red"))

#slope e intercept
table(pred_modelo$verdad)
## 
##   0   1 
##  51 301
str(pred_modelo$verdad)
##  Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
pred_modelo$verdad <- as.numeric(as.character(pred_modelo$verdad))

pred_modelo <- pred_modelo# esta parece ser una observacion duplicada

a <- valProbggplot(pred_modelo$pred, pred_modelo$verdad)
a$ggPlot

modelo_test <- glm(formula(modjao), data = test_TH1, family = binomial)
coef_train <- coef(modjao)
ic_train <- confint(modjao)
## Waiting for profiling to be done...
coef_test <- coef(modelo_test)
comparacion_coef <- data.frame(
  Coeficiente = names(coef_train),
  Beta_train = round(coef_train, 3),
  IC95_inf = round(ic_train[, 1], 3),
  IC95_sup = round(ic_train[, 2], 3),
  Beta_test = round(coef_test, 3),
  Test_dentro_del_IC95 = coef_test >= ic_train[, 1] & coef_test <= ic_train[, 2]
)
comparacion_coef
##                   Coeficiente Beta_train IC95_inf IC95_sup Beta_test
## (Intercept)       (Intercept)     -5.999   -9.544   -2.563    -3.286
## diabetes1           diabetes1      0.348   -0.139    0.849     0.658
## lacticofactor1 lacticofactor1     -1.223   -1.704   -0.740    -0.813
## ureanit               ureanit     -0.026   -0.036   -0.017    -0.023
## urinefactor1     urinefactor1      0.961    0.487    1.448     1.154
## calcio                 calcio      1.025    0.609    1.459     0.645
## respfactor1       respfactor1     -0.760   -1.267   -0.242    -0.661
## anemia1               anemia1      1.061    0.526    1.637     0.533
##                Test_dentro_del_IC95
## (Intercept)                    TRUE
## diabetes1                      TRUE
## lacticofactor1                 TRUE
## ureanit                        TRUE
## urinefactor1                   TRUE
## calcio                         TRUE
## respfactor1                    TRUE
## anemia1                        TRUE
knitr::kable(comparacion_coef, caption = "Comparación de coeficientes entre Train y Test")
Comparación de coeficientes entre Train y Test
Coeficiente Beta_train IC95_inf IC95_sup Beta_test Test_dentro_del_IC95
(Intercept) (Intercept) -5.999 -9.544 -2.563 -3.286 TRUE
diabetes1 diabetes1 0.348 -0.139 0.849 0.658 TRUE
lacticofactor1 lacticofactor1 -1.223 -1.704 -0.740 -0.813 TRUE
ureanit ureanit -0.026 -0.036 -0.017 -0.023 TRUE
urinefactor1 urinefactor1 0.961 0.487 1.448 1.154 TRUE
calcio calcio 1.025 0.609 1.459 0.645 TRUE
respfactor1 respfactor1 -0.760 -1.267 -0.242 -0.661 TRUE
anemia1 anemia1 1.061 0.526 1.637 0.533 TRUE