Non-parametric equivalent to repeated measures ANOVA
library(haven)
## Warning: package 'haven' was built under R version 4.4.3
library(ez)
## Warning: package 'ez' was built under R version 4.4.3
library(tidyverse)
## Warning: package 'ggplot2' was built under R version 4.4.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggpubr)
## Warning: package 'ggpubr' was built under R version 4.4.3
library(rstatix)
## Warning: package 'rstatix' was built under R version 4.4.3
##
## Attaching package: 'rstatix'
##
## The following object is masked from 'package:stats':
##
## filter
library(PMCMRplus)
## Warning: package 'PMCMRplus' was built under R version 4.4.3
paus_df <- read_sav("files/PAUS_English_Translated.sav")
paus_df_copy <- paus_df
remove_nas <- function(columns, data) {
return(data %>% filter(if_all(all_of(columns), ~ !is.na(.))))
}
transform_numeric_to_categorical <- function(column, data) {
col_data <-data[[column]]
levels <- sort(unique(col_data))
label_vec <- as_factor(sort(unique(col_data)))
return(ordered(col_data, levels = levels, labels = label_vec))
}
find_shapiro_normal_columns <- function(data) {
for (col_name in names(data)) {
if (is.numeric(data[[col_name]])) {
values <- na.omit(data[[col_name]])
if (length(values) >= 3 && length(unique(values)) > 1) {
shapiro_result <- shapiro.test(values)
if (shapiro_result$p.value > 0.05) {
cat("\nColumn:", col_name,
"\nW =", round(shapiro_result$statistic, 4),
"p-value =", round(shapiro_result$p.value, 4), "\n")
}
}
}
}
}
data_long <- paus_df_copy %>%
gather(key = "time", value = "sleep_sufficiency_score",
recovery1.1, recovery1.2, recovery1.3) %>%
convert_as_factor(sysUserID, time)
data_long$sleep_sufficiency_score <- as.numeric(data_long$sleep_sufficiency_score)
data_long <- remove_nas(c("sysUserID", "chronotyp_tric.1", "time","sleep_sufficiency_score"),data_long)
data_long <- data_long[c("sysUserID", "chronotyp_tric.1", "time","sleep_sufficiency_score")]
data_long <- data_long %>%
group_by(sysUserID) %>%
filter(n_distinct(time) == 3) %>%
ungroup()
data_long <- droplevels(data_long)
friedman.test(sleep_sufficiency_score ~ time | sysUserID, data = data_long)
##
## Friedman rank sum test
##
## data: sleep_sufficiency_score and time and sysUserID
## Friedman chi-squared = 10.916, df = 2, p-value = 0.004262
Because the p-value is < 0.05, we can reject the null hypothesis that the mean sleep sufficiency score is the same for the 3 assessments.
To determine which groups contains significant differences, we can do a post-hoc test.For a Friedman Test, the appropriate post-hoc test is the pairwise Wilcoxon rank sum test with a bonferroni correction.
Reference: How to Perform the Friedman Test in R
pairwise.wilcox.test(data_long$sleep_sufficiency_score, data_long$time, p.adj="bonf", paired=TRUE)
##
## Pairwise comparisons using Wilcoxon signed rank test with continuity correction
##
## data: data_long$sleep_sufficiency_score and data_long$time
##
## recovery1.1 recovery1.2
## recovery1.2 0.2350 -
## recovery1.3 0.0047 0.4778
##
## P value adjustment method: bonferroni
The post-hoc test reveal that the sleep sufficiency scores in first and third significantly differ similar to the post-hoc results from the two-way ANOVA with repeated measures I have conducted.