Nature collection on Trust & Democracy: Call for Papers

Concerns about a rise in extremism across democratic nations and the emergence of illiberal democracies put the spotlight on research that helps us understand how crises of democracy can be averted.

Trust is an integral part of a healthy society: the trust people place in each other builds social cohesion; what media citizens place their trust in affects the spread of (mis)information; trust in democratic processes increases citizens’ engagement and democratic participation; and trust in democratic institutions underpins their legitimacy.

This Collection and open call for papers brings together work that researches the role of trust for society and - by extension - a functional democracy.

We welcome work that spans the breadth of basic research to large-scale interventions. The journals will consider submissions of research Articles, Registered Reports, and Resources on the topic.

Prep

Libraries & Data

library(tidyverse)
library(sandwich)
library(gtsummary)
library(flextable)
library(tables)
library(psych)
library(ggplot2)
library(openxlsx)
library(lmerTest)
library(lme4)
library(knitr)
library(hrbrthemes)
library(interactions)

d <- read.csv("/Users/af13/Documents/Research/24_ElectionStudy/data + analyses/2024ElectionStudy_combined_cleancases.csv", na.strings = c("","NA"), header = T, fileEncoding="latin1")

mcSummary() function

Variable Construction

Single-measures

# AI Risk


# numeracy
d <- d %>%
  group_by(pid) %>%
  fill(numeracy, .direction = "downup") %>%
  ungroup()

addmargins(table(d$numeracy,d$wave, exclude = F))


# trustGovt

d[d$wave == 1 | d$wave == 2,] <- d[d$wave == 1 | d$wave == 2,] %>%
  group_by(pid) %>%
  fill(trustGovt1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$trustGovt1,d$wave, exclude = F))

d[d$wave == 1 | d$wave == 2,] <- d[d$wave == 1 | d$wave == 2,] %>%
  group_by(pid) %>%
  fill(trustGovt2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$trustGovt2,d$wave, exclude = F))

d$trustGovt <- rowMeans(d[,c("trustGovt1","trustGovt2")], na.rm = T)

d$trustGovt.c <- d$trustGovt - mean(d$trustGovt, na.rm = T)

# trustSci

psych::alpha(d[ ,c("trustSci_1","trustSci_2","trustSci_3","trustSci_4")])


d <- d %>%
  group_by(pid) %>%
  fill(trustSci_1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$trustSci_1,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(trustSci_2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$trustSci_2,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(trustSci_3, .direction = "downup") %>%
  ungroup()

addmargins(table(d$trustSci_3,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(trustSci_4, .direction = "downup") %>%
  ungroup()

addmargins(table(d$trustSci_4,d$wave, exclude = F))

d$trustSci <- rowMeans(d[, c("trustSci_1", "trustSci_2", "trustSci_3", "trustSci_4")], na.rm = T)

table(d$trustSci, d$wave)


# affProj_Trump

d[d$wave == 2 | d$wave == 3,] <- d[d$wave == 2 | d$wave == 3,] %>%
  group_by(pid) %>%
  fill(affProj_Trump_1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$affProj_Trump_1,d$wave, exclude = F))

d[d$wave == 2 | d$wave == 3,] <- d[d$wave == 2 | d$wave == 3,] %>%
  group_by(pid) %>%
  fill(affProj_Trump_2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$affProj_Trump_2,d$wave, exclude = F))

d[d$wave == 2 | d$wave == 3,] <- d[d$wave == 2 | d$wave == 3,] %>%
  group_by(pid) %>%
  fill(affProj_Trump_3, .direction = "downup") %>%
  ungroup()

addmargins(table(d$affProj_Trump_3,d$wave, exclude = F))

d[d$wave == 2 | d$wave == 3,] <- d[d$wave == 2 | d$wave == 3,] %>%
  group_by(pid) %>%
  fill(affProj_Trump_4, .direction = "downup") %>%
  ungroup()

addmargins(table(d$affProj_Trump_4,d$wave, exclude = F))




# punitive policies


d <- d %>%
  group_by(pid) %>%
  fill(deathpenalty, .direction = "downup") %>%
  ungroup()

addmargins(table(d$deathpenalty,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(abortionban, .direction = "downup") %>%
  ungroup()

addmargins(table(d$abortionban,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(ICEraids, .direction = "downup") %>%
  ungroup()

addmargins(table(d$ICEraids,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(gunctrl, .direction = "downup") %>%
  ungroup()

addmargins(table(d$gunctrl,d$wave, exclude = F))
addmargins(table(d$gunctrl,d$wave))

d <- d %>%
  group_by(pid) %>%
  fill(vaxxpass, .direction = "downup") %>%
  ungroup()

addmargins(table(d$vaxxpass,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(hatespeech, .direction = "downup") %>%
  ungroup()

addmargins(table(d$hatespeech,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(jailCEOs, .direction = "downup") %>%
  ungroup()

addmargins(table(d$jailCEOs,d$wave, exclude = F))


# ideological position based on punitive policies

## deathpenalty, abortionban, ICEraids, gunctrl => negative = more liberal, positive = more conservative
## vaxxpass, hatespeech, jailCEOs => positive = more liberal, negative = more conservative

d$vaxxpass.r <- d$vaxxpass * -1
d$hatespeech.r <- d$hatespeech * -1
d$jailCEOs.r <- d$jailCEOs * -1

describe(d[,c('deathpenalty', 'abortionban', 'ICEraids', 'gunctrl','vaxxpass.r', 'hatespeech.r', 'jailCEOs.r')])

d$issue_ideology <- rowMeans(d[,c('deathpenalty', 'abortionban', 'ICEraids', 'gunctrl','vaxxpass.r', 'hatespeech.r', 'jailCEOs.r')], na.rm = T)

psych::alpha(d[,c('deathpenalty', 'abortionban', 'ICEraids', 'gunctrl','vaxxpass.r', 'hatespeech.r', 'jailCEOs.r')]) # a bit low!

# hist(d$issue_ideology)
psych::describe(d$issue_ideology) # that is a normal distribution

d <- d %>%
  group_by(pid) %>%
  fill(issue_ideology, .direction = "downup") %>%
  ungroup()

addmargins(table(d$issue_ideology,d$wave, exclude = F))

# climate change belief

d$climbel_1 <- d$climatechange_belief_1
d$climbel_2 <- d$climatechange_belief_2
d$climbel_3 <- d$climatechange_belief_3
d$climbel_4 <- d$climatechange_belief_4

d <- d %>%
  group_by(pid) %>%
  fill(climatechange_belief_1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$climatechange_belief_1,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(climatechange_belief_2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$climatechange_belief_2,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(climatechange_belief_3, .direction = "downup") %>%
  ungroup()

addmargins(table(d$climatechange_belief_3,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(climatechange_belief_4, .direction = "downup") %>%
  ungroup()

addmargins(table(d$climatechange_belief_4,d$wave, exclude = F))

# GCB

d <- d %>%
  group_by(pid) %>%
  fill(GCB_1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$GCB_1,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(GCB_2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$GCB_2,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(GCB_3, .direction = "downup") %>%
  ungroup()

addmargins(table(d$GCB_3,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(GCB_4, .direction = "downup") %>%
  ungroup()

addmargins(table(d$GCB_4,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(GCB_5, .direction = "downup") %>%
  ungroup()

addmargins(table(d$GCB_5,d$wave, exclude = F))

psych::alpha(d[,c("GCB_1", "GCB_2", "GCB_3", "GCB_4", "GCB_5")])

d <- d %>%
  group_by(pid) %>%
  fill(GCB, .direction = "downup") %>%
  ungroup()

addmargins(table(d$GCB,d$wave, exclude = F))

# AI risk

d <- d %>%
  group_by(pid) %>%
  fill(AIrisk_1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$AIrisk_1,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(AIrisk_2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$AIrisk_2,d$wave, exclude = F))

d$AIrisk <- rowMeans(d[,c("AIrisk_1","AIrisk_2")], na.rm = T)

d$AIrisk.c <- d$AIrisk - mean(d$AIrisk, na.rm = T)

# Group FT

d <- d %>%
  group_by(pid) %>%
  fill(FT_groups_1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$FT_groups_1,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(FT_groups_2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$FT_groups_2,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(FT_groups_3, .direction = "downup") %>%
  ungroup()

addmargins(table(d$FT_groups_3,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(FT_groups_4, .direction = "downup") %>%
  ungroup()

addmargins(table(d$FT_groups_4,d$wave, exclude = F))


# Religion

d <- d %>%
  group_by(pid) %>%
  fill(religion, .direction = "downup") %>%
  ungroup()

addmargins(table(d$religion,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(Evangelical, .direction = "downup") %>%
  ungroup()

addmargins(table(d$Evangelical,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(rel_importance, .direction = "downup") %>%
  ungroup()

addmargins(table(d$rel_importance,d$wave, exclude = F))


# ZIP code

d <- d %>%
  group_by(pid) %>%
  fill(ZIPcode, .direction = "downup") %>%
  ungroup()

addmargins(table(d$ZIPcode,d$wave, exclude = F))


# vote_MC

d <- d %>%
  group_by(pid) %>%
  fill(vote_MC_1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$vote_MC_1,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(vote_MC_2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$vote_MC_2,d$wave, exclude = F))


# Israel

table(d$israel)

d <- d %>%
  group_by(pid) %>%
  fill(israel, .direction = "downup") %>%
  ungroup()

addmargins(table(d$israel,d$wave, exclude = F))

table(d$israel_usRole)


d <- d %>%
  group_by(pid) %>%
  fill(israel_usRole, .direction = "downup") %>%
  ungroup()

addmargins(table(d$israel_usRole,d$wave, exclude = F))
d$israel_usRole <- as.numeric(as.character(d$israel_usRole))


# border

table(d$border_Harris)


d <- d %>%
  group_by(pid) %>%
  fill(border_Harris, .direction = "downup") %>%
  ungroup()

addmargins(table(d$border_Harris,d$wave, exclude = F))


table(d$border_Trump)

d <- d %>%
  group_by(pid) %>%
  fill(border_Trump, .direction = "downup") %>%
  ungroup()

addmargins(table(d$border_Trump,d$wave, exclude = F))


# polling

d <- d %>%
  group_by(pid) %>%
  fill(pollFreq, .direction = "downup") %>%
  ungroup()

addmargins(table(d$pollFreq,d$wave, exclude = F))

d$pollFreq <- dplyr::recode(d$pollFreq,
                            `1` = 7,
                            `2` = 6,
                            `3` = 5,
                            `4` = 4,
                            `5` = 3,
                            `6` = 2,
                            `7` = 1)

d[d$wave == 1 | d$wave ==2,] <- d[d$wave == 1 | d$wave ==2,] %>%
  group_by(pid) %>%
  fill(pollAcc, .direction = "downup") %>%
  ungroup()

d[d$wave == 3 | d$wave == 4,] <- d[d$wave == 3 | d$wave == 4,] %>%
  group_by(pid) %>%
  fill(pollAcc, .direction = "downup") %>%
  ungroup()

addmargins(table(d$pollAcc,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(pollPred, .direction = "downup") %>%
  ungroup()

addmargins(table(d$pollPred,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(pollsource, .direction = "downup") %>%
  ungroup()

addmargins(table(d$pollsource,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(pollsource_7_TEXT, .direction = "downup") %>%
  ungroup()

addmargins(table(d$pollsource_7_TEXT,d$wave, exclude = F))


# NFC

d <- d %>%
  group_by(pid) %>%
  fill(NFC6_1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$NFC6_1,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(NFC6_2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$NFC6_2,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(NFC6_3, .direction = "downup") %>%
  ungroup()

addmargins(table(d$NFC6_3,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(NFC6_4, .direction = "downup") %>%
  ungroup()

addmargins(table(d$NFC6_4,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(NFC6_5, .direction = "downup") %>%
  ungroup()

addmargins(table(d$NFC6_5,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(NFC6_6, .direction = "downup") %>%
  ungroup()

addmargins(table(d$NFC6_6,d$wave, exclude = F))

d$NFC <- rowMeans(d[,c("NFC6_1", "NFC6_2", "NFC6_3", "NFC6_4", "NFC6_5", "NFC6_6")], na.rm = T)


# Executive order measures

d <- d %>%
  group_by(pid) %>%
  fill(EO_impact_1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$EO_impact_1,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(EO_impact_2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$EO_impact_2,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(EO_impact_3, .direction = "downup") %>%
  ungroup()

addmargins(table(d$EO_impact_3,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(EO_impact_4, .direction = "downup") %>%
  ungroup()

addmargins(table(d$EO_impact_4,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(EO_valence_1, .direction = "downup") %>%
  ungroup()

addmargins(table(d$EO_valence_1,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(EO_valence_2, .direction = "downup") %>%
  ungroup()

addmargins(table(d$EO_valence_2,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(EO_valence_3, .direction = "downup") %>%
  ungroup()

addmargins(table(d$EO_valence_3,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(EO_valence_4, .direction = "downup") %>%
  ungroup()

addmargins(table(d$EO_valence_4,d$wave, exclude = F))


# gov't process measures

d <- d %>%
  group_by(pid) %>%
  fill(govt_process, .direction = "downup") %>%
  ungroup()

addmargins(table(d$govt_process,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(representation_Dem, .direction = "downup") %>%
  ungroup()

addmargins(table(d$representation_Dem,d$wave, exclude = F))

d <- d %>%
  group_by(pid) %>%
  fill(representation_Rep, .direction = "downup") %>%
  ungroup()

addmargins(table(d$representation_Rep,d$wave, exclude = F))


# ideology

d <- d %>%
  group_by(pid) %>%
  fill(ideology, .direction = "downup") %>%
  ungroup()

addmargins(table(d$ideology,d$wave, exclude = F))

repeated measures

# emotions
d$Neg_Emo <- rowMeans(d[,c("Emotions_1", "Emotions_2", "Emotions_5")], na.rm = T)

psych::alpha(d[,c("Emotions_1", "Emotions_2", "Emotions_5")])

d$Neg_Emo.c <- d$Neg_Emo - mean(d$Neg_Emo, na.rm = T)

d$Pos_Emo <- rowMeans(d[,c("Emotions_3", "Emotions_4")], na.rm = T)
cor.test(d$Emotions_3, d$Emotions_4)

d$Pos_Emo.c <- d$Pos_Emo - mean(d$Pos_Emo, na.rm = T)

# vote confidence
d$voteconfidence <- rowMeans(d[,c('voteconf_natl','voteconf_self')], na.rm = T)

# party ID
## Creating continuous measure of party from branching ANES question

d$partyCont <- NA
d$partyCont[d$demStrength == 1] <- -3
d$partyCont[d$demStrength == 2] <- -2
d$partyCont[d$partyClose == 1] <- -1
d$partyCont[d$partyClose == 3] <- 0
d$partyCont[d$partyClose == 2] <- 1
d$partyCont[d$repStrength == 2] <- 2
d$partyCont[d$repStrength == 1] <- 3

## Creating factor measure of party from continuous measure
d$party_factor <- NA
d$party_factor[d$partyCont == -3 | d$partyCont == -2 | d$partyCont == -1] <- "Democrat"
d$party_factor[d$partyCont == 3 | d$partyCont == 2 | d$partyCont == 1] <- "Republican"
d$party_factor[d$partyCont == 0] <- "Independent"

table(d$party_factor)


# affective polarization

## Parties
d$FT_Outgroup <- ifelse(d$party_factor == "Democrat", d$FT_parties_2,
                        ifelse(d$party_factor == "Republican", d$FT_parties_1, NA))

d$FT_diff <- NA
d$FT_diff <- d$FT_parties_1 - d$FT_parties_2

d$affPol <- ifelse(d$party_factor == "Democrat", d$FT_parties_1 - d$FT_parties_2,
                   ifelse(d$party_factor == "Republican", d$FT_parties_2 - d$FT_parties_1,
                          ifelse(d$party_factor == "Independent", NA, NA)))

## Politicians
d$FT_Outcandidate <- ifelse(d$party_factor == "Democrat", d$FT_pols_2,
                        ifelse(d$party_factor == "Republican", d$FT_pols_1, NA))

d$FT_CandDiff <- NA
d$FT_CandDiff <- d$FT_pols_1 - d$FT_pols_2
describeBy(d$FT_CandDiff, d$party_factor)

d$affPol_cand <- ifelse(d$party_factor == "Democrat", d$FT_pols_1 - d$FT_pols_2,
                   ifelse(d$party_factor == "Republican", d$FT_pols_2 - d$FT_pols_1,
                          ifelse(d$party_factor == "Independent", NA, NA)))


# connectedness

d$connectedness_6 <- as.numeric(d$connectedness_6)

d$connectedness <- rowMeans(d[,c("connectedness_1","connectedness_2","connectedness_3","connectedness_4","connectedness_5","connectedness_6","connectedness_7","connectedness_8")], na.rm = T)

psych::alpha(d[ , c("connectedness_1","connectedness_2","connectedness_3","connectedness_4","connectedness_5","connectedness_6","connectedness_7","connectedness_8")])


# demNorms

d$antidemNorms <- rowMeans(d[,c("demNorms_Reps_1", "demNorms_Reps_2", "demNorms_Reps_3", "demNorms_Reps_4", "demNorms_Dems_1", "demNorms_Dems_2", "demNorms_Dems_3", "demNorms_Dems_4")], na.rm = T)

psych::alpha(d[,c("demNorms_Reps_1", "demNorms_Reps_2", "demNorms_Reps_3", "demNorms_Reps_4")])

psych::alpha(d[,c("demNorms_Dems_1", "demNorms_Dems_2", "demNorms_Dems_3", "demNorms_Dems_4")])

d$demNorms <- (d$antidemNorms*-1)

psych::describe(d$demNorms)
psych::describe(d$antidemNorms)


# anti-Asian animus

d$AAA <- rowMeans(d[c("AAA_1", "AAA_2", "AAA_3")], na.rm = T)

psych::alpha(d[,c("demNorms_Dems_1", "demNorms_Dems_2", "demNorms_Dems_3", "demNorms_Dems_4")])


# gov't trust

cor.test(d$trustGovt1, d$trustGovt2) # yeah

d$trustGovt <- rowMeans(d[c("trustGovt1", "trustGovt2")], na.rm = T)


# science trust

d$trustSci <- rowMeans(d[c("trustSci_1", "trustSci_2","trustSci_3","trustSci_4")], na.rm = T)

psych::alpha(d[c("trustSci_1", "trustSci_2","trustSci_3","trustSci_4")])


# Vote Choice

table(d$voteChoice_final, d$wave)

d$voteID <- NA
d$voteID[d$voteChoice_final == 1] <- "Trump"
d$voteID[d$voteChoice_final == 2] <- "Harris"
d$voteID[d$VoteChoice == 1] <- "Trump"
d$voteID[d$VoteChoice == 2] <- "Harris"
d$voteID[d$VoteLean == 1] <- "Trump"
d$voteID[d$VoteLean == 2] <- "Harris"
d$voteID[d$VoteLean == 3] <- "Other"
d$voteID[d$voteChoice_final == 4] <- "Did Not Vote"
d$voteID[d$voteChoice_final == 3] <- "Other" # Hmmm

table(d$voteID, exclude = F)


# counter-proj

## ID
d$proj_ID <- NA
d$proj_ID[d$voteID == "Harris"] <- "Left"
d$proj_ID[d$voteID == "Trump"] <- "Right"
d$proj_ID[d$voteID == "Other" & d$party_factor == "Democrat"] <- "Left"
d$proj_ID[d$voteID == "Other" & d$party_factor == "Republican"] <- "Right"

## affective polarization
d$affPol_proj_Harris <- d$FT_proj_Harris_2 - d$FT_proj_Harris_1
d$affPol_proj_Trump <- d$FT_proj_Trump_1 - d$FT_proj_Trump_2
d$affPol_proj_Dem <- d$FT_proj_Dem_2 - d$FT_proj_Dem_1
d$affPol_proj_Rep <- d$FT_proj_Rep_1 - d$FT_proj_Rep_2

## dem norms
d$demNorms_proj_harris <- rowMeans(d[,c("demNorms_proj_harris_1", "demNorms_proj_harris_2", "demNorms_proj_harris_3", "demNorms_proj_harris_4")], na.rm = T)
d$demNorms_proj_Trump <- rowMeans(d[,c("demNorms_proj_Trump_1", "demNorms_proj_Trump_2", "demNorms_proj_Trump_3", "demNorms_proj_Trump_4")], na.rm = T)
d$demNorms_proj_Dem <- rowMeans(d[,c("demNorms_proj_Dem_1", "demNorms_proj_Dem_2", "demNorms_proj_Dem_3", "demNorms_proj_Dem_4")], na.rm = T)
d$demNorms_proj_Rep <- rowMeans(d[,c("demNorms_proj_Rep_1", "demNorms_proj_Rep_2", "demNorms_proj_Rep_3", "demNorms_proj_Rep_4")], na.rm = T)

# Affective Polarization
#d$affPol_proj <- ifelse(d$voteID == "Harris", d$affPol_proj_Harris,
#                  ifelse(d$voteID == "Trump", d$affPol_proj_Trump,
#                   ifelse(d$voteID == "Other" & d$party_factor == "Democrat", #d$affPol_proj_Dem, 
#                    ifelse(d$voteID == "Other" & d$party_factor == "Republican", #d$affPol_proj_Rep, NA))))

d$affPol_proj <- rowMeans(d[,c("affPol_proj_Harris","affPol_proj_Trump","affPol_proj_Dem","affPol_proj_Rep")], na.rm = T)

describeBy(d$affPol_proj, list(d$proj_ID, d$wave))

## Negative Polarization
d$negPol_proj <- ifelse(d$voteID == "Harris", d$FT_proj_Harris_1,
                  ifelse(d$voteID == "Trump", d$FT_proj_Trump_2,
                   ifelse(d$voteID == "Other" & d$party_factor == "Democrat", d$FT_proj_Dem_1, 
                    ifelse(d$voteID == "Other" & d$party_factor == "Republican", d$FT_proj_Rep_2, NA))))

## Democratic Norms
d$demNorms_proj <- ifelse(d$voteID == "Harris", d$demNorms_proj_harris,
                  ifelse(d$voteID == "Trump", d$demNorms_proj_Trump,
                   ifelse(d$voteID == "Other" & d$party_factor == "Democrat", d$demNorms_proj_Dem, 
                    ifelse(d$voteID == "Other" & d$party_factor == "Republican", d$demNorms_proj_Rep, NA))))

# climate attitudes
d$climBel_proj <- ifelse(d$voteID == "Harris", d$climBel_proj_Harris,
                  ifelse(d$voteID == "Trump", d$climbel_proj_Trump,
                   ifelse(d$voteID == "Other" & d$party_factor == "Democrat", d$climBel_proj_Dem, 
                    ifelse(d$voteID == "Other" & d$party_factor == "Republican", d$climBel_proj_Rep, NA))))


# ID centrality variables

## ID formation 1
d$IDform_1 <- rowMeans(d[, c("IDform_Dem_1", "IDform_Rep_1", "IDform_ind_1", "IDform_lib_1", "IDform_leftist_1", "IDform_prog_1", "IDform_con_1", "IDform_right_1", "IDform_mod_1", "IDform_socialist_1", "IDform_natlist_1", "IDform_libertarian_1", "IDform_feminist_1", "IDform_prolife_1", "IDform_prochoice_1", "IDform_MAGA_1", "IDform_enviro_1", "IDform_antiTrump_1", "IDform_pop_1", "IDform_other_1")], na.rm = T) 



## ID formation 2
d$IDform_2 <- rowMeans(d[, c("IDform_Dem_2", "IDform_Rep_2", "IDform_ind_2", "IDform_lib_2", "IDform_leftist_2", "IDform_prog_2", "IDform_con_2", "IDform_right_2", "IDform_mod_2", "IDform_socialist_2", "IDform_natlist_2", "IDform_libertarian_2", "IDform_feminist_2", "IDform_prolife_2", "IDform_prochoice_2", "IDform_MAGA_2", "IDform_enviro_2", "IDform_antiTrump_2", "IDform_pop_2", "IDform_other_2")], na.rm = T) 


## ID formation 3
d$IDform_3 <- rowMeans(d[, c("IDform_Dem_3", "IDform_Rep_3", "IDform_ind_3", "IDform_lib_3", "IDform_leftist_3", "IDform_prog_3", "IDform_con_3", "IDform_right_3", "IDform_mod_3", "IDform_socialist_3", "IDform_natlist_3", "IDform_libertarian_3", "IDform_feminist_3", "IDform_prolife_3", "IDform_prochoice_3", "IDform_MAGA_3", "IDform_enviro_3", "IDform_antiTrump_3", "IDform_pop_3", "IDform_other_3")], na.rm = T) 


## ID formation 4
d$IDform_4 <- rowMeans(d[, c("IDform_Dem_4", "IDform_Rep_4", "IDform_ind_4", "IDform_lib_4", "IDform_leftist_4", "IDform_prog_4", "IDform_con_4", "IDform_right_4", "IDform_mod_4", "IDform_socialist_4", "IDform_natlist_4", "IDform_libertarian_4", "IDform_feminist_4", "IDform_prolife_4", "IDform_prochoice_4", "IDform_MAGA_4", "IDform_enviro_4", "IDform_antiTrump_4", "IDform_pop_4", "IDform_other_4")], na.rm = T) 

## ID formation 5
d$IDform_5 <- rowMeans(d[, c("IDform_Dem_5", "IDform_Rep_5", "IDform_ind_5", "IDform_lib_5", "IDform_leftist_5", "IDform_prog_5", "IDform_con_5", "IDform_right_5", "IDform_mod_5", "IDform_socialist_5", "IDform_natlist_5", "IDform_libertarian_5", "IDform_feminist_5", "IDform_prolife_5", "IDform_prochoice_5", "IDform_MAGA_5", "IDform_enviro_5", "IDform_antiTrump_5", "IDform_pop_5", "IDform_other_5")], na.rm = T)


## ID formation 6
d$IDform_6 <- rowMeans(d[, c("IDform_Dem_6", "IDform_Rep_6", "IDform_ind_6", "IDform_lib_6", "IDform_leftist_6", "IDform_prog_6", "IDform_con_6", "IDform_right_6", "IDform_mod_6", "IDform_socialist_6", "IDform_natlist_6", "IDform_libertarian_6", "IDform_feminist_6", "IDform_prolife_6", "IDform_prochoice_6", "IDform_MAGA_6", "IDform_enviro_6", "IDform_antiTrump_6", "IDform_pop_6", "IDform_other_6")], na.rm = T) 


## composite identity centrality
d$IDform <- rowMeans(d[,c("IDform_1", "IDform_2", "IDform_3", "IDform_4", "IDform_5", "IDform_6")], na.rm = T)

psych::alpha(d[,c("IDform_1", "IDform_2", "IDform_3", "IDform_4", "IDform_5", "IDform_6")])


# Identity Variables

d$numID_selected <- NA
d$numID_selected <- rowSums(d[,c("polID_Liberal_select", "polID_Leftist_select", "polID_Progressive_select", "polID_Conservative_select", "polID_RightWing_select", "polID_Moderate_select", "polID_Socialist_select", "polID_Nationalist_select", "polID_Libertarian_select", "polID_Feminist_select", "polID_Prolife_select", "polID_Prochoice_select", "polID_MAGA_select", "polID_AntiTrump_select", "polID_Environmentalist_select", "polID_Populist_select", "polID_Other_select")],na.rm = T)

table(d$numID_selected, d$wave)

## Calculate & join ID sds for each participant
ID_sds <- d %>%
  dplyr::group_by(pid) %>%
  dplyr::summarize(sdID_selected = sd(numID_selected, na.rm = TRUE))

d <- d %>%
  left_join(ID_sds, by = "pid")

Analyses

Analytic codes

### partisan identity vars

# Contrast Codes

## dems vs. reps
d$pDem_Rep <- NA
d$pDem_Rep[d$party_factor == "Democrat"] <- -1/2
d$pDem_Rep[d$party_factor == "Independent"] <- 0
d$pDem_Rep[d$party_factor == "Republican"] <- 1/2

## partisans vs. inds
d$pParty_Ind <- NA
d$pParty_Ind[d$party_factor == "Democrat"] <- -1/3
d$pParty_Ind[d$party_factor == "Independent"] <- 2/3
d$pParty_Ind[d$party_factor == "Republican"] <- -1/3


# Dummy Codes

## Democrats

### dems vs. R
d$pDem_R <- NA
d$pDem_R[d$party_factor == "Democrat"] <- 0
d$pDem_R[d$party_factor == "Independent"] <- 0
d$pDem_R[d$party_factor == "Republican"] <- 1

### dems vs. I
d$pDem_I <- NA
d$pDem_I[d$party_factor == "Democrat"] <- 0
d$pDem_I[d$party_factor == "Independent"] <- 1
d$pDem_I[d$party_factor == "Republican"] <- 0

## Republicans

### reps vs. D
d$pRep_D <- NA
d$pRep_D[d$party_factor == "Democrat"] <- 1
d$pRep_D[d$party_factor == "Independent"] <- 0
d$pRep_D[d$party_factor == "Republican"] <- 0

### reps vs. I
d$pRep_I <- NA
d$pRep_I[d$party_factor == "Democrat"] <- 0
d$pRep_I[d$party_factor == "Independent"] <- 1
d$pRep_I[d$party_factor == "Republican"] <- 0

## Independents

### inds vs. D
d$pInd_D <- NA
d$pInd_D[d$party_factor == "Democrat"] <- 1
d$pInd_D[d$party_factor == "Independent"] <- 0
d$pInd_D[d$party_factor == "Republican"] <- 0

### inds vs. R
d$pInd_R <- NA
d$pInd_R[d$party_factor == "Democrat"] <- 0
d$pInd_R[d$party_factor == "Independent"] <- 0
d$pInd_R[d$party_factor == "Republican"] <- 1

# party switch
d$party_switch.d <- ifelse(d$party_switch == "TRUE", 1, 0)


### political ID variables - Selected

d$Liberal <- ifelse(d$polID_Liberal_select == 1, 1, ifelse(d$polID_Other_select == 1, -1, 0))
d$Leftist <- ifelse(d$polID_Leftist_select == 1, 1, ifelse(d$polID_Other_select == 1, -1, 0))
d$Progressive <- ifelse(d$polID_Progressive_select == 1, 1, ifelse(d$polID_Other_select == 1, -1, 0))
d$Conservative <- ifelse(d$polID_Conservative_select == 1, 1, ifelse(d$polID_Other_select == 1, -1, 0))
d$RightWing <- ifelse(d$polID_RightWing_select == 1, 1, ifelse(d$polID_Other_select == 1, -1, 0))
d$Moderate <- ifelse(d$polID_Moderate_select == 1, 1, ifelse(d$polID_Other_select == 1, -1, 0))
d$Socialist <- ifelse(d$polID_Socialist_select == 1, 1, ifelse(d$polID_Other_select == 1, -1, 0))
d$Nationalist <- ifelse(d$polID_Nationalist_select == 1, 1, ifelse(d$polID_Other_select == 1, -1, 0))
d$Libertarian <- ifelse(d$polID_Libertarian_select == 1, 1, ifelse(d$polID_Other_select == 1, -1, 0))
d$Feminist <- ifelse(d$polID_Feminist_select == 1, 1, ifelse(d$polID_Other_select == 1, -1, 0))
d$Prolife <- ifelse(d$polID_Prolife_select == 1, 1, ifelse(d$polID_Other_select == 1, -1, 0))
d$Prochoice <- ifelse(d$polID_Prochoice_select == 1, 1, ifelse(d$polID_Other_select == 1, -1, 0))
d$MAGA <- ifelse(d$polID_MAGA_select == 1, 1, ifelse(d$polID_Other_select == 1, -1, 0))
d$AntiTrump <- ifelse(d$polID_AntiTrump_select == 1, 1, ifelse(d$polID_Other_select == 1, -1, 0))
d$Populist <- ifelse(d$polID_Populist_select == 1, 1, ifelse(d$polID_Other_select == 1, -1, 0))
d$Environmentalist <- ifelse(d$polID_Environmentalist_select == 1, 1, ifelse(d$polID_Other_select == 1, -1, 0))


### political ID variables - NOT Selected

d$nLiberal <- ifelse(d$polID_Liberal_not_select == 1, 1, ifelse(d$polID_Other_not_select == 1, -1, 0))
d$nLeftist <- ifelse(d$polID_Leftist_not_select == 1, 1, ifelse(d$polID_Other_not_select == 1, -1, 0))
d$nProgressive <- ifelse(d$polID_Progressive_not_select == 1, 1, ifelse(d$polID_Other_not_select == 1, -1, 0))
d$nConservative <- ifelse(d$polID_Conservative_not_select == 1, 1, ifelse(d$polID_Other_not_select == 1, -1, 0))
d$nRightWing <- ifelse(d$polID_RightWing_not_select == 1, 1, ifelse(d$polID_Other_not_select == 1, -1, 0))
d$nModerate <- ifelse(d$polID_Moderate_not_select == 1, 1, ifelse(d$polID_Other_not_select == 1, -1, 0))
d$nSocialist <- ifelse(d$polID_Socialist_not_select == 1, 1, ifelse(d$polID_Other_not_select == 1, -1, 0))
d$nNationalist <- ifelse(d$polID_Nationalist_not_select == 1, 1, ifelse(d$polID_Other_not_select == 1, -1, 0))
d$nLibertarian <- ifelse(d$polID_Libertarian_not_select == 1, 1, ifelse(d$polID_Other_not_select == 1, -1, 0))
d$nFeminist <- ifelse(d$polID_Feminist_not_select == 1, 1, ifelse(d$polID_Other_not_select == 1, -1, 0))
d$nProlife <- ifelse(d$polID_Prolife_not_select == 1, 1, ifelse(d$polID_Other_not_select == 1, -1, 0))
d$nProchoice <- ifelse(d$polID_Prochoice_not_select == 1, 1, ifelse(d$polID_Other_not_select == 1, -1, 0))
d$nMAGA <- ifelse(d$polID_MAGA_not_select == 1, 1, ifelse(d$polID_Other_not_select == 1, -1, 0))
d$nAntiTrump <- ifelse(d$polID_AntiTrump_not_select == 1, 1, ifelse(d$polID_Other_not_select == 1, -1, 0))
d$nPopulist <- ifelse(d$polID_Populist_not_select == 1, 1, ifelse(d$polID_Other_not_select == 1, -1, 0))
d$nEnvironmentalist <- ifelse(d$polID_Environmentalist_not_select == 1, 1, ifelse(d$polID_Other_not_select == 1, -1, 0))


### wave

d$wave <- as.factor(d$wave)

# contrast codes
d$wave.lin <- NA
d$wave.lin[d$wave == 1] <- -1/2
d$wave.lin[d$wave == 2] <- -1/4
d$wave.lin[d$wave == 3] <- 1/4
d$wave.lin[d$wave == 4] <- 1/2

d$wave.quad <- NA
d$wave.quad[d$wave == 1] <- -1/4
d$wave.quad[d$wave == 2] <- 1/4
d$wave.quad[d$wave == 3] <- 1/4
d$wave.quad[d$wave == 4] <- -1/4

d$wave.cub <- NA
d$wave.cub[d$wave == 1] <- 1/4
d$wave.cub[d$wave == 2] <- -1/2
d$wave.cub[d$wave == 3] <- 1/2
d$wave.cub[d$wave == 4] <- -1/4

# dummy codes

## wave 1
d$wave1_2 <- NA
d$wave1_2[d$wave == 1] <- 0
d$wave1_2[d$wave == 2] <- 1
d$wave1_2[d$wave == 3] <- 0
d$wave1_2[d$wave == 4] <- 0

d$wave1_3 <- NA
d$wave1_3[d$wave == 1] <- 0
d$wave1_3[d$wave == 2] <- 0
d$wave1_3[d$wave == 3] <- 1
d$wave1_3[d$wave == 4] <- 0

d$wave1_4 <- NA
d$wave1_4[d$wave == 1] <- 0
d$wave1_4[d$wave == 2] <- 0
d$wave1_4[d$wave == 3] <- 0
d$wave1_4[d$wave == 4] <- 1

## wave 2
d$wave2_1 <- NA
d$wave2_1[d$wave == 1] <- 1
d$wave2_1[d$wave == 2] <- 0
d$wave2_1[d$wave == 3] <- 0
d$wave2_1[d$wave == 4] <- 0

d$wave2_3 <- NA
d$wave2_3[d$wave == 1] <- 0
d$wave2_3[d$wave == 2] <- 0
d$wave2_3[d$wave == 3] <- 1
d$wave2_3[d$wave == 4] <- 0

d$wave2_4 <- NA
d$wave2_4[d$wave == 1] <- 0
d$wave2_4[d$wave == 2] <- 0
d$wave2_4[d$wave == 3] <- 0
d$wave2_4[d$wave == 4] <- 1

## wave 4
d$wave4_1 <- NA
d$wave4_1[d$wave == 1] <- 1
d$wave4_1[d$wave == 2] <- 0
d$wave4_1[d$wave == 3] <- 0
d$wave4_1[d$wave == 4] <- 0

d$wave4_2 <- NA
d$wave4_2[d$wave == 1] <- 0
d$wave4_2[d$wave == 2] <- 1
d$wave4_2[d$wave == 3] <- 0
d$wave4_2[d$wave == 4] <- 0

d$wave4_3 <- NA
d$wave4_3[d$wave == 1] <- 0
d$wave4_3[d$wave == 2] <- 0
d$wave4_3[d$wave == 3] <- 1
d$wave4_3[d$wave == 4] <- 0

# Polling Variable
d$pollFreq.c <- d$pollFreq - mean(d$pollFreq, na.rm = T)

# Race
d$vs_race <- as.factor(as.character(d$vs_race))
d$vs_race <- relevel(d$vs_race, ref = "White")

# Gender
d$vs_gender <- as.factor(as.character(d$vs_gender))

d$male_female <- NA
d$male_female[d$vs_gender == "Male"] <- -1/2
d$male_female[d$vs_gender == "Female"] <- 1/2
d$male_female[d$vs_gender == "Other"] <- 0

d$nonbinary_mf <- NA
d$nonbinary_mf[d$vs_gender == "Male"] <- 1/3
d$nonbinary_mf[d$vs_gender == "Female"] <- 1/3
d$nonbinary_mf[d$vs_gender == "Other"] <- -2/3

# generic conspiracist beliefs
d$GCB.c <- d$GCB - mean(d$GCB, na.rm = T)

DV: Perceived Election Legitimacy (PEL)

Perceived election legitimacy was measured with two questions:

  • How confident are you that your own vote was counted as you intended? (voteconf_self)

  • How confident are you that votes nationwide were counted as voters intended? (voteconf_natl)

These are highly correlated, but there are still interesting differences in patterns of own vs. national vote confidence.

cor.test(d$voteconf_natl, d$voteconf_self)
## 
##  Pearson's product-moment correlation
## 
## data:  d$voteconf_natl and d$voteconf_self
## t = 113.95, df = 7522, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.7872919 0.8038743
## sample estimates:
##       cor 
## 0.7957322
ggplot(d, aes(x=voteconfidence)) +
  geom_density(fill="#69b3a2", color="#e9ecef", alpha=0.9) +
  theme_bw() +
  labs(x = "Perceived Election Legitimacy")

wave_label <- c(`1` = "Wave 1", `2` = "Wave 2", `3` = "Wave 3", `4` = "Wave 4")
ggplot(d[!is.na(d$party_factor),], aes(x=voteconfidence, fill = party_factor)) +
  geom_density(color="black", alpha=0.5, position = 'identity') +
  theme_bw() +
  facet_grid(wave~., labeller = as_labeller(wave_label)) +
  scale_fill_manual("Participant Party ID",
                    values = c("#1696d2","grey","#db2b27")) +
  labs(x = "Perceived Election Legitimacy")

ggplot(d[!is.na(d$party_factor),], 
       aes(x = party_factor, 
           y = voteconfidence,
           fill = party_factor,
           color = party_factor)) +
  geom_jitter(height = .3, width =.3, alpha=0.4, size = .5, show.legend = F ) +
  stat_summary(geom = "errorbar", color = "black", width = .1, show.legend = F) +
  stat_summary( geom = "point", fun = "mean", color = "black",  size = 1 , show.legend = F) +
  theme_bw() +
  scale_fill_manual(values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual(values = c("#1696d2","grey","#db2b27")) +
  labs(x = "Participant Party ID",
       y = "Perceived Election Legitimacy")

1. PEL over time: Outcome bias

ggplot(d[!is.na(d$party_factor),], 
       aes(x = wave, 
           y = voteconfidence, 
           color = wave,
           group = 1)) +
   stat_summary(geom = "path", fun = "mean", color = "black", linetype = "dashed", show.legend = F) +
   stat_summary(geom = "errorbar", color = "black", width = .1, show.legend = F) +
   stat_summary(geom = "point", fun = "mean", show.legend = F) +
   facet_wrap(~party_factor) +
   labs(x = "Participant Party ID",
        y = "Perceived Election Legitimacy") +
   coord_cartesian(ylim = c(1,5)) +
   scale_y_continuous(breaks = seq(1,5,1)) +
  scale_x_discrete(labels = c("Wave 1","Wave 2", "Wave 3", "Wave 4")) +
  theme(legend.position = "none") +
  theme_bw()

Mean (and SD) for PEL by party over time

# Average PEL
kable(round(tapply(d$voteconfidence, list(d$party_factor, d$wave), FUN = mean, na.rm = T),2))
1 2 3 4
Democrat 3.87 3.60 3.58 3.39
Independent 2.72 3.05 3.15 2.95
Republican 2.67 3.68 3.62 3.65
# SD for PEL
round(tapply(d$voteconfidence, list(d$party_factor, d$wave), FUN = sd, na.rm = T),2)
##                1    2    3    4
## Democrat    1.06 1.20 1.14 1.22
## Independent 1.28 1.28 1.23 1.32
## Republican  1.16 1.02 0.96 1.02

Summary

Democrats begin with higher PEL (M = 3.87) than Republicans (M = 2.67; b = 0.12, p = .002) and Independents (b = 0.49, p < .001). This falls linearly over time (b = -0.43, p < .001) until, in wave 4, Democrats express lower PEL (M = 3.39) than Republicans (M = 3.65; b = -0.37, p < .001), though Democrats’ PEL is still higher than Independents’ (M = 2.95; b = 0.27, p = .001).

Republicans’ PEL increases over time (b = 0.77, p < .001), though this increase takes place primarily from Wave 1 to Wave 2 (pre- and post-election), after which Republicans’ PEL remains stable.

Models

PEL.m1 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * (wave.lin + wave.quad + wave.cub) + (1 | pid),
              data = d)
summary(PEL.m1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_Rep + pParty_Ind) * (wave.lin + wave.quad +  
##     wave.cub) + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22252.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6388 -0.5025  0.0716  0.5367  3.8673 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.7198   0.8484  
##  Residual             0.5456   0.7387  
## Number of obs: 8104, groups:  pid, 2615
## 
## Fixed effects:
##                        Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)           3.346e+00  2.172e-02  3.333e+03 154.049  < 2e-16 ***
## pDem_Rep             -1.187e-01  3.761e-02  3.946e+03  -3.157  0.00161 ** 
## pParty_Ind           -4.260e-01  4.732e-02  6.837e+03  -9.004  < 2e-16 ***
## wave.lin              1.731e-01  2.854e-02  5.967e+03   6.063 1.42e-09 ***
## wave.quad             4.668e-01  4.281e-02  5.730e+03  10.903  < 2e-16 ***
## wave.cub             -1.028e-01  2.625e-02  5.641e+03  -3.916 9.10e-05 ***
## pDem_Rep:wave.lin     1.203e+00  5.036e-02  5.908e+03  23.884  < 2e-16 ***
## pDem_Rep:wave.quad    1.096e+00  7.497e-02  5.708e+03  14.616  < 2e-16 ***
## pDem_Rep:wave.cub    -6.436e-01  4.528e-02  5.622e+03 -14.212  < 2e-16 ***
## pParty_Ind:wave.lin   5.468e-03  7.448e-02  6.042e+03   0.073  0.94148    
## pParty_Ind:wave.quad  1.798e-02  1.124e-01  5.817e+03   0.160  0.87297    
## pParty_Ind:wave.cub   9.580e-02  6.918e-02  5.715e+03   1.385  0.16618    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                (Intr) pDm_Rp pPrt_I wav.ln wav.qd wav.cb pDm_Rp:wv.l
## pDem_Rep        0.067                                               
## pParty_Ind      0.470 -0.038                                        
## wave.lin        0.181 -0.012  0.121                                 
## wave.quad      -0.009 -0.009  0.029 -0.216                          
## wave.cub       -0.058  0.010 -0.043 -0.072  0.173                   
## pDm_Rp:wv.l     0.009  0.164  0.006  0.061 -0.006 -0.008            
## pDm_Rp:wv.q    -0.008 -0.046  0.001 -0.008  0.058  0.009 -0.213     
## pDm_Rp:wv.c    -0.002 -0.053 -0.007 -0.008  0.008  0.057 -0.113     
## pPrty_Ind:wv.l  0.098 -0.013  0.193  0.565 -0.124 -0.021 -0.037     
## pPrty_Ind:wv.q  0.016  0.005  0.010 -0.121  0.574  0.102  0.005     
## pPrty_Ind:wv.c -0.030  0.004 -0.064 -0.020  0.103  0.588  0.005     
##                pDm_Rp:wv.q pDm_Rp:wv.c pPrty_Ind:wv.l pPrty_Ind:wv.q
## pDem_Rep                                                            
## pParty_Ind                                                          
## wave.lin                                                            
## wave.quad                                                           
## wave.cub                                                            
## pDm_Rp:wv.l                                                         
## pDm_Rp:wv.q                                                         
## pDm_Rp:wv.c     0.166                                               
## pPrty_Ind:wv.l  0.002       0.006                                   
## pPrty_Ind:wv.q -0.036      -0.004      -0.213                       
## pPrty_Ind:wv.c -0.003      -0.031      -0.063          0.173

Simple-Effects Models

PEL.m1.d <- lmer(voteconfidence ~ (pDem_R + pDem_I) * (wave.lin + wave.quad + wave.cub) + (1 | pid),
              data = d)
summary(PEL.m1.d)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_R + pDem_I) * (wave.lin + wave.quad +  
##     wave.cub) + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22252.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6388 -0.5025  0.0716  0.5367  3.8673 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.7198   0.8484  
##  Residual             0.5456   0.7387  
## Number of obs: 8104, groups:  pid, 2615
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         3.54761    0.02599 3278.96323 136.506  < 2e-16 ***
## pDem_R             -0.11875    0.03761 3945.76029  -3.157  0.00161 ** 
## pDem_I             -0.48540    0.05026 6458.38963  -9.659  < 2e-16 ***
## wave.lin           -0.43016    0.03362 5912.25574 -12.796  < 2e-16 ***
## wave.quad          -0.08711    0.05016 5711.50355  -1.737  0.08249 .  
## wave.cub            0.18705    0.03034 5615.94669   6.165 7.55e-10 ***
## pDem_R:wave.lin     1.20278    0.05036 5907.77340  23.884  < 2e-16 ***
## pDem_R:wave.quad    1.09584    0.07498 5708.04469  14.616  < 2e-16 ***
## pDem_R:wave.cub    -0.64358    0.04528 5621.54064 -14.212  < 2e-16 ***
## pDem_I:wave.lin     0.60686    0.07775 6030.66239   7.805 6.94e-15 ***
## pDem_I:wave.quad    0.56590    0.11726 5806.94293   4.826 1.43e-06 ***
## pDem_I:wave.cub    -0.22599    0.07212 5710.32856  -3.134  0.00174 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pDem_R pDem_I wav.ln wav.qd wav.cb pDm_R:wv.l pDm_R:wv.q
## pDem_R      -0.645                                                         
## pDem_I      -0.417  0.339                                                  
## wave.lin     0.178 -0.123 -0.087                                           
## wave.quad   -0.038  0.023  0.024 -0.226                                    
## wave.cub    -0.064  0.045  0.033 -0.108  0.170                             
## pDm_R:wv.ln -0.115  0.164  0.067 -0.670  0.150  0.073                      
## pDm_R:wv.qd  0.026 -0.046 -0.016  0.151 -0.671 -0.114 -0.213               
## pDm_R:wv.cb  0.041 -0.053 -0.027  0.074 -0.114 -0.673 -0.113      0.166    
## pDm_I:wv.ln -0.061  0.040  0.191 -0.438  0.099  0.047  0.289     -0.067    
## pDm_I:wv.qd  0.012 -0.010  0.006  0.097 -0.436 -0.075 -0.063      0.286    
## pDm_I:wv.cb  0.024 -0.013 -0.065  0.048 -0.073 -0.430 -0.031      0.049    
##             pDm_R:wv.c pDm_I:wv.l pDm_I:wv.q
## pDem_R                                      
## pDem_I                                      
## wave.lin                                    
## wave.quad                                   
## wave.cub                                    
## pDm_R:wv.ln                                 
## pDm_R:wv.qd                                 
## pDm_R:wv.cb                                 
## pDm_I:wv.ln -0.031                          
## pDm_I:wv.qd  0.049     -0.216               
## pDm_I:wv.cb  0.284     -0.066      0.174
PEL.m1.d.w4 <- lmer(voteconfidence ~ (pDem_R + pDem_I) * (wave4_1 + wave4_2 + wave4_3) + (1 | pid),
              data = d)
summary(PEL.m1.d.w4)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_R + pDem_I) * (wave4_1 + wave4_2 + wave4_3) +  
##     (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22255
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6388 -0.5025  0.0716  0.5367  3.8673 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.7198   0.8484  
##  Residual             0.5456   0.7387  
## Number of obs: 8104, groups:  pid, 2615
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       3.30754    0.03916 7794.37948  84.463  < 2e-16 ***
## pDem_R            0.36958    0.05732 8040.70971   6.448 1.20e-10 ***
## pDem_I           -0.26695    0.08268 7653.03724  -3.229  0.00125 ** 
## wave4_1           0.52368    0.03835 5918.61903  13.656  < 2e-16 ***
## wave4_2           0.23230    0.03876 5725.41975   5.994 2.17e-09 ***
## wave4_3           0.20427    0.03935 5663.54152   5.191 2.16e-07 ***
## pDem_R:wave4_1   -1.52457    0.05751 5910.07827 -26.512  < 2e-16 ***
## pDem_R:wave4_2   -0.19327    0.05767 5736.33181  -3.351  0.00081 ***
## pDem_R:wave4_3   -0.23546    0.05864 5671.36641  -4.015 6.01e-05 ***
## pDem_I:wave4_1   -0.71985    0.08783 6027.56666  -8.196 3.00e-16 ***
## pDem_I:wave4_2   -0.11570    0.09018 5812.06667  -1.283  0.19956    
## pDem_I:wave4_3   -0.03826    0.09205 5719.23173  -0.416  0.67770    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pDem_R pDem_I wav4_1 wav4_2 wav4_3 pD_R:4_1 pD_R:4_2
## pDem_R      -0.662                                                     
## pDem_I      -0.430  0.314                                              
## wave4_1     -0.695  0.477  0.331                                       
## wave4_2     -0.658  0.449  0.316  0.674                                
## wave4_3     -0.635  0.434  0.307  0.649  0.642                         
## pDm_R:wv4_1  0.462 -0.692 -0.223 -0.670 -0.450 -0.434                  
## pDm_R:wv4_2  0.442 -0.667 -0.213 -0.454 -0.673 -0.432  0.670           
## pDm_R:wv4_3  0.426 -0.641 -0.206 -0.437 -0.432 -0.673  0.644    0.641  
## pDm_I:wv4_1  0.297 -0.199 -0.743 -0.444 -0.299 -0.288  0.292    0.199  
## pDm_I:wv4_2  0.278 -0.188 -0.687 -0.293 -0.436 -0.280  0.192    0.289  
## pDm_I:wv4_3  0.271 -0.181 -0.661 -0.283 -0.279 -0.436  0.185    0.184  
##             pD_R:4_3 pD_I:4_1 pD_I:4_2
## pDem_R                                
## pDem_I                                
## wave4_1                               
## wave4_2                               
## wave4_3                               
## pDm_R:wv4_1                           
## pDm_R:wv4_2                           
## pDm_R:wv4_3                           
## pDm_I:wv4_1  0.192                    
## pDm_I:wv4_2  0.185    0.667           
## pDm_I:wv4_3  0.288    0.635    0.618
PEL.m1.r <- lmer(voteconfidence ~ (pRep_D + pRep_I) * (wave.lin + wave.quad + wave.cub) + (1 | pid),
              data = d)
summary(PEL.m1.r)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pRep_D + pRep_I) * (wave.lin + wave.quad +  
##     wave.cub) + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22252.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6388 -0.5025  0.0716  0.5367  3.8673 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.7198   0.8484  
##  Residual             0.5456   0.7387  
## Number of obs: 8104, groups:  pid, 2615
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         3.42886    0.02879 3357.66307 119.086  < 2e-16 ***
## pRep_D              0.11875    0.03761 3945.76029   3.157  0.00161 ** 
## pRep_I             -0.36665    0.05157 6387.73603  -7.110 1.28e-12 ***
## wave.lin            0.77262    0.03739 5892.03242  20.664  < 2e-16 ***
## wave.quad           1.00873    0.05558 5690.58870  18.149  < 2e-16 ***
## wave.cub           -0.45653    0.03350 5607.98516 -13.628  < 2e-16 ***
## pRep_D:wave.lin    -1.20278    0.05036 5907.77340 -23.884  < 2e-16 ***
## pRep_D:wave.quad   -1.09584    0.07498 5708.04469 -14.616  < 2e-16 ***
## pRep_D:wave.cub     0.64358    0.04528 5621.54064  14.212  < 2e-16 ***
## pRep_I:wave.lin    -0.59592    0.07949 6026.20443  -7.497 7.49e-14 ***
## pRep_I:wave.quad   -0.52994    0.11979 5804.83277  -4.424 9.86e-06 ***
## pRep_I:wave.cub     0.41759    0.07346 5701.86096   5.685 1.38e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pRep_D pRep_I wav.ln wav.qd wav.cb pRp_D:wv.l pRp_D:wv.q
## pRep_D      -0.724                                                         
## pRep_I      -0.464  0.399                                                  
## wave.lin     0.149 -0.110 -0.069                                           
## wave.quad   -0.054  0.042  0.030 -0.205                                    
## wave.cub    -0.042  0.030  0.016 -0.115  0.164                             
## pRp_D:wv.ln -0.111  0.164  0.055 -0.745  0.152  0.086                      
## pRp_D:wv.qd  0.037 -0.046 -0.018  0.152 -0.743 -0.122 -0.213               
## pRp_D:wv.cb  0.032 -0.053 -0.012  0.086 -0.121 -0.742 -0.113      0.166    
## pRp_I:wv.ln -0.073  0.065  0.188 -0.477  0.095  0.056  0.351     -0.070    
## pRp_I:wv.qd  0.021 -0.019  0.001  0.097 -0.473 -0.078 -0.072      0.346    
## pRp_I:wv.cb  0.024 -0.020 -0.060  0.055 -0.075 -0.463 -0.040      0.054    
##             pRp_D:wv.c pRp_I:wv.l pRp_I:wv.q
## pRep_D                                      
## pRep_I                                      
## wave.lin                                    
## wave.quad                                   
## wave.cub                                    
## pRp_D:wv.ln                                 
## pRp_D:wv.qd                                 
## pRp_D:wv.cb                                 
## pRp_I:wv.ln -0.041                          
## pRp_I:wv.qd  0.056     -0.211               
## pRp_I:wv.cb  0.338     -0.069      0.171
PEL.m1.i <- lmer(voteconfidence ~ (pInd_R + pInd_D) * (wave.lin + wave.quad + wave.cub) + (1 | pid),
              data = d)
summary(PEL.m1.i)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pInd_R + pInd_D) * (wave.lin + wave.quad +  
##     wave.cub) + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22252.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6388 -0.5025  0.0716  0.5367  3.8673 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.7198   0.8484  
##  Residual             0.5456   0.7387  
## Number of obs: 8104, groups:  pid, 2615
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         3.06220    0.04594 5982.29753  66.651  < 2e-16 ***
## pInd_R              0.36665    0.05157 6387.73603   7.110 1.28e-12 ***
## pInd_D              0.48540    0.05026 6458.38963   9.659  < 2e-16 ***
## wave.lin            0.17670    0.06988 6042.54678   2.529  0.01147 *  
## wave.quad           0.47879    0.10552 5805.06195   4.538 5.80e-06 ***
## wave.cub           -0.03894    0.06512 5706.40012  -0.598  0.54991    
## pInd_R:wave.lin     0.59592    0.07949 6026.20443   7.497 7.49e-14 ***
## pInd_R:wave.quad    0.52994    0.11979 5804.83277   4.424 9.86e-06 ***
## pInd_R:wave.cub    -0.41759    0.07346 5701.86095  -5.685 1.38e-08 ***
## pInd_D:wave.lin    -0.60686    0.07775 6030.66239  -7.805 6.94e-15 ***
## pInd_D:wave.quad   -0.56590    0.11726 5806.94293  -4.826 1.43e-06 ***
## pInd_D:wave.cub     0.22599    0.07212 5710.32856   3.134  0.00174 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pInd_R pInd_D wav.ln wav.qd wav.cb pInd_R:wv.l pInd_R:wv.q
## pInd_R      -0.832                                                           
## pInd_D      -0.858  0.727                                                    
## wave.lin     0.196 -0.176 -0.170                                             
## wave.quad    0.017 -0.017 -0.018 -0.214                                      
## wave.cub    -0.064  0.060  0.057 -0.055  0.174                               
## pInd_R:wv.l -0.165  0.188  0.144 -0.882  0.189  0.050                        
## pInd_R:wv.q -0.014  0.001  0.016  0.188 -0.886 -0.153 -0.211                 
## pInd_R:wv.c  0.053 -0.060 -0.047  0.050 -0.155 -0.890 -0.069       0.171     
## pInd_D:wv.l -0.174  0.157  0.191 -0.902  0.193  0.051  0.795      -0.169     
## pInd_D:wv.q -0.013  0.013  0.006  0.193 -0.904 -0.158 -0.171       0.800     
## pInd_D:wv.c  0.057 -0.054 -0.065  0.050 -0.158 -0.907 -0.045       0.139     
##             pInd_R:wv.c pInd_D:wv.l pInd_D:wv.q
## pInd_R                                         
## pInd_D                                         
## wave.lin                                       
## wave.quad                                      
## wave.cub                                       
## pInd_R:wv.l                                    
## pInd_R:wv.q                                    
## pInd_R:wv.c                                    
## pInd_D:wv.l -0.045                             
## pInd_D:wv.q  0.140      -0.216                 
## pInd_D:wv.c  0.807      -0.066       0.174

2. Moderator: Gov’t trust

ggplot(d) +
   geom_smooth(aes(x = trustGovt, 
                   y = voteconfidence),
               color = "#69b3a2",
               method = "lm") +
   facet_wrap(~wave, labeller = as_labeller(wave_label)) +
   labs(x = "Trust in Government",
        y = "Perceived Election Legitimacy") +
  theme_bw() +
  coord_cartesian(ylim = c(1,5))

ggplot(d[!is.na(d$party_factor),]) +
   geom_smooth(aes(x = trustGovt, 
                   y = voteconfidence, 
                   fill = party_factor,
                   color = party_factor),
               method = "lm") +
   facet_wrap(~wave, labeller = as_labeller(wave_label)) +
   labs(x = "Trust in Government",
        y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5))

ggplot(d[!is.na(d$party_factor) & !is.na(d$trustGovt_bins),]) +
   geom_smooth(aes(x = trustGovt, 
                   y = voteconfidence, 
                   fill = party_factor,
                   color = party_factor),
               method = "lm") +
   facet_wrap(~wave, labeller = as_labeller(wave_label)) +
   labs(x = "Trust in Government",
        y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  theme_bw() 

ggplot(d[!is.na(d$party_factor) & !is.na(d$trustGovt_bins),], 
       aes(x = wave, 
           y = voteconfidence, 
           color = wave,
           group = 1)) +
   stat_summary(geom = "path", fun = "mean", color = "black", linetype = "dashed", show.legend = F) +
   stat_summary(geom = "errorbar", color = "black", width = .1, show.legend = F) +
   stat_summary(geom = "point", fun = "mean", show.legend = F) +
   facet_grid(trustGovt_bins~party_factor) +
  geom_text(data = na.omit(n_bins_govtrust), aes(label = paste0("n = ", n)),
            x = 1.3, y = 1.2, 
            size = 3,
            inherit.aes = FALSE) +
   labs(x = "Participant Party ID",
        y = "Perceived Election Legitimacy") +
   coord_cartesian(ylim = c(1,5)) +
   scale_y_continuous(breaks = seq(1,5,1)) +
  scale_x_discrete(labels = c("Wave 1","Wave 2", "Wave 3", "Wave 4")) +
  theme(legend.position = "none") +
  theme_bw()

Summary

Again, some differences by vote type (visible in graph above)—most notable differences occur for those high in governmental trust.

Overall, relationship between gov’t trust and PEL is positive (b = 0.26, p < .001). The strength of this trend slightly flattens over time (b = -0.08, p = .009), though it is still significant and positive in wave 4 (b = 0.25, p < .001). (Wave 1 effect: b = 0.39, p < .001.)

The trust-PEL relationship is stronger for Republicans (b = 0.53, p < .001) than for Democrats (b = 0.24, p < .001) in wave 1 (comparison: b = 0.30, p < .001); by wave 4, this relationship has flipped, such that the trust-PEL slope is steeper for Democrats (b = 0.29, p < .001) than for Republicans (b = 0.15, p < .001), though the overall gov’t trust-PEL relationship is smaller in magnitude relative to Wave 1; b = -0.14, p < .001.

Models

PEL.m2 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * (wave.lin + wave.quad + wave.cub) * trustGovt.c + (1 | pid),
              data = d)
summary(PEL.m2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_Rep + pParty_Ind) * (wave.lin + wave.quad +  
##     wave.cub) * trustGovt.c + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 21443.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6615 -0.5076  0.0520  0.5374  4.0936 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.6126   0.7827  
##  Residual             0.5228   0.7230  
## Number of obs: 8000, groups:  pid, 2601
## 
## Fixed effects:
##                                    Estimate Std. Error         df t value
## (Intercept)                       3.386e+00  2.141e-02  3.707e+03 158.119
## pDem_Rep                         -6.729e-02  3.650e-02  4.100e+03  -1.844
## pParty_Ind                       -3.619e-01  4.842e-02  6.980e+03  -7.473
## wave.lin                          2.849e-01  3.291e-02  6.218e+03   8.658
## wave.quad                         3.719e-01  4.751e-02  5.708e+03   7.829
## wave.cub                         -6.512e-02  2.856e-02  5.630e+03  -2.280
## trustGovt.c                       2.608e-01  1.519e-02  7.976e+03  17.177
## pDem_Rep:wave.lin                 7.135e-01  5.610e-02  6.418e+03  12.718
## pDem_Rep:wave.quad                1.156e+00  7.982e-02  5.674e+03  14.477
## pDem_Rep:wave.cub                -5.675e-01  4.769e-02  5.573e+03 -11.901
## pParty_Ind:wave.lin               7.548e-02  8.653e-02  6.184e+03   0.872
## pParty_Ind:wave.quad              5.392e-02  1.261e-01  5.791e+03   0.427
## pParty_Ind:wave.cub               1.173e-01  7.589e-02  5.707e+03   1.546
## pDem_Rep:trustGovt.c              9.052e-03  2.549e-02  7.973e+03   0.355
## pParty_Ind:trustGovt.c            3.921e-02  3.826e-02  7.864e+03   1.025
## wave.lin:trustGovt.c             -8.169e-02  3.141e-02  6.620e+03  -2.601
## wave.quad:trustGovt.c            -2.388e-01  4.473e-02  5.789e+03  -5.339
## wave.cub:trustGovt.c              1.193e-01  2.769e-02  5.741e+03   4.308
## pDem_Rep:wave.lin:trustGovt.c    -3.265e-01  5.190e-02  6.500e+03  -6.291
## pDem_Rep:wave.quad:trustGovt.c   -2.813e-01  7.383e-02  5.779e+03  -3.811
## pDem_Rep:wave.cub:trustGovt.c     2.136e-01  4.496e-02  5.695e+03   4.752
## pParty_Ind:wave.lin:trustGovt.c   1.030e-01  8.292e-02  6.626e+03   1.242
## pParty_Ind:wave.quad:trustGovt.c -1.890e-02  1.188e-01  5.837e+03  -0.159
## pParty_Ind:wave.cub:trustGovt.c   9.326e-02  7.389e-02  5.800e+03   1.262
##                                  Pr(>|t|)    
## (Intercept)                       < 2e-16 ***
## pDem_Rep                          0.06532 .  
## pParty_Ind                       8.77e-14 ***
## wave.lin                          < 2e-16 ***
## wave.quad                        5.82e-15 ***
## wave.cub                          0.02262 *  
## trustGovt.c                       < 2e-16 ***
## pDem_Rep:wave.lin                 < 2e-16 ***
## pDem_Rep:wave.quad                < 2e-16 ***
## pDem_Rep:wave.cub                 < 2e-16 ***
## pParty_Ind:wave.lin               0.38305    
## pParty_Ind:wave.quad              0.66908    
## pParty_Ind:wave.cub               0.12221    
## pDem_Rep:trustGovt.c              0.72255    
## pParty_Ind:trustGovt.c            0.30557    
## wave.lin:trustGovt.c              0.00933 ** 
## wave.quad:trustGovt.c            9.68e-08 ***
## wave.cub:trustGovt.c             1.67e-05 ***
## pDem_Rep:wave.lin:trustGovt.c    3.36e-10 ***
## pDem_Rep:wave.quad:trustGovt.c    0.00014 ***
## pDem_Rep:wave.cub:trustGovt.c    2.06e-06 ***
## pParty_Ind:wave.lin:trustGovt.c   0.21427    
## pParty_Ind:wave.quad:trustGovt.c  0.87366    
## pParty_Ind:wave.cub:trustGovt.c   0.20694    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Simple-effects models

PEL.m2.w4 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * (wave4_3 + wave4_2 + wave4_1) * trustGovt.c + (1 | pid),
              data = d)
summary(PEL.m2.w4)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_Rep + pParty_Ind) * (wave4_3 + wave4_2 +  
##     wave4_1) * trustGovt.c + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 21449.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6615 -0.5076  0.0520  0.5374  4.0936 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.6126   0.7827  
##  Residual             0.5228   0.7230  
## Number of obs: 8000, groups:  pid, 2601
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     3.451e+00  3.643e-02  7.974e+03  94.744
## pDem_Rep                        1.425e-01  5.906e-02  7.976e+03   2.412
## pParty_Ind                     -3.669e-01  9.240e-02  7.164e+03  -3.971
## wave4_3                         6.590e-02  3.876e-02  5.689e+03   1.700
## wave4_2                        -1.145e-02  3.802e-02  5.914e+03  -0.301
## wave4_1                        -3.175e-01  3.726e-02  6.096e+03  -8.522
## trustGovt.c                     2.499e-01  2.931e-02  6.369e+03   8.525
## pDem_Rep:wave4_3               -2.625e-02  6.137e-02  5.678e+03  -0.428
## pDem_Rep:wave4_2                1.845e-01  6.387e-02  6.048e+03   2.889
## pDem_Rep:wave4_1               -9.973e-01  6.349e-02  6.242e+03 -15.708
## pParty_Ind:wave4_3              9.607e-02  1.044e-01  5.746e+03   0.920
## pParty_Ind:wave4_2             -5.898e-02  1.005e-01  5.907e+03  -0.587
## pParty_Ind:wave4_1             -1.682e-02  9.822e-02  6.105e+03  -0.171
## pDem_Rep:trustGovt.c           -1.373e-01  4.748e-02  6.324e+03  -2.891
## pParty_Ind:trustGovt.c          7.211e-02  7.741e-02  6.292e+03   0.932
## wave4_3:trustGovt.c            -9.544e-03  3.628e-02  5.822e+03  -0.263
## wave4_2:trustGovt.c            -8.797e-02  3.553e-02  6.225e+03  -2.476
## wave4_1:trustGovt.c             1.413e-01  3.449e-02  6.396e+03   4.097
## pDem_Rep:wave4_3:trustGovt.c    1.012e-01  5.820e-02  5.859e+03   1.739
## pDem_Rep:wave4_2:trustGovt.c    5.079e-02  5.822e-02  6.151e+03   0.872
## pDem_Rep:wave4_1:trustGovt.c    4.333e-01  5.782e-02  6.347e+03   7.494
## pParty_Ind:wave4_3:trustGovt.c  3.475e-02  9.683e-02  5.832e+03   0.359
## pParty_Ind:wave4_2:trustGovt.c -1.100e-01  9.406e-02  6.226e+03  -1.170
## pParty_Ind:wave4_1:trustGovt.c -5.636e-02  9.088e-02  6.401e+03  -0.620
##                                Pr(>|t|)    
## (Intercept)                     < 2e-16 ***
## pDem_Rep                        0.01588 *  
## pParty_Ind                     7.22e-05 ***
## wave4_3                         0.08917 .  
## wave4_2                         0.76328    
## wave4_1                         < 2e-16 ***
## trustGovt.c                     < 2e-16 ***
## pDem_Rep:wave4_3                0.66880    
## pDem_Rep:wave4_2                0.00388 ** 
## pDem_Rep:wave4_1                < 2e-16 ***
## pParty_Ind:wave4_3              0.35752    
## pParty_Ind:wave4_2              0.55721    
## pParty_Ind:wave4_1              0.86401    
## pDem_Rep:trustGovt.c            0.00385 ** 
## pParty_Ind:trustGovt.c          0.35163    
## wave4_3:trustGovt.c             0.79249    
## wave4_2:trustGovt.c             0.01330 *  
## wave4_1:trustGovt.c            4.23e-05 ***
## pDem_Rep:wave4_3:trustGovt.c    0.08215 .  
## pDem_Rep:wave4_2:trustGovt.c    0.38304    
## pDem_Rep:wave4_1:trustGovt.c   7.60e-14 ***
## pParty_Ind:wave4_3:trustGovt.c  0.71971    
## pParty_Ind:wave4_2:trustGovt.c  0.24220    
## pParty_Ind:wave4_1:trustGovt.c  0.53517    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
PEL.m2.w1 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * (wave1_3 + wave1_2 + wave1_4) * trustGovt.c + (1 | pid),
              data = d)
summary(PEL.m2.w1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_Rep + pParty_Ind) * (wave1_3 + wave1_2 +  
##     wave1_4) * trustGovt.c + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 21449.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6615 -0.5076  0.0520  0.5374  4.0936 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.6126   0.7827  
##  Residual             0.5228   0.7230  
## Number of obs: 8000, groups:  pid, 2601
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                       3.13390    0.02494 5868.47662 125.633
## pDem_Rep                         -0.85482    0.04679 6957.86829 -18.271
## pParty_Ind                       -0.38377    0.05744 7916.39550  -6.681
## wave1_3                           0.38340    0.03046 6047.44429  12.589
## wave1_2                           0.30605    0.02747 5743.88938  11.141
## wave1_4                           0.31750    0.03726 6096.48620   8.522
## trustGovt.c                       0.39122    0.02121 7889.86641  18.444
## pDem_Rep:wave1_3                  0.97103    0.05191 6076.29221  18.704
## pDem_Rep:wave1_2                  1.18182    0.05107 5680.51607  23.142
## pDem_Rep:wave1_4                  0.99728    0.06349 6241.75871  15.708
## pParty_Ind:wave1_3                0.11290    0.08038 6090.44534   1.404
## pParty_Ind:wave1_2               -0.04216    0.07078 5884.29367  -0.596
## pParty_Ind:wave1_4                0.01682    0.09822 6104.71915   0.171
## pDem_Rep:trustGovt.c              0.29603    0.03812 7801.13655   7.766
## pParty_Ind:trustGovt.c            0.01575    0.05319 7715.46552   0.296
## wave1_3:trustGovt.c              -0.15087    0.03059 6265.85995  -4.932
## wave1_2:trustGovt.c              -0.22930    0.02605 5712.37243  -8.802
## wave1_4:trustGovt.c              -0.14132    0.03449 6395.56604  -4.097
## pDem_Rep:wave1_3:trustGovt.c     -0.33210    0.05010 6146.85558  -6.629
## pDem_Rep:wave1_2:trustGovt.c     -0.38250    0.04535 5670.27930  -8.434
## pDem_Rep:wave1_4:trustGovt.c     -0.43329    0.05782 6346.68932  -7.494
## pParty_Ind:wave1_3:trustGovt.c    0.09111    0.08136 6327.19459   1.120
## pParty_Ind:wave1_2:trustGovt.c   -0.05365    0.06857 5823.92427  -0.782
## pParty_Ind:wave1_4:trustGovt.c    0.05636    0.09088 6401.46452   0.620
##                                Pr(>|t|)    
## (Intercept)                     < 2e-16 ***
## pDem_Rep                        < 2e-16 ***
## pParty_Ind                     2.54e-11 ***
## wave1_3                         < 2e-16 ***
## wave1_2                         < 2e-16 ***
## wave1_4                         < 2e-16 ***
## trustGovt.c                     < 2e-16 ***
## pDem_Rep:wave1_3                < 2e-16 ***
## pDem_Rep:wave1_2                < 2e-16 ***
## pDem_Rep:wave1_4                < 2e-16 ***
## pParty_Ind:wave1_3                0.160    
## pParty_Ind:wave1_2                0.551    
## pParty_Ind:wave1_4                0.864    
## pDem_Rep:trustGovt.c           9.16e-15 ***
## pParty_Ind:trustGovt.c            0.767    
## wave1_3:trustGovt.c            8.34e-07 ***
## wave1_2:trustGovt.c             < 2e-16 ***
## wave1_4:trustGovt.c            4.23e-05 ***
## pDem_Rep:wave1_3:trustGovt.c   3.68e-11 ***
## pDem_Rep:wave1_2:trustGovt.c    < 2e-16 ***
## pDem_Rep:wave1_4:trustGovt.c   7.60e-14 ***
## pParty_Ind:wave1_3:trustGovt.c    0.263    
## pParty_Ind:wave1_2:trustGovt.c    0.434    
## pParty_Ind:wave1_4:trustGovt.c    0.535    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
PEL.m2.d <- lmer(voteconfidence ~ (pDem_R + pDem_I) * (wave.lin + wave.quad + wave.cub) * trustGovt.c + (1 | pid),
              data = d)
summary(PEL.m2.d)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_R + pDem_I) * (wave.lin + wave.quad +  
##     wave.cub) * trustGovt.c + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 21443.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6615 -0.5076  0.0520  0.5374  4.0936 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.6126   0.7827  
##  Residual             0.5228   0.7230  
## Number of obs: 8000, groups:  pid, 2601
## 
## Fixed effects:
##                                Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   3.540e+00  2.562e-02  3.682e+03 138.171  < 2e-16
## pDem_R                       -6.729e-02  3.650e-02  4.100e+03  -1.844  0.06532
## pDem_I                       -3.955e-01  5.139e-02  6.704e+03  -7.696 1.61e-14
## wave.lin                     -9.698e-02  4.101e-02  6.665e+03  -2.365  0.01808
## wave.quad                    -2.238e-01  5.654e-02  5.686e+03  -3.958 7.64e-05
## wave.cub                      1.795e-01  3.337e-02  5.597e+03   5.381 7.71e-08
## trustGovt.c                   2.433e-01  1.678e-02  7.965e+03  14.499  < 2e-16
## pDem_R:wave.lin               7.135e-01  5.610e-02  6.418e+03  12.718  < 2e-16
## pDem_R:wave.quad              1.156e+00  7.982e-02  5.674e+03  14.477  < 2e-16
## pDem_R:wave.cub              -5.675e-01  4.769e-02  5.573e+03 -11.901  < 2e-16
## pDem_I:wave.lin               4.322e-01  9.154e-02  6.254e+03   4.722 2.39e-06
## pDem_I:wave.quad              6.317e-01  1.323e-01  5.779e+03   4.776 1.84e-06
## pDem_I:wave.cub              -1.665e-01  7.943e-02  5.702e+03  -2.096  0.03616
## pDem_R:trustGovt.c            9.052e-03  2.549e-02  7.973e+03   0.355  0.72255
## pDem_I:trustGovt.c            4.373e-02  3.973e-02  7.860e+03   1.101  0.27111
## wave.lin:trustGovt.c          4.722e-02  3.529e-02  6.553e+03   1.338  0.18092
## wave.quad:trustGovt.c        -9.188e-02  4.978e-02  5.779e+03  -1.846  0.06499
## wave.cub:trustGovt.c         -1.863e-02  3.038e-02  5.723e+03  -0.613  0.53966
## pDem_R:wave.lin:trustGovt.c  -3.265e-01  5.190e-02  6.500e+03  -6.291 3.36e-10
## pDem_R:wave.quad:trustGovt.c -2.813e-01  7.383e-02  5.779e+03  -3.811  0.00014
## pDem_R:wave.cub:trustGovt.c   2.136e-01  4.496e-02  5.695e+03   4.752 2.06e-06
## pDem_I:wave.lin:trustGovt.c  -6.024e-02  8.631e-02  6.628e+03  -0.698  0.48523
## pDem_I:wave.quad:trustGovt.c -1.596e-01  1.234e-01  5.831e+03  -1.293  0.19620
## pDem_I:wave.cub:trustGovt.c   2.001e-01  7.675e-02  5.803e+03   2.607  0.00916
##                                 
## (Intercept)                  ***
## pDem_R                       .  
## pDem_I                       ***
## wave.lin                     *  
## wave.quad                    ***
## wave.cub                     ***
## trustGovt.c                  ***
## pDem_R:wave.lin              ***
## pDem_R:wave.quad             ***
## pDem_R:wave.cub              ***
## pDem_I:wave.lin              ***
## pDem_I:wave.quad             ***
## pDem_I:wave.cub              *  
## pDem_R:trustGovt.c              
## pDem_I:trustGovt.c              
## wave.lin:trustGovt.c            
## wave.quad:trustGovt.c        .  
## wave.cub:trustGovt.c            
## pDem_R:wave.lin:trustGovt.c  ***
## pDem_R:wave.quad:trustGovt.c ***
## pDem_R:wave.cub:trustGovt.c  ***
## pDem_I:wave.lin:trustGovt.c     
## pDem_I:wave.quad:trustGovt.c    
## pDem_I:wave.cub:trustGovt.c  ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
PEL.m2.d.w1 <- lmer(voteconfidence ~ (pDem_R + pDem_I) * (wave1_3 + wave1_2 + wave1_4) * trustGovt.c + (1 | pid),
              data = d)
summary(PEL.m2.d.w1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_R + pDem_I) * (wave1_3 + wave1_2 + wave1_4) *  
##     trustGovt.c + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 21449.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6615 -0.5076  0.0520  0.5374  4.0936 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.6126   0.7827  
##  Residual             0.5228   0.7230  
## Number of obs: 8000, groups:  pid, 2601
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   3.68924    0.03280 6607.67744 112.462  < 2e-16
## pDem_R                       -0.85482    0.04679 6957.86967 -18.271  < 2e-16
## pDem_I                       -0.81118    0.06166 7864.41589 -13.155  < 2e-16
## wave1_3                      -0.13975    0.03595 6314.29417  -3.887 0.000103
## wave1_2                      -0.27081    0.03600 5687.51236  -7.522 6.24e-14
## wave1_4                      -0.18675    0.04626 6393.85517  -4.037 5.48e-05
## trustGovt.c                   0.23796    0.02460 7798.24032   9.672  < 2e-16
## pDem_R:wave1_3                0.97103    0.05191 6076.29180  18.704  < 2e-16
## pDem_R:wave1_2                1.18182    0.05107 5680.51567  23.142  < 2e-16
## pDem_R:wave1_4                0.99728    0.06349 6241.75836  15.708  < 2e-16
## pDem_I:wave1_3                0.59841    0.08413 6127.85043   7.113 1.27e-12
## pDem_I:wave1_2                0.54875    0.07526 5868.51842   7.292 3.47e-13
## pDem_I:wave1_4                0.51546    0.10385 6148.43355   4.964 7.11e-07
## pDem_R:trustGovt.c            0.29603    0.03812 7801.13638   7.766 9.16e-15
## pDem_I:trustGovt.c            0.16376    0.05543 7724.25557   2.954 0.003144
## wave1_3:trustGovt.c          -0.01519    0.03353 6252.54772  -0.453 0.650569
## wave1_2:trustGovt.c          -0.02016    0.02981 5682.38415  -0.676 0.498843
## wave1_4:trustGovt.c           0.05653    0.03912 6355.65202   1.445 0.148530
## pDem_R:wave1_3:trustGovt.c   -0.33210    0.05010 6146.85524  -6.629 3.68e-11
## pDem_R:wave1_2:trustGovt.c   -0.38250    0.04535 5670.27890  -8.434  < 2e-16
## pDem_R:wave1_4:trustGovt.c   -0.43329    0.05782 6346.68901  -7.494 7.60e-14
## pDem_I:wave1_3:trustGovt.c   -0.07494    0.08437 6334.08808  -0.888 0.374489
## pDem_I:wave1_2:trustGovt.c   -0.24490    0.07125 5815.70952  -3.437 0.000592
## pDem_I:wave1_4:trustGovt.c   -0.16028    0.09467 6402.97242  -1.693 0.090488
##                               
## (Intercept)                ***
## pDem_R                     ***
## pDem_I                     ***
## wave1_3                    ***
## wave1_2                    ***
## wave1_4                    ***
## trustGovt.c                ***
## pDem_R:wave1_3             ***
## pDem_R:wave1_2             ***
## pDem_R:wave1_4             ***
## pDem_I:wave1_3             ***
## pDem_I:wave1_2             ***
## pDem_I:wave1_4             ***
## pDem_R:trustGovt.c         ***
## pDem_I:trustGovt.c         ** 
## wave1_3:trustGovt.c           
## wave1_2:trustGovt.c           
## wave1_4:trustGovt.c           
## pDem_R:wave1_3:trustGovt.c ***
## pDem_R:wave1_2:trustGovt.c ***
## pDem_R:wave1_4:trustGovt.c ***
## pDem_I:wave1_3:trustGovt.c    
## pDem_I:wave1_2:trustGovt.c ***
## pDem_I:wave1_4:trustGovt.c .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
PEL.m2.d.w4 <- lmer(voteconfidence ~ (pDem_R + pDem_I) * (wave4_3 + wave4_2 + wave4_1) * trustGovt.c + (1 | pid),
              data = d)
summary(PEL.m2.d.w4)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_R + pDem_I) * (wave4_3 + wave4_2 + wave4_1) *  
##     trustGovt.c + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 21449.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6615 -0.5076  0.0520  0.5374  4.0936 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.6126   0.7827  
##  Residual             0.5228   0.7230  
## Number of obs: 8000, groups:  pid, 2601
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   3.50249    0.04291 7974.24842  81.628  < 2e-16
## pDem_R                        0.14246    0.05906 7975.99051   2.412  0.01588
## pDem_I                       -0.29572    0.09739 7267.24940  -3.036  0.00240
## wave4_3                       0.04700    0.04359 5688.09766   1.078  0.28097
## wave4_2                      -0.08406    0.04693 6200.37945  -1.791  0.07331
## wave4_1                       0.18675    0.04626 6393.85517   4.037 5.48e-05
## trustGovt.c                   0.29449    0.03274 6284.94196   8.995  < 2e-16
## pDem_R:wave4_3               -0.02625    0.06137 5678.01785  -0.428  0.66880
## pDem_R:wave4_2                0.18454    0.06387 6048.40919   2.889  0.00388
## pDem_R:wave4_1               -0.99728    0.06349 6241.75836 -15.708  < 2e-16
## pDem_I:wave4_3                0.08295    0.10886 5739.68550   0.762  0.44611
## pDem_I:wave4_2                0.03329    0.10614 5943.99575   0.314  0.75384
## pDem_I:wave4_1               -0.51546    0.10385 6148.43354  -4.964 7.11e-07
## pDem_R:trustGovt.c           -0.13726    0.04748 6324.44477  -2.891  0.00385
## pDem_I:trustGovt.c            0.00348    0.08061 6282.97484   0.043  0.96556
## wave4_3:trustGovt.c          -0.07172    0.03982 5838.83317  -1.801  0.07172
## wave4_2:trustGovt.c          -0.07669    0.03987 6161.48313  -1.923  0.05447
## wave4_1:trustGovt.c          -0.05653    0.03913 6355.65203  -1.445  0.14853
## pDem_R:wave4_3:trustGovt.c    0.10119    0.05820 5859.39291   1.739  0.08215
## pDem_R:wave4_2:trustGovt.c    0.05079    0.05822 6150.51872   0.872  0.38304
## pDem_R:wave4_1:trustGovt.c    0.43329    0.05782 6346.68901   7.494 7.60e-14
## pDem_I:wave4_3:trustGovt.c    0.08534    0.10064 5834.02489   0.848  0.39649
## pDem_I:wave4_2:trustGovt.c   -0.08462    0.09791 6222.48987  -0.864  0.38748
## pDem_I:wave4_1:trustGovt.c    0.16028    0.09467 6402.97242   1.693  0.09049
##                               
## (Intercept)                ***
## pDem_R                     *  
## pDem_I                     ** 
## wave4_3                       
## wave4_2                    .  
## wave4_1                    ***
## trustGovt.c                ***
## pDem_R:wave4_3                
## pDem_R:wave4_2             ** 
## pDem_R:wave4_1             ***
## pDem_I:wave4_3                
## pDem_I:wave4_2                
## pDem_I:wave4_1             ***
## pDem_R:trustGovt.c         ** 
## pDem_I:trustGovt.c            
## wave4_3:trustGovt.c        .  
## wave4_2:trustGovt.c        .  
## wave4_1:trustGovt.c           
## pDem_R:wave4_3:trustGovt.c .  
## pDem_R:wave4_2:trustGovt.c    
## pDem_R:wave4_1:trustGovt.c ***
## pDem_I:wave4_3:trustGovt.c    
## pDem_I:wave4_2:trustGovt.c    
## pDem_I:wave4_1:trustGovt.c .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
PEL.m2.r <- lmer(voteconfidence ~ (pRep_D + pRep_I) * (wave.lin + wave.quad + wave.cub) * trustGovt.c + (1 | pid),
              data = d)
summary(PEL.m2.r)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pRep_D + pRep_I) * (wave.lin + wave.quad +  
##     wave.cub) * trustGovt.c + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 21443.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6615 -0.5076  0.0520  0.5374  4.0936 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.6126   0.7827  
##  Residual             0.5228   0.7230  
## Number of obs: 8000, groups:  pid, 2601
## 
## Fixed effects:
##                                Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   3.473e+00  2.741e-02  3.353e+03 126.694  < 2e-16
## pRep_D                        6.729e-02  3.650e-02  4.100e+03   1.844  0.06532
## pRep_I                       -3.282e-01  5.210e-02  6.547e+03  -6.300 3.17e-10
## wave.lin                      6.165e-01  3.807e-02  6.060e+03  16.194  < 2e-16
## wave.quad                     9.318e-01  5.616e-02  5.640e+03  16.590  < 2e-16
## wave.cub                     -3.880e-01  3.395e-02  5.528e+03 -11.429  < 2e-16
## trustGovt.c                   2.523e-01  1.951e-02  7.883e+03  12.934  < 2e-16
## pRep_D:wave.lin              -7.135e-01  5.610e-02  6.418e+03 -12.718  < 2e-16
## pRep_D:wave.quad             -1.156e+00  7.982e-02  5.674e+03 -14.477  < 2e-16
## pRep_D:wave.cub               5.675e-01  4.769e-02  5.573e+03  11.901  < 2e-16
## pRep_I:wave.lin              -2.813e-01  9.037e-02  6.158e+03  -3.112  0.00186
## pRep_I:wave.quad             -5.239e-01  1.323e-01  5.782e+03  -3.959 7.62e-05
## pRep_I:wave.cub               4.011e-01  7.967e-02  5.689e+03   5.034 4.94e-07
## pRep_D:trustGovt.c           -9.052e-03  2.549e-02  7.973e+03  -0.355  0.72255
## pRep_I:trustGovt.c            3.468e-02  4.092e-02  7.911e+03   0.848  0.39671
## wave.lin:trustGovt.c         -2.793e-01  3.805e-02  6.469e+03  -7.339 2.42e-13
## wave.quad:trustGovt.c        -3.732e-01  5.434e-02  5.758e+03  -6.869 7.17e-12
## wave.cub:trustGovt.c          1.950e-01  3.303e-02  5.652e+03   5.903 3.77e-09
## pRep_D:wave.lin:trustGovt.c   3.265e-01  5.190e-02  6.500e+03   6.291 3.36e-10
## pRep_D:wave.quad:trustGovt.c  2.813e-01  7.383e-02  5.779e+03   3.811  0.00014
## pRep_D:wave.cub:trustGovt.c  -2.136e-01  4.496e-02  5.695e+03  -4.752 2.06e-06
## pRep_I:wave.lin:trustGovt.c   2.662e-01  8.747e-02  6.601e+03   3.044  0.00235
## pRep_I:wave.quad:trustGovt.c  1.218e-01  1.254e-01  5.832e+03   0.971  0.33179
## pRep_I:wave.cub:trustGovt.c  -1.355e-02  7.772e-02  5.779e+03  -0.174  0.86157
##                                 
## (Intercept)                  ***
## pRep_D                       .  
## pRep_I                       ***
## wave.lin                     ***
## wave.quad                    ***
## wave.cub                     ***
## trustGovt.c                  ***
## pRep_D:wave.lin              ***
## pRep_D:wave.quad             ***
## pRep_D:wave.cub              ***
## pRep_I:wave.lin              ** 
## pRep_I:wave.quad             ***
## pRep_I:wave.cub              ***
## pRep_D:trustGovt.c              
## pRep_I:trustGovt.c              
## wave.lin:trustGovt.c         ***
## wave.quad:trustGovt.c        ***
## wave.cub:trustGovt.c         ***
## pRep_D:wave.lin:trustGovt.c  ***
## pRep_D:wave.quad:trustGovt.c ***
## pRep_D:wave.cub:trustGovt.c  ***
## pRep_I:wave.lin:trustGovt.c  ** 
## pRep_I:wave.quad:trustGovt.c    
## pRep_I:wave.cub:trustGovt.c     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
PEL.m2.r.w1 <- lmer(voteconfidence ~ (pRep_D + pRep_I) * (wave1_3 + wave1_2 + wave1_4) * trustGovt.c + (1 | pid),
              data = d)
summary(PEL.m2.r.w1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pRep_D + pRep_I) * (wave1_3 + wave1_2 + wave1_4) *  
##     trustGovt.c + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 21449.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6615 -0.5076  0.0520  0.5374  4.0936 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.6126   0.7827  
##  Residual             0.5228   0.7230  
## Number of obs: 8000, groups:  pid, 2601
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   2.83442    0.03436 6192.43343  82.501  < 2e-16
## pRep_D                        0.85482    0.04679 6957.86967  18.271  < 2e-16
## pRep_I                        0.04364    0.06238 7826.21590   0.700  0.48424
## wave1_3                       0.83128    0.03730 5822.20576  22.287  < 2e-16
## wave1_2                       0.91101    0.03603 5641.41879  25.283  < 2e-16
## wave1_4                       0.81053    0.04321 6003.48658  18.757  < 2e-16
## trustGovt.c                   0.53398    0.02934 7871.42581  18.200  < 2e-16
## pRep_D:wave1_3               -0.97103    0.05191 6076.29180 -18.704  < 2e-16
## pRep_D:wave1_2               -1.18182    0.05107 5680.51567 -23.142  < 2e-16
## pRep_D:wave1_4               -0.99728    0.06349 6241.75836 -15.708  < 2e-16
## pRep_I:wave1_3               -0.37262    0.08481 6050.95477  -4.394 1.13e-05
## pRep_I:wave1_2               -0.63307    0.07524 5853.02344  -8.414  < 2e-16
## pRep_I:wave1_4               -0.48182    0.10260 6086.19645  -4.696 2.71e-06
## pRep_D:trustGovt.c           -0.29603    0.03812 7801.13638  -7.766 9.16e-15
## pRep_I:trustGovt.c           -0.13226    0.05756 7727.59844  -2.298  0.02159
## wave1_3:trustGovt.c          -0.34729    0.03716 6055.01150  -9.346  < 2e-16
## wave1_2:trustGovt.c          -0.40267    0.03400 5627.56785 -11.843  < 2e-16
## wave1_4:trustGovt.c          -0.37676    0.04248 6339.71487  -8.868  < 2e-16
## pRep_D:wave1_3:trustGovt.c    0.33210    0.05010 6146.85524   6.629 3.68e-11
## pRep_D:wave1_2:trustGovt.c    0.38250    0.04535 5670.27890   8.434  < 2e-16
## pRep_D:wave1_4:trustGovt.c    0.43329    0.05782 6346.68901   7.494 7.60e-14
## pRep_I:wave1_3:trustGovt.c    0.25717    0.08589 6289.95938   2.994  0.00276
## pRep_I:wave1_2:trustGovt.c    0.13760    0.07317 5802.13742   1.880  0.06009
## pRep_I:wave1_4:trustGovt.c    0.27301    0.09607 6390.09592   2.842  0.00450
##                               
## (Intercept)                ***
## pRep_D                     ***
## pRep_I                        
## wave1_3                    ***
## wave1_2                    ***
## wave1_4                    ***
## trustGovt.c                ***
## pRep_D:wave1_3             ***
## pRep_D:wave1_2             ***
## pRep_D:wave1_4             ***
## pRep_I:wave1_3             ***
## pRep_I:wave1_2             ***
## pRep_I:wave1_4             ***
## pRep_D:trustGovt.c         ***
## pRep_I:trustGovt.c         *  
## wave1_3:trustGovt.c        ***
## wave1_2:trustGovt.c        ***
## wave1_4:trustGovt.c        ***
## pRep_D:wave1_3:trustGovt.c ***
## pRep_D:wave1_2:trustGovt.c ***
## pRep_D:wave1_4:trustGovt.c ***
## pRep_I:wave1_3:trustGovt.c ** 
## pRep_I:wave1_2:trustGovt.c .  
## pRep_I:wave1_4:trustGovt.c ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
PEL.m2.r.w4 <- lmer(voteconfidence ~ (pRep_D + pRep_I) * (wave4_3 + wave4_2 + wave4_1) * trustGovt.c + (1 | pid),
              data = d)
summary(PEL.m2.r.w4)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pRep_D + pRep_I) * (wave4_3 + wave4_2 + wave4_1) *  
##     trustGovt.c + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 21449.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6615 -0.5076  0.0520  0.5374  4.0936 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.6126   0.7827  
##  Residual             0.5228   0.7230  
## Number of obs: 8000, groups:  pid, 2601
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   3.64495    0.04149 7772.17209  87.845  < 2e-16
## pRep_D                       -0.14246    0.05906 7975.99051  -2.412  0.01588
## pRep_I                       -0.43818    0.09662 7324.11554  -4.535 5.85e-06
## wave4_3                       0.02075    0.04305 5642.29192   0.482  0.62990
## wave4_2                       0.10048    0.04317 5821.04146   2.328  0.01997
## wave4_1                      -0.81053    0.04321 6003.48657 -18.757  < 2e-16
## trustGovt.c                   0.15723    0.03447 6415.73145   4.561 5.18e-06
## pRep_D:wave4_3                0.02625    0.06136 5678.01785   0.428  0.66880
## pRep_D:wave4_2               -0.18453    0.06387 6048.40919  -2.889  0.00388
## pRep_D:wave4_1                0.99728    0.06349 6241.75836  15.708  < 2e-16
## pRep_I:wave4_3                0.10920    0.10879 5741.96950   1.004  0.31552
## pRep_I:wave4_2               -0.15125    0.10471 5894.78962  -1.444  0.14868
## pRep_I:wave4_1                0.48182    0.10260 6086.19645   4.696 2.71e-06
## pRep_D:trustGovt.c            0.13726    0.04748 6324.44478   2.891  0.00385
## pRep_I:trustGovt.c            0.14074    0.08133 6306.64647   1.730  0.08360
## wave4_3:trustGovt.c           0.02947    0.04233 5861.22465   0.696  0.48637
## wave4_2:trustGovt.c          -0.02591    0.04240 6149.78189  -0.611  0.54117
## wave4_1:trustGovt.c           0.37676    0.04248 6339.71488   8.868  < 2e-16
## pRep_D:wave4_3:trustGovt.c   -0.10119    0.05820 5859.39291  -1.739  0.08215
## pRep_D:wave4_2:trustGovt.c   -0.05079    0.05822 6150.51872  -0.872  0.38304
## pRep_D:wave4_1:trustGovt.c   -0.43329    0.05782 6346.68901  -7.494 7.60e-14
## pRep_I:wave4_3:trustGovt.c   -0.01584    0.10158 5833.97983  -0.156  0.87606
## pRep_I:wave4_2:trustGovt.c   -0.13541    0.09901 6217.24138  -1.368  0.17147
## pRep_I:wave4_1:trustGovt.c   -0.27301    0.09607 6390.09593  -2.842  0.00450
##                               
## (Intercept)                ***
## pRep_D                     *  
## pRep_I                     ***
## wave4_3                       
## wave4_2                    *  
## wave4_1                    ***
## trustGovt.c                ***
## pRep_D:wave4_3                
## pRep_D:wave4_2             ** 
## pRep_D:wave4_1             ***
## pRep_I:wave4_3                
## pRep_I:wave4_2                
## pRep_I:wave4_1             ***
## pRep_D:trustGovt.c         ** 
## pRep_I:trustGovt.c         .  
## wave4_3:trustGovt.c           
## wave4_2:trustGovt.c           
## wave4_1:trustGovt.c        ***
## pRep_D:wave4_3:trustGovt.c .  
## pRep_D:wave4_2:trustGovt.c    
## pRep_D:wave4_1:trustGovt.c ***
## pRep_I:wave4_3:trustGovt.c    
## pRep_I:wave4_2:trustGovt.c    
## pRep_I:wave4_1:trustGovt.c ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
PEL.m2.i <- lmer(voteconfidence ~ (pInd_R + pInd_D) * (wave.lin + wave.quad + wave.cub) * trustGovt.c + (1 | pid),
              data = d)
summary(PEL.m2.i)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pInd_R + pInd_D) * (wave.lin + wave.quad +  
##     wave.cub) * trustGovt.c + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 21443.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6615 -0.5076  0.0520  0.5374  4.0936 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.6126   0.7827  
##  Residual             0.5228   0.7230  
## Number of obs: 8000, groups:  pid, 2601
## 
## Fixed effects:
##                                Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                     3.14438    0.04687 6323.70366  67.084  < 2e-16
## pInd_R                          0.32824    0.05210 6546.66551   6.300 3.17e-10
## pInd_D                          0.39552    0.05139 6704.02659   7.696 1.61e-14
## wave.lin                        0.33526    0.08175 6160.03440   4.101 4.16e-05
## wave.quad                       0.40789    0.11922 5782.89832   3.421 0.000627
## wave.cub                        0.01309    0.07181 5704.93326   0.182 0.855368
## trustGovt.c                     0.28699    0.03648 7890.71741   7.867 4.12e-15
## pInd_R:wave.lin                 0.28127    0.09037 6157.96542   3.112 0.001865
## pInd_R:wave.quad                0.52387    0.13233 5782.06954   3.959 7.62e-05
## pInd_R:wave.cub                -0.40109    0.07967 5689.05672  -5.034 4.94e-07
## pInd_D:wave.lin                -0.43224    0.09154 6253.98905  -4.722 2.39e-06
## pInd_D:wave.quad               -0.63170    0.13227 5779.10131  -4.776 1.84e-06
## pInd_D:wave.cub                 0.16646    0.07943 5701.66655   2.096 0.036164
## pInd_R:trustGovt.c             -0.03468    0.04092 7911.21341  -0.848 0.396709
## pInd_D:trustGovt.c             -0.04373    0.03973 7860.01858  -1.101 0.271109
## wave.lin:trustGovt.c           -0.01302    0.07873 6646.60651  -0.165 0.868608
## wave.quad:trustGovt.c          -0.25144    0.11276 5831.07319  -2.230 0.025789
## wave.cub:trustGovt.c            0.18145    0.07026 5798.13629   2.583 0.009828
## pInd_R:wave.lin:trustGovt.c    -0.26623    0.08747 6601.30677  -3.044 0.002345
## pInd_R:wave.quad:trustGovt.c   -0.12176    0.12545 5831.89550  -0.971 0.331790
## pInd_R:wave.cub:trustGovt.c     0.01355    0.07772 5778.82809   0.174 0.861568
## pInd_D:wave.lin:trustGovt.c     0.06024    0.08631 6628.36409   0.698 0.485233
## pInd_D:wave.quad:trustGovt.c    0.15956    0.12344 5831.18426   1.293 0.196205
## pInd_D:wave.cub:trustGovt.c    -0.20008    0.07675 5802.89021  -2.607 0.009156
##                                 
## (Intercept)                  ***
## pInd_R                       ***
## pInd_D                       ***
## wave.lin                     ***
## wave.quad                    ***
## wave.cub                        
## trustGovt.c                  ***
## pInd_R:wave.lin              ** 
## pInd_R:wave.quad             ***
## pInd_R:wave.cub              ***
## pInd_D:wave.lin              ***
## pInd_D:wave.quad             ***
## pInd_D:wave.cub              *  
## pInd_R:trustGovt.c              
## pInd_D:trustGovt.c              
## wave.lin:trustGovt.c            
## wave.quad:trustGovt.c        *  
## wave.cub:trustGovt.c         ** 
## pInd_R:wave.lin:trustGovt.c  ** 
## pInd_R:wave.quad:trustGovt.c    
## pInd_R:wave.cub:trustGovt.c     
## pInd_D:wave.lin:trustGovt.c     
## pInd_D:wave.quad:trustGovt.c    
## pInd_D:wave.cub:trustGovt.c  ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
PEL.m2.i <- lmer(voteconfidence ~ (pInd_R + pInd_D) * (wave.lin + wave.quad + wave.cub) * trustGovt.c + (1 | pid),
              data = d)
summary(PEL.m2.i)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pInd_R + pInd_D) * (wave.lin + wave.quad +  
##     wave.cub) * trustGovt.c + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 21443.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6615 -0.5076  0.0520  0.5374  4.0936 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.6126   0.7827  
##  Residual             0.5228   0.7230  
## Number of obs: 8000, groups:  pid, 2601
## 
## Fixed effects:
##                                Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                     3.14438    0.04687 6323.70366  67.084  < 2e-16
## pInd_R                          0.32824    0.05210 6546.66551   6.300 3.17e-10
## pInd_D                          0.39552    0.05139 6704.02659   7.696 1.61e-14
## wave.lin                        0.33526    0.08175 6160.03440   4.101 4.16e-05
## wave.quad                       0.40789    0.11922 5782.89832   3.421 0.000627
## wave.cub                        0.01309    0.07181 5704.93326   0.182 0.855368
## trustGovt.c                     0.28699    0.03648 7890.71741   7.867 4.12e-15
## pInd_R:wave.lin                 0.28127    0.09037 6157.96542   3.112 0.001865
## pInd_R:wave.quad                0.52387    0.13233 5782.06954   3.959 7.62e-05
## pInd_R:wave.cub                -0.40109    0.07967 5689.05672  -5.034 4.94e-07
## pInd_D:wave.lin                -0.43224    0.09154 6253.98905  -4.722 2.39e-06
## pInd_D:wave.quad               -0.63170    0.13227 5779.10131  -4.776 1.84e-06
## pInd_D:wave.cub                 0.16646    0.07943 5701.66655   2.096 0.036164
## pInd_R:trustGovt.c             -0.03468    0.04092 7911.21341  -0.848 0.396709
## pInd_D:trustGovt.c             -0.04373    0.03973 7860.01858  -1.101 0.271109
## wave.lin:trustGovt.c           -0.01302    0.07873 6646.60651  -0.165 0.868608
## wave.quad:trustGovt.c          -0.25144    0.11276 5831.07319  -2.230 0.025789
## wave.cub:trustGovt.c            0.18145    0.07026 5798.13629   2.583 0.009828
## pInd_R:wave.lin:trustGovt.c    -0.26623    0.08747 6601.30677  -3.044 0.002345
## pInd_R:wave.quad:trustGovt.c   -0.12176    0.12545 5831.89550  -0.971 0.331790
## pInd_R:wave.cub:trustGovt.c     0.01355    0.07772 5778.82809   0.174 0.861568
## pInd_D:wave.lin:trustGovt.c     0.06024    0.08631 6628.36409   0.698 0.485233
## pInd_D:wave.quad:trustGovt.c    0.15956    0.12344 5831.18426   1.293 0.196205
## pInd_D:wave.cub:trustGovt.c    -0.20008    0.07675 5802.89021  -2.607 0.009156
##                                 
## (Intercept)                  ***
## pInd_R                       ***
## pInd_D                       ***
## wave.lin                     ***
## wave.quad                    ***
## wave.cub                        
## trustGovt.c                  ***
## pInd_R:wave.lin              ** 
## pInd_R:wave.quad             ***
## pInd_R:wave.cub              ***
## pInd_D:wave.lin              ***
## pInd_D:wave.quad             ***
## pInd_D:wave.cub              *  
## pInd_R:trustGovt.c              
## pInd_D:trustGovt.c              
## wave.lin:trustGovt.c            
## wave.quad:trustGovt.c        *  
## wave.cub:trustGovt.c         ** 
## pInd_R:wave.lin:trustGovt.c  ** 
## pInd_R:wave.quad:trustGovt.c    
## pInd_R:wave.cub:trustGovt.c     
## pInd_D:wave.lin:trustGovt.c     
## pInd_D:wave.quad:trustGovt.c    
## pInd_D:wave.cub:trustGovt.c  ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
d$trustGovt.hi <- d$trustGovt - (mean(d$trustGovt, na.rm = T) + sd(d$trustGovt, na.rm = T))
d$trustGovt.lo <- d$trustGovt - (mean(d$trustGovt, na.rm = T) - sd(d$trustGovt, na.rm = T))


PEL.m2.hiGT <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * (wave.lin + wave.quad + wave.cub) * trustGovt.hi + (1 | pid),
              data = d)
summary(PEL.m2.hiGT)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_Rep + pParty_Ind) * (wave.lin + wave.quad +  
##     wave.cub) * trustGovt.hi + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 21443.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6615 -0.5076  0.0520  0.5374  4.0936 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.6126   0.7827  
##  Residual             0.5228   0.7230  
## Number of obs: 8000, groups:  pid, 2601
## 
## Fixed effects:
##                                     Estimate Std. Error         df t value
## (Intercept)                        3.674e+00  2.964e-02  6.313e+03 123.932
## pDem_Rep                          -5.729e-02  4.681e-02  6.114e+03  -1.224
## pParty_Ind                        -3.186e-01  7.309e-02  7.929e+03  -4.359
## wave.lin                           1.947e-01  5.563e-02  6.363e+03   3.500
## wave.quad                          1.081e-01  7.942e-02  5.801e+03   1.361
## wave.cub                           6.664e-02  4.775e-02  5.725e+03   1.396
## trustGovt.hi                       2.608e-01  1.519e-02  7.976e+03  17.177
## pDem_Rep:wave.lin                  3.529e-01  8.400e-02  6.343e+03   4.200
## pDem_Rep:wave.quad                 8.448e-01  1.194e-01  5.756e+03   7.076
## pDem_Rep:wave.cub                 -3.315e-01  7.091e-02  5.648e+03  -4.675
## pParty_Ind:wave.lin                1.893e-01  1.506e-01  6.375e+03   1.257
## pParty_Ind:wave.quad               3.304e-02  2.162e-01  5.857e+03   0.153
## pParty_Ind:wave.cub                2.203e-01  1.303e-01  5.782e+03   1.691
## pDem_Rep:trustGovt.hi              9.052e-03  2.549e-02  7.973e+03   0.355
## pParty_Ind:trustGovt.hi            3.921e-02  3.826e-02  7.864e+03   1.025
## wave.lin:trustGovt.hi             -8.169e-02  3.141e-02  6.620e+03  -2.601
## wave.quad:trustGovt.hi            -2.388e-01  4.473e-02  5.789e+03  -5.339
## wave.cub:trustGovt.hi              1.193e-01  2.769e-02  5.741e+03   4.308
## pDem_Rep:wave.lin:trustGovt.hi    -3.265e-01  5.190e-02  6.500e+03  -6.291
## pDem_Rep:wave.quad:trustGovt.hi   -2.813e-01  7.383e-02  5.779e+03  -3.811
## pDem_Rep:wave.cub:trustGovt.hi     2.136e-01  4.496e-02  5.695e+03   4.752
## pParty_Ind:wave.lin:trustGovt.hi   1.030e-01  8.292e-02  6.626e+03   1.242
## pParty_Ind:wave.quad:trustGovt.hi -1.890e-02  1.188e-01  5.837e+03  -0.159
## pParty_Ind:wave.cub:trustGovt.hi   9.326e-02  7.389e-02  5.800e+03   1.262
##                                   Pr(>|t|)    
## (Intercept)                        < 2e-16 ***
## pDem_Rep                          0.221029    
## pParty_Ind                        1.32e-05 ***
## wave.lin                          0.000468 ***
## wave.quad                         0.173525    
## wave.cub                          0.162880    
## trustGovt.hi                       < 2e-16 ***
## pDem_Rep:wave.lin                 2.70e-05 ***
## pDem_Rep:wave.quad                1.66e-12 ***
## pDem_Rep:wave.cub                 3.00e-06 ***
## pParty_Ind:wave.lin               0.208908    
## pParty_Ind:wave.quad              0.878569    
## pParty_Ind:wave.cub               0.090809 .  
## pDem_Rep:trustGovt.hi             0.722546    
## pParty_Ind:trustGovt.hi           0.305568    
## wave.lin:trustGovt.hi             0.009328 ** 
## wave.quad:trustGovt.hi            9.68e-08 ***
## wave.cub:trustGovt.hi             1.67e-05 ***
## pDem_Rep:wave.lin:trustGovt.hi    3.36e-10 ***
## pDem_Rep:wave.quad:trustGovt.hi   0.000140 ***
## pDem_Rep:wave.cub:trustGovt.hi    2.06e-06 ***
## pParty_Ind:wave.lin:trustGovt.hi  0.214265    
## pParty_Ind:wave.quad:trustGovt.hi 0.873664    
## pParty_Ind:wave.cub:trustGovt.hi  0.206943    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3. Moderator: Emotions

Both over time

d.emo <- d %>% 
  pivot_longer(cols = c(Pos_Emo, Neg_Emo),
               names_to = "Emotion_Valence",
               values_to = "emotion")

ggplot(d.emo[!is.na(d.emo$party_factor),], 
       aes(x = wave, 
           y = emotion, 
           color = Emotion_Valence,
           group = Emotion_Valence)) +
  geom_jitter(alpha = .2, size = .2) +
   stat_summary(geom = "path", fun = "mean", color = "black", linetype = "dashed") +
   stat_summary(geom = "errorbar", color = "black", width = .1) +
   stat_summary(geom = "point", fun = "mean") +
   facet_wrap(~party_factor) +
   labs(x = "Wave",
        y = "Self-Reported Emotion") +
  scale_color_manual("Emotion Valence",
                     values = c("#A60021FF","#FECE40"),
                     labels = c("Negative","Positive")) +
  scale_x_discrete(labels = c("Wave 1", "Wave 2", "Wave 3", "Wave 4")) +
  theme_bw()

Positive Emotions

ggplot(d[!is.na(d$party_factor),], 
       aes(x = Pos_Emo, 
           y = voteconfidence, 
           fill = party_factor,
           color = party_factor)) +
   geom_smooth(method = "lm") +
   facet_grid(~wave, labeller = as_labeller(wave_label)) +
#  geom_text(data = na.omit(n_bins_govtrust), aes(label = paste0("n = ", n)),
#            x = 1.4, y = 1.2, 
#            size = 3,
#            inherit.aes = FALSE) +
   labs(x = "Positive Emotions",
        y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
   coord_cartesian(ylim = c(1,5)) +
   scale_y_continuous(breaks = seq(1,5,1)) +
  theme_bw()

party.wave_label <- c("Democrat" = "Democrat", "Independent" = "Independent", "Republican" = "Republican",
                      `1` = "Wave 1", `2` = "Wave 2", `3` = "Wave 3", `4` = "Wave 4")

Negative Emotions

ggplot(d, aes(x=Neg_Emo, y = voteconfidence)) +
  geom_smooth(method="lm", color="#69b3a2") +
  theme_bw() +
  labs(x = "Negative Emotions",
       y = "Perceived Election Legitimacy") +
  coord_cartesian(ylim = c(1,5))

ggplot(d[!is.na(d$party_factor),], 
       aes(x = Neg_Emo, 
           y = voteconfidence, 
           fill = party_factor,
           color = party_factor)) +
   geom_smooth(method = "lm") +
   facet_grid(~wave, labeller = as_labeller(wave_label)) +
#  geom_text(data = na.omit(n_bins_govtrust), aes(label = paste0("n = ", n)),
#            x = 1.4, y = 1.2, 
#            size = 3,
#            inherit.aes = FALSE) +
   labs(x = "Negative Emotions",
        y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
   coord_cartesian(ylim = c(1,5)) +
   scale_y_continuous(breaks = seq(1,5,1)) +
  theme_bw()

Summary

Positive Emotions

Positive emotions (hope and pride; r = .75) are positively related to PEL (b = 0.22, p < .001), though more strongly for Republicans than for Democrats (b = 0.06, p < .001). The positive emotions-PEL relationship does not change linearly over time, though there is a 3-way interaction of positive emotions, party ID (Dem vs. Rep), and quadratic time (b = 0.15, p = .016), such that the emotions-PEL slope is more similar for Republicans and Democrats in waves 1 and 4 than for waves 2 and 3.

Negative Emotions

Negative emotions (anger, fear, and disgust; \(\alpha = .90\)) are negatively related to PEL (b = -0.14, p < .001), though more strongly for Democrats than for Republicans (b = -0.08, p < .001). The negative emotions-PEL relationship does not change linearly over time, though it does change as a function of cubic time (b = -0.08, p < .001).

There is a 3-way interaction of negative emotions, party ID (Dem vs. Rep), and linear time (b = 0.24, p < .001), such that the emotions-PEL slope becomes stronger/more negative over time for Democrats (b = -0.11, p < .001), and attenuates/becomes less negative over time for Republicans (b = 0.13, p = .001).

Negative emotions-PEL slope for: Democrats in wave 1 (b = -0.05, p = .018) and wave 4 (b = -0.19, p < .001); Republicans in wave 1 (b = -0.20, p < .001) and wave 4 (b = -0.12, p = .004).

Models

# Positive Emotions
PEL.m3 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * (wave.lin + wave.quad + wave.cub) * Pos_Emo + (1 | pid),
              data = d)
summary(PEL.m3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_Rep + pParty_Ind) * (wave.lin + wave.quad +  
##     wave.cub) * Pos_Emo + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 21783
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9365 -0.5022  0.0459  0.5559  3.9174 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.7006   0.8370  
##  Residual             0.5056   0.7111  
## Number of obs: 8104, groups:  pid, 2615
## 
## Fixed effects:
##                                Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   2.762e+00  3.789e-02  7.504e+03  72.902  < 2e-16
## pDem_Rep                     -4.950e-01  6.971e-02  7.978e+03  -7.101 1.35e-12
## pParty_Ind                   -3.163e-01  8.775e-02  8.056e+03  -3.604 0.000315
## wave.lin                      1.918e-01  6.918e-02  6.136e+03   2.773 0.005567
## wave.quad                     2.212e-01  1.033e-01  5.937e+03   2.142 0.032243
## wave.cub                     -1.375e-02  6.288e-02  5.883e+03  -0.219 0.826892
## Pos_Emo                       2.193e-01  1.280e-02  7.820e+03  17.136  < 2e-16
## pDem_Rep:wave.lin             1.229e+00  1.320e-01  6.136e+03   9.305  < 2e-16
## pDem_Rep:wave.quad            1.949e-01  1.987e-01  6.001e+03   0.981 0.326545
## pDem_Rep:wave.cub            -4.395e-01  1.204e-01  5.885e+03  -3.652 0.000263
## pParty_Ind:wave.lin          -5.841e-01  1.748e-01  6.196e+03  -3.342 0.000838
## pParty_Ind:wave.quad         -1.453e-01  2.604e-01  5.968e+03  -0.558 0.576865
## pParty_Ind:wave.cub          -4.502e-02  1.588e-01  5.938e+03  -0.283 0.776867
## pDem_Rep:Pos_Emo              6.216e-02  2.079e-02  7.719e+03   2.990 0.002801
## pParty_Ind:Pos_Emo            6.897e-03  3.278e-02  7.634e+03   0.210 0.833370
## wave.lin:Pos_Emo              2.377e-02  2.663e-02  6.160e+03   0.892 0.372205
## wave.quad:Pos_Emo             7.053e-02  3.932e-02  5.977e+03   1.794 0.072901
## wave.cub:Pos_Emo             -2.942e-02  2.368e-02  5.941e+03  -1.242 0.214145
## pDem_Rep:wave.lin:Pos_Emo    -7.081e-02  4.342e-02  6.180e+03  -1.631 0.102993
## pDem_Rep:wave.quad:Pos_Emo    1.550e-01  6.443e-02  6.019e+03   2.406 0.016170
## pDem_Rep:wave.cub:Pos_Emo     1.706e-02  3.862e-02  5.907e+03   0.442 0.658666
## pParty_Ind:wave.lin:Pos_Emo   2.566e-01  7.086e-02  6.191e+03   3.621 0.000295
## pParty_Ind:wave.quad:Pos_Emo  1.096e-01  1.047e-01  6.006e+03   1.046 0.295594
## pParty_Ind:wave.cub:Pos_Emo   3.985e-02  6.302e-02  5.983e+03   0.632 0.527236
##                                 
## (Intercept)                  ***
## pDem_Rep                     ***
## pParty_Ind                   ***
## wave.lin                     ** 
## wave.quad                    *  
## wave.cub                        
## Pos_Emo                      ***
## pDem_Rep:wave.lin            ***
## pDem_Rep:wave.quad              
## pDem_Rep:wave.cub            ***
## pParty_Ind:wave.lin          ***
## pParty_Ind:wave.quad            
## pParty_Ind:wave.cub             
## pDem_Rep:Pos_Emo             ** 
## pParty_Ind:Pos_Emo              
## wave.lin:Pos_Emo                
## wave.quad:Pos_Emo            .  
## wave.cub:Pos_Emo                
## pDem_Rep:wave.lin:Pos_Emo       
## pDem_Rep:wave.quad:Pos_Emo   *  
## pDem_Rep:wave.cub:Pos_Emo       
## pParty_Ind:wave.lin:Pos_Emo  ***
## pParty_Ind:wave.quad:Pos_Emo    
## pParty_Ind:wave.cub:Pos_Emo     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Negative Emotions
PEL.m4 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * (wave.lin + wave.quad + wave.cub) * Neg_Emo + (1 | pid),
              data = d)
summary(PEL.m4)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_Rep + pParty_Ind) * (wave.lin + wave.quad +  
##     wave.cub) * Neg_Emo + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22052.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6457 -0.5055  0.0621  0.5514  3.6219 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.7198   0.8484  
##  Residual             0.5240   0.7239  
## Number of obs: 8104, groups:  pid, 2615
## 
## Fixed effects:
##                                Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                     3.65905    0.03641 7267.06976 100.486  < 2e-16
## pDem_Rep                       -0.12435    0.06525 7697.94750  -1.906 0.056733
## pParty_Ind                     -0.58006    0.08526 8071.17448  -6.804 1.09e-11
## wave.lin                        0.28783    0.06647 6138.22914   4.330 1.51e-05
## wave.quad                       0.49952    0.09731 5891.90339   5.133 2.94e-07
## wave.cub                       -0.23930    0.05859 5835.83647  -4.085 4.47e-05
## Neg_Emo                        -0.13546    0.01277 7825.73546 -10.604  < 2e-16
## pDem_Rep:wave.lin               0.46433    0.12097 6093.72699   3.838 0.000125
## pDem_Rep:wave.quad              1.20228    0.17855 5905.67486   6.734 1.81e-11
## pDem_Rep:wave.cub              -0.52388    0.10735 5826.62679  -4.880 1.09e-06
## pParty_Ind:wave.lin             0.18853    0.17078 6193.33192   1.104 0.269647
## pParty_Ind:wave.quad            0.07593    0.24992 5937.51038   0.304 0.761267
## pParty_Ind:wave.cub             0.16292    0.15086 5899.55902   1.080 0.280223
## pDem_Rep:Neg_Emo               -0.08219    0.02388 7618.88927  -3.442 0.000579
## pParty_Ind:Neg_Emo              0.07472    0.03085 7625.47199   2.422 0.015464
## wave.lin:Neg_Emo               -0.02284    0.02602 6232.62464  -0.878 0.380144
## wave.quad:Neg_Emo              -0.06505    0.03893 5964.12781  -1.671 0.094808
## wave.cub:Neg_Emo                0.06421    0.02396 5880.17972   2.680 0.007383
## pDem_Rep:wave.lin:Neg_Emo       0.24737    0.05015 6179.76111   4.933 8.32e-07
## pDem_Rep:wave.quad:Neg_Emo     -0.16478    0.07565 6006.42943  -2.178 0.029426
## pDem_Rep:wave.cub:Neg_Emo       0.05242    0.04628 5888.20237   1.133 0.257327
## pParty_Ind:wave.lin:Neg_Emo    -0.10276    0.06530 6304.78833  -1.574 0.115631
## pParty_Ind:wave.quad:Neg_Emo    0.01487    0.09761 5998.72272   0.152 0.878891
## pParty_Ind:wave.cub:Neg_Emo    -0.04650    0.06021 5926.01730  -0.772 0.440028
##                                 
## (Intercept)                  ***
## pDem_Rep                     .  
## pParty_Ind                   ***
## wave.lin                     ***
## wave.quad                    ***
## wave.cub                     ***
## Neg_Emo                      ***
## pDem_Rep:wave.lin            ***
## pDem_Rep:wave.quad           ***
## pDem_Rep:wave.cub            ***
## pParty_Ind:wave.lin             
## pParty_Ind:wave.quad            
## pParty_Ind:wave.cub             
## pDem_Rep:Neg_Emo             ***
## pParty_Ind:Neg_Emo           *  
## wave.lin:Neg_Emo                
## wave.quad:Neg_Emo            .  
## wave.cub:Neg_Emo             ** 
## pDem_Rep:wave.lin:Neg_Emo    ***
## pDem_Rep:wave.quad:Neg_Emo   *  
## pDem_Rep:wave.cub:Neg_Emo       
## pParty_Ind:wave.lin:Neg_Emo     
## pParty_Ind:wave.quad:Neg_Emo    
## pParty_Ind:wave.cub:Neg_Emo     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Simple-effects models

# Negative Emotions
PEL.m4.d <- lmer(voteconfidence ~ (pDem_R + pDem_I) * (wave.lin + wave.quad + wave.cub) * Neg_Emo + (1 | pid),
              data = d)
summary(PEL.m4.d)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_R + pDem_I) * (wave.lin + wave.quad +  
##     wave.cub) * Neg_Emo + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22052.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6457 -0.5055  0.0621  0.5514  3.6219 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.7198   0.8484  
##  Residual             0.5240   0.7239  
## Number of obs: 8104, groups:  pid, 2615
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               3.915e+00  4.903e-02  7.658e+03  79.843  < 2e-16 ***
## pDem_R                   -1.244e-01  6.525e-02  7.698e+03  -1.906 0.056733 .  
## pDem_I                   -6.422e-01  9.245e-02  8.080e+03  -6.947 4.03e-12 ***
## wave.lin                 -7.181e-03  8.874e-02  6.045e+03  -0.081 0.935501    
## wave.quad                -1.269e-01  1.318e-01  5.861e+03  -0.963 0.335606    
## wave.cub                 -3.166e-02  8.014e-02  5.806e+03  -0.395 0.692786    
## Neg_Emo                  -1.193e-01  1.384e-02  8.012e+03  -8.617  < 2e-16 ***
## pDem_R:wave.lin           4.643e-01  1.210e-01  6.094e+03   3.838 0.000125 ***
## pDem_R:wave.quad          1.202e+00  1.786e-01  5.906e+03   6.734 1.81e-11 ***
## pDem_R:wave.cub          -5.239e-01  1.073e-01  5.827e+03  -4.880 1.09e-06 ***
## pDem_I:wave.lin           4.207e-01  1.827e-01  6.168e+03   2.303 0.021338 *  
## pDem_I:wave.quad          6.771e-01  2.682e-01  5.925e+03   2.525 0.011605 *  
## pDem_I:wave.cub          -9.902e-02  1.623e-01  5.891e+03  -0.610 0.541934    
## pDem_R:Neg_Emo           -8.219e-02  2.388e-02  7.619e+03  -3.442 0.000579 ***
## pDem_I:Neg_Emo            3.362e-02  3.155e-02  7.698e+03   1.066 0.286580    
## wave.lin:Neg_Emo         -1.123e-01  2.730e-02  6.153e+03  -4.112 3.97e-05 ***
## wave.quad:Neg_Emo         1.238e-02  4.010e-02  5.949e+03   0.309 0.757524    
## wave.cub:Neg_Emo          5.349e-02  2.404e-02  5.900e+03   2.225 0.026111 *  
## pDem_R:wave.lin:Neg_Emo   2.474e-01  5.015e-02  6.180e+03   4.933 8.32e-07 ***
## pDem_R:wave.quad:Neg_Emo -1.648e-01  7.565e-02  6.006e+03  -2.178 0.029426 *  
## pDem_R:wave.cub:Neg_Emo   5.242e-02  4.627e-02  5.888e+03   1.133 0.257327    
## pDem_I:wave.lin:Neg_Emo   2.092e-02  6.621e-02  6.297e+03   0.316 0.752008    
## pDem_I:wave.quad:Neg_Emo -6.751e-02  9.859e-02  5.995e+03  -0.685 0.493504    
## pDem_I:wave.cub:Neg_Emo  -2.029e-02  6.056e-02  5.929e+03  -0.335 0.737675    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
PEL.m4.d.w1 <- lmer(voteconfidence ~ (pDem_R + pDem_I) * (wave1_2 + wave1_3 + wave1_4) * Neg_Emo + (1 | pid),
              data = d)
summary(PEL.m4.d.w1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_R + pDem_I) * (wave1_2 + wave1_3 + wave1_4) *  
##     Neg_Emo + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22058.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6457 -0.5055  0.0621  0.5514  3.6219 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.7198   0.8484  
##  Residual             0.5240   0.7239  
## Number of obs: 8104, groups:  pid, 2615
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             3.942e+00  5.921e-02  8.071e+03  66.573  < 2e-16 ***
## pDem_R                 -7.881e-01  8.717e-02  7.980e+03  -9.040  < 2e-16 ***
## pDem_I                 -1.047e+00  1.237e-01  7.832e+03  -8.463  < 2e-16 ***
## wave1_2                -4.151e-02  7.863e-02  6.124e+03  -0.528 0.597549    
## wave1_3                -7.677e-02  8.301e-02  6.058e+03  -0.925 0.355106    
## wave1_4                 8.651e-03  1.013e-01  6.056e+03   0.085 0.931942    
## Neg_Emo                -5.286e-02  2.234e-02  7.465e+03  -2.366 0.017996 *  
## pDem_R:wave1_2          1.110e+00  1.106e-01  6.184e+03  10.038  < 2e-16 ***
## pDem_R:wave1_3          8.184e-01  1.166e-01  6.114e+03   7.019 2.48e-12 ***
## pDem_R:wave1_4          7.263e-01  1.386e-01  6.111e+03   5.239 1.67e-07 ***
## pDem_I:wave1_2          5.180e-01  1.611e-01  6.277e+03   3.215 0.001312 ** 
## pDem_I:wave1_3          6.293e-01  1.744e-01  6.234e+03   3.608 0.000311 ***
## pDem_I:wave1_4          4.702e-01  2.098e-01  6.184e+03   2.241 0.025079 *  
## pDem_R:Neg_Emo         -1.516e-01  3.269e-02  7.225e+03  -4.637 3.60e-06 ***
## pDem_I:Neg_Emo          3.497e-02  4.858e-02  7.408e+03   0.720 0.471680    
## wave1_2:Neg_Emo        -6.200e-02  2.666e-02  6.287e+03  -2.326 0.020060 *  
## wave1_3:Neg_Emo        -6.464e-02  2.817e-02  6.159e+03  -2.295 0.021784 *  
## wave1_4:Neg_Emo        -1.390e-01  3.148e-02  6.201e+03  -4.416 1.02e-05 ***
## pDem_R:wave1_2:Neg_Emo -5.986e-02  4.662e-02  6.322e+03  -1.284 0.199154    
## pDem_R:wave1_3:Neg_Emo  1.162e-01  4.972e-02  6.217e+03   2.338 0.019406 *  
## pDem_R:wave1_4:Neg_Emo  2.212e-01  5.673e-02  6.203e+03   3.898 9.79e-05 ***
## pDem_I:wave1_2:Neg_Emo -1.331e-02  6.282e-02  6.374e+03  -0.212 0.832196    
## pDem_I:wave1_3:Neg_Emo -2.314e-02  6.900e-02  6.324e+03  -0.335 0.737395    
## pDem_I:wave1_4:Neg_Emo  3.107e-02  7.531e-02  6.323e+03   0.412 0.679996    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
PEL.m4.d.w4 <- lmer(voteconfidence ~ (pDem_R + pDem_I) * (wave4_3 + wave4_2 + wave4_1) * Neg_Emo + (1 | pid),
              data = d)
summary(PEL.m4.d.w4)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_R + pDem_I) * (wave4_3 + wave4_2 + wave4_1) *  
##     Neg_Emo + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22058.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6457 -0.5055  0.0621  0.5514  3.6219 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.7198   0.8484  
##  Residual             0.5240   0.7239  
## Number of obs: 8104, groups:  pid, 2615
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             3.951e+00  9.452e-02  7.073e+03  41.799  < 2e-16 ***
## pDem_R                 -6.179e-02  1.239e-01  7.077e+03  -0.499  0.61800    
## pDem_I                 -5.764e-01  1.874e-01  6.668e+03  -3.076  0.00210 ** 
## wave4_3                -8.542e-02  1.063e-01  5.741e+03  -0.804  0.42169    
## wave4_2                -5.016e-02  1.043e-01  5.837e+03  -0.481  0.63048    
## wave4_1                -8.651e-03  1.013e-01  6.056e+03  -0.085  0.93194    
## Neg_Emo                -1.919e-01  2.540e-02  6.536e+03  -7.553 4.83e-14 ***
## pDem_R:wave4_3          9.215e-02  1.406e-01  5.754e+03   0.655  0.51238    
## pDem_R:wave4_2          3.839e-01  1.377e-01  5.857e+03   2.787  0.00533 ** 
## pDem_R:wave4_1         -7.263e-01  1.386e-01  6.111e+03  -5.239 1.67e-07 ***
## pDem_I:wave4_3          1.591e-01  2.165e-01  5.787e+03   0.735  0.46245    
## pDem_I:wave4_2          4.777e-02  2.082e-01  5.855e+03   0.229  0.81853    
## pDem_I:wave4_1         -4.702e-01  2.098e-01  6.184e+03  -2.241  0.02508 *  
## pDem_R:Neg_Emo          6.958e-02  4.898e-02  6.300e+03   1.421  0.15546    
## pDem_I:Neg_Emo          6.603e-02  6.175e-02  6.328e+03   1.069  0.28494    
## wave4_3:Neg_Emo         7.438e-02  3.021e-02  5.758e+03   2.462  0.01384 *  
## wave4_2:Neg_Emo         7.702e-02  2.908e-02  5.857e+03   2.648  0.00811 ** 
## wave4_1:Neg_Emo         1.390e-01  3.148e-02  6.201e+03   4.416 1.02e-05 ***
## pDem_R:wave4_3:Neg_Emo -1.049e-01  5.948e-02  5.803e+03  -1.764  0.07780 .  
## pDem_R:wave4_2:Neg_Emo -2.810e-01  5.797e-02  5.929e+03  -4.848 1.28e-06 ***
## pDem_R:wave4_1:Neg_Emo -2.212e-01  5.673e-02  6.203e+03  -3.898 9.79e-05 ***
## pDem_I:wave4_3:Neg_Emo -5.420e-02  7.659e-02  5.798e+03  -0.708  0.47917    
## pDem_I:wave4_2:Neg_Emo -4.438e-02  7.219e-02  5.889e+03  -0.615  0.53876    
## pDem_I:wave4_1:Neg_Emo -3.107e-02  7.531e-02  6.323e+03  -0.412  0.68000    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
PEL.m4.r <- lmer(voteconfidence ~ (pRep_D + pRep_I) * (wave.lin + wave.quad + wave.cub) * Neg_Emo + (1 | pid),
              data = d)
summary(PEL.m4.r)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pRep_D + pRep_I) * (wave.lin + wave.quad +  
##     wave.cub) * Neg_Emo + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22052.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6457 -0.5055  0.0621  0.5514  3.6219 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.7198   0.8484  
##  Residual             0.5240   0.7239  
## Number of obs: 8104, groups:  pid, 2615
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                 3.79023    0.04424 7071.52188  85.670  < 2e-16 ***
## pRep_D                      0.12435    0.06525 7697.94749   1.906 0.056733 .  
## pRep_I                     -0.51788    0.09011 8079.91473  -5.747 9.39e-09 ***
## wave.lin                    0.45715    0.08195 6137.86171   5.578 2.54e-08 ***
## wave.quad                   1.07535    0.12036 5954.87066   8.934  < 2e-16 ***
## wave.cub                   -0.55555    0.07137 5850.27620  -7.784 8.24e-15 ***
## Neg_Emo                    -0.20146    0.01964 7409.98442 -10.256  < 2e-16 ***
## pRep_D:wave.lin            -0.46433    0.12097 6093.72699  -3.838 0.000125 ***
## pRep_D:wave.quad           -1.20228    0.17855 5905.67485  -6.734 1.81e-11 ***
## pRep_D:wave.cub             0.52388    0.10735 5826.62679   4.880 1.09e-06 ***
## pRep_I:wave.lin            -0.04363    0.17962 6197.12815  -0.243 0.808082    
## pRep_I:wave.quad           -0.52521    0.26257 5943.17516  -2.000 0.045518 *  
## pRep_I:wave.cub             0.42486    0.15787 5891.72439   2.691 0.007140 ** 
## pRep_D:Neg_Emo              0.08219    0.02388 7618.88928   3.442 0.000579 ***
## pRep_I:Neg_Emo              0.11581    0.03454 7559.10432   3.353 0.000805 ***
## wave.lin:Neg_Emo            0.13510    0.04193 6173.39924   3.222 0.001279 ** 
## wave.quad:Neg_Emo          -0.15239    0.06406 6017.64788  -2.379 0.017387 *  
## wave.cub:Neg_Emo            0.10592    0.03952 5879.16837   2.680 0.007381 ** 
## pRep_D:wave.lin:Neg_Emo    -0.24737    0.05015 6179.76111  -4.933 8.32e-07 ***
## pRep_D:wave.quad:Neg_Emo    0.16478    0.07565 6006.42943   2.178 0.029426 *  
## pRep_D:wave.cub:Neg_Emo    -0.05242    0.04628 5888.20237  -1.133 0.257327    
## pRep_I:wave.lin:Neg_Emo    -0.22645    0.07350 6281.96299  -3.081 0.002073 ** 
## pRep_I:wave.quad:Neg_Emo    0.09726    0.11044 6003.29446   0.881 0.378514    
## pRep_I:wave.cub:Neg_Emo    -0.07271    0.06822 5915.06001  -1.066 0.286573    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
PEL.m4.r.w1 <- lmer(voteconfidence ~ (pRep_D + pRep_I) * (wave1_2 + wave1_3 + wave1_4) * Neg_Emo + (1 | pid),
              data = d)
summary(PEL.m4.r.w1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pRep_D + pRep_I) * (wave1_2 + wave1_3 + wave1_4) *  
##     Neg_Emo + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22058.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6457 -0.5055  0.0621  0.5514  3.6219 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.7198   0.8484  
##  Residual             0.5240   0.7239  
## Number of obs: 8104, groups:  pid, 2615
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               3.15393    0.06462 8005.94244  48.807  < 2e-16 ***
## pRep_D                    0.78806    0.08717 7980.27844   9.040  < 2e-16 ***
## pRep_I                   -0.25855    0.12612 7761.95301  -2.050 0.040392 *  
## wave1_2                   1.06862    0.07759 6234.71607  13.773  < 2e-16 ***
## wave1_3                   0.74165    0.08167 6159.61109   9.081  < 2e-16 ***
## wave1_4                   0.73492    0.09440 6164.15780   7.785 8.13e-15 ***
## Neg_Emo                  -0.20443    0.02393 7035.35153  -8.544  < 2e-16 ***
## pRep_D:wave1_2           -1.11014    0.11059 6183.81092 -10.038  < 2e-16 ***
## pRep_D:wave1_3           -0.81842    0.11661 6114.05298  -7.019 2.48e-12 ***
## pRep_D:wave1_4           -0.72627    0.13864 6111.33580  -5.239 1.67e-07 ***
## pRep_I:wave1_2           -0.59216    0.16039 6293.48993  -3.692 0.000224 ***
## pRep_I:wave1_3           -0.18911    0.17384 6262.39606  -1.088 0.276711    
## pRep_I:wave1_4           -0.25606    0.20661 6211.64686  -1.239 0.215270    
## pRep_D:Neg_Emo            0.15158    0.03269 7225.44007   4.637 3.60e-06 ***
## pRep_I:Neg_Emo            0.18654    0.04941 7341.68102   3.775 0.000161 ***
## wave1_2:Neg_Emo          -0.12186    0.03811 6313.69646  -3.197 0.001395 ** 
## wave1_3:Neg_Emo           0.05161    0.04083 6222.88375   1.264 0.206247    
## wave1_4:Neg_Emo           0.08214    0.04704 6185.04135   1.746 0.080842 .  
## pRep_D:wave1_2:Neg_Emo    0.05986    0.04662 6322.27929   1.284 0.199154    
## pRep_D:wave1_3:Neg_Emo   -0.11624    0.04971 6217.39202  -2.338 0.019406 *  
## pRep_D:wave1_4:Neg_Emo   -0.22116    0.05673 6203.45904  -3.898 9.79e-05 ***
## pRep_I:wave1_2:Neg_Emo    0.04655    0.06839 6360.01762   0.681 0.496112    
## pRep_I:wave1_3:Neg_Emo   -0.13938    0.07514 6324.75585  -1.855 0.063641 .  
## pRep_I:wave1_4:Neg_Emo   -0.19009    0.08303 6296.21573  -2.290 0.022079 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
PEL.m4.r.w4 <- lmer(voteconfidence ~ (pRep_D + pRep_I) * (wave4_3 + wave4_2 + wave4_1) * Neg_Emo + (1 | pid),
              data = d)
summary(PEL.m4.r.w4)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pRep_D + pRep_I) * (wave4_3 + wave4_2 + wave4_1) *  
##     Neg_Emo + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22058.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6457 -0.5055  0.0621  0.5514  3.6219 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.7198   0.8484  
##  Residual             0.5240   0.7239  
## Number of obs: 8104, groups:  pid, 2615
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             3.889e+00  8.073e-02  7.357e+03  48.171  < 2e-16 ***
## pRep_D                  6.179e-02  1.239e-01  7.077e+03   0.499 0.617998    
## pRep_I                 -5.146e-01  1.808e-01  6.676e+03  -2.847 0.004428 ** 
## wave4_3                 6.729e-03  9.211e-02  5.772e+03   0.073 0.941764    
## wave4_2                 3.337e-01  8.986e-02  5.877e+03   3.714 0.000206 ***
## wave4_1                -7.349e-01  9.440e-02  6.164e+03  -7.785 8.13e-15 ***
## Neg_Emo                -1.223e-01  4.195e-02  6.248e+03  -2.915 0.003567 ** 
## pRep_D:wave4_3         -9.215e-02  1.406e-01  5.754e+03  -0.655 0.512383    
## pRep_D:wave4_2         -3.839e-01  1.377e-01  5.857e+03  -2.787 0.005334 ** 
## pRep_D:wave4_1          7.263e-01  1.386e-01  6.111e+03   5.239 1.67e-07 ***
## pRep_I:wave4_3          6.695e-02  2.097e-01  5.790e+03   0.319 0.749515    
## pRep_I:wave4_2         -3.361e-01  2.013e-01  5.862e+03  -1.670 0.095020 .  
## pRep_I:wave4_1          2.561e-01  2.066e-01  6.212e+03   1.239 0.215270    
## pRep_D:Neg_Emo         -6.958e-02  4.898e-02  6.300e+03  -1.421 0.155457    
## pRep_I:Neg_Emo         -3.549e-03  7.023e-02  6.279e+03  -0.051 0.959702    
## wave4_3:Neg_Emo        -3.054e-02  5.123e-02  5.817e+03  -0.596 0.551133    
## wave4_2:Neg_Emo        -2.040e-01  5.009e-02  5.948e+03  -4.072 4.71e-05 ***
## wave4_1:Neg_Emo        -8.214e-02  4.704e-02  6.185e+03  -1.746 0.080842 .  
## pRep_D:wave4_3:Neg_Emo  1.049e-01  5.948e-02  5.803e+03   1.764 0.077796 .  
## pRep_D:wave4_2:Neg_Emo  2.810e-01  5.797e-02  5.929e+03   4.848 1.28e-06 ***
## pRep_D:wave4_1:Neg_Emo  2.212e-01  5.673e-02  6.203e+03   3.898 9.79e-05 ***
## pRep_I:wave4_3:Neg_Emo  5.071e-02  8.705e-02  5.808e+03   0.583 0.560213    
## pRep_I:wave4_2:Neg_Emo  2.366e-01  8.287e-02  5.911e+03   2.856 0.004309 ** 
## pRep_I:wave4_1:Neg_Emo  1.901e-01  8.303e-02  6.296e+03   2.290 0.022079 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4. Expanded Model: Emotions & Trust in Gov’t

# fit model with 3-way-interaction
d$party_factor <- as.factor(as.character(d$party_factor))
PEL.m7 <- lmer(voteconfidence ~ trustGovt * Neg_Emo * wave * party_factor + (1|pid), data = d)

# select only mean, +1 SD, -1 SD for negative emotions
sjPlot::plot_model(PEL.m7, type = "eff", terms = c("trustGovt", "Neg_Emo [1.07,2.39,3.71]", "wave")) +
  labs(x = "Trust in Federal Government",
       y = "Perceived Election Legitimacy",
       color = "Negative Emotions",
       title = NULL) +
  theme_bw()

# select only mean, +1 SD, -1 SD for negative emotions
sjPlot::plot_model(PEL.m7, type = "eff", terms = c("trustGovt", "Neg_Emo [1.07,2.39,3.71]", "party_factor")) +
  labs(x = "Trust in Federal Government",
       y = "Perceived Election Legitimacy",
       color = "Negative Emotions",
       title = NULL) +
  theme_bw()

wave_party_labels = c("Democrat" = "Democrat",
                      "Independent" = "Independent",
                      "Republican" = "Republican",
                      `1` = "Wave 1",
                      `2` = "Wave 2",
                      `3` = "Wave 3",
                      `4` = "Wave 4")
# Slice z into categories
d <- d %>%
  mutate(negemo_group = cut(Neg_Emo, breaks = quantile(Neg_Emo, probs = c(0, 0.33, 0.66, 1), na.rm = TRUE),
                       include.lowest = TRUE, labels = c("Low", "Medium", "High")))

d$negemo_bins <- NA
d$negemo_bins[d$Neg_Emo <= (mean(d$Neg_Emo, na.rm = T) - sd(d$Neg_Emo, na.rm = T))] <- "Low Negative Emotions"
d$negemo_bins[d$Neg_Emo> (mean(d$Neg_Emo, na.rm = T) - sd(d$Neg_Emo, na.rm = T)) & d$Neg_Emo < (mean(d$Neg_Emo, na.rm = T) + sd(d$Neg_Emo, na.rm = T))] <- "Mean Negative Emotions"
d$negemo_bins[d$Neg_Emo >= (mean(d$Neg_Emo, na.rm = T) + sd(d$Neg_Emo, na.rm = T))] <- "High Negative Emotions"

d$negemo_bins <- factor(d$negemo_bins,
                        levels = c("Low Negative Emotions",
                                   "Mean Negative Emotions",
                                   "High Negative Emotions"))

d$posemo_bins <- NA
d$posemo_bins[d$Pos_Emo <= (mean(d$Pos_Emo, na.rm = T) - sd(d$Pos_Emo, na.rm = T))] <- "Low Positive Emotions"
d$posemo_bins[d$Pos_Emo> (mean(d$Pos_Emo, na.rm = T) - sd(d$Pos_Emo, na.rm = T)) & d$Pos_Emo < (mean(d$Pos_Emo, na.rm = T) + sd(d$Pos_Emo, na.rm = T))] <- "Mean Positive Emotions"
d$posemo_bins[d$Pos_Emo >= (mean(d$Pos_Emo, na.rm = T) + sd(d$Pos_Emo, na.rm = T))] <- "High Positive Emotions"

d$posemo_bins <- factor(d$posemo_bins,
                        levels = c("Low Positive Emotions",
                                   "Mean Positive Emotions",
                                   "High Positive Emotions"))

#paletteer::paletteer_d("lisa::OskarSchlemmer")
#paletteer::paletteer_d("rcartocolor::Temps")
#paletteer::paletteer_d("khroma::BuRd")

ggplot(d[!is.na(d$party_factor),], aes(x = trustGovt, y = voteconfidence, color = negemo_group)) +
  geom_jitter(height = .3, width = .3, alpha = 0.3, size = .2) +
  geom_smooth(method = "lm", se = FALSE, size = .5, fullrange = T) +
  labs(x = "Trust in Federal Government",
       y = "Perceived Election Legitimacy",
       title = "Perceived Election Legitimacy: Raw Data") +
  scale_color_manual("Negative 
Emotion", values = c("#009392FF","#E9E29CFF","#B2182BFF")) +
  facet_grid(wave ~ party_factor, labeller = as_labeller(wave_party_labels)) +
  theme_minimal()

library(ggeffects)
PEL.plot <- predict_response(PEL.m7, terms = c("trustGovt", "Neg_Emo", "party_factor", "wave"))


plot(PEL.plot) + 
  labs(x = "Trust in Federal Government",
       y = "Perceived Election Legitimacy",
       color = "Negative 
Emotions",
       title = "Perceived Election Legitimacy: Model Predicted Relationships") +
  theme_bw()

Models

PEL.m5 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * (wave.lin + wave.quad + wave.cub) * (Pos_Emo + Neg_Emo) * trustGovt + (1 | pid),
              data = d)
summary(PEL.m5)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_Rep + pParty_Ind) * (wave.lin + wave.quad +  
##     wave.cub) * (Pos_Emo + Neg_Emo) * trustGovt + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 21190.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7264 -0.4995  0.0414  0.5455  4.2060 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.6146   0.7840  
##  Residual             0.4854   0.6967  
## Number of obs: 8000, groups:  pid, 2601
## 
## Fixed effects:
##                                          Estimate Std. Error         df t value
## (Intercept)                             3.271e+00  7.116e-02  7.824e+03  45.966
## pDem_Rep                               -3.731e-01  1.129e-01  7.887e+03  -3.305
## pParty_Ind                             -1.138e-01  1.836e-01  7.422e+03  -0.620
## wave.lin                                5.885e-01  1.626e-01  6.220e+03   3.619
## wave.quad                              -6.129e-02  2.345e-01  5.947e+03  -0.261
## wave.cub                                1.023e-02  1.380e-01  5.950e+03   0.074
## Pos_Emo                                 1.370e-01  1.708e-02  7.414e+03   8.022
## Neg_Emo                                -6.382e-02  1.839e-02  7.626e+03  -3.470
## trustGovt                               2.664e-01  4.880e-02  7.301e+03   5.458
## pDem_Rep:wave.lin                       9.292e-02  2.374e-01  6.124e+03   0.391
## pDem_Rep:wave.quad                      2.268e-01  3.505e-01  5.870e+03   0.647
## pDem_Rep:wave.cub                      -4.858e-01  2.107e-01  5.793e+03  -2.306
## pParty_Ind:wave.lin                     3.187e-01  4.432e-01  6.258e+03   0.719
## pParty_Ind:wave.quad                   -4.529e-01  6.376e-01  5.995e+03  -0.710
## pParty_Ind:wave.cub                     1.567e-01  3.735e-01  6.016e+03   0.420
## pDem_Rep:Pos_Emo                        5.288e-02  2.477e-02  7.484e+03   2.135
## pDem_Rep:Neg_Emo                       -2.159e-02  2.817e-02  7.680e+03  -0.767
## pParty_Ind:Pos_Emo                     -3.176e-02  4.545e-02  7.174e+03  -0.699
## pParty_Ind:Neg_Emo                     -3.347e-02  4.835e-02  7.431e+03  -0.692
## wave.lin:Pos_Emo                       -4.679e-02  3.975e-02  6.066e+03  -1.177
## wave.lin:Neg_Emo                       -8.999e-02  4.133e-02  6.298e+03  -2.177
## wave.quad:Pos_Emo                       1.779e-01  5.739e-02  5.927e+03   3.099
## wave.quad:Neg_Emo                      -1.055e-01  5.979e-02  5.888e+03  -1.764
## wave.cub:Pos_Emo                       -2.892e-02  3.353e-02  5.960e+03  -0.863
## wave.cub:Neg_Emo                        1.306e-02  3.615e-02  5.901e+03   0.361
## pDem_Rep:trustGovt                     -1.506e-02  8.289e-02  7.340e+03  -0.182
## pParty_Ind:trustGovt                    2.515e-01  1.256e-01  7.145e+03   2.003
## wave.lin:trustGovt                      3.253e-02  1.186e-01  6.510e+03   0.274
## wave.quad:trustGovt                    -1.195e-01  1.682e-01  5.925e+03  -0.710
## wave.cub:trustGovt                      8.201e-02  1.006e-01  5.916e+03   0.815
## Pos_Emo:trustGovt                      -1.170e-02  1.181e-02  7.096e+03  -0.990
## Neg_Emo:trustGovt                      -5.790e-03  1.219e-02  7.323e+03  -0.475
## pDem_Rep:wave.lin:Pos_Emo               8.835e-02  5.445e-02  6.173e+03   1.623
## pDem_Rep:wave.lin:Neg_Emo               9.262e-02  6.117e-02  6.137e+03   1.514
## pDem_Rep:wave.quad:Pos_Emo              1.736e-01  8.105e-02  5.935e+03   2.142
## pDem_Rep:wave.quad:Neg_Emo             -1.237e-01  8.918e-02  5.878e+03  -1.387
## pDem_Rep:wave.cub:Pos_Emo               5.261e-02  4.892e-02  5.846e+03   1.075
## pDem_Rep:wave.cub:Neg_Emo               5.405e-02  5.266e-02  5.767e+03   1.026
## pParty_Ind:wave.lin:Pos_Emo             1.421e-01  1.097e-01  6.063e+03   1.295
## pParty_Ind:wave.lin:Neg_Emo            -2.704e-01  1.126e-01  6.366e+03  -2.401
## pParty_Ind:wave.quad:Pos_Emo            2.475e-01  1.583e-01  5.967e+03   1.564
## pParty_Ind:wave.quad:Neg_Emo           -2.814e-02  1.623e-01  5.901e+03  -0.173
## pParty_Ind:wave.cub:Pos_Emo             2.532e-02  9.158e-02  6.009e+03   0.276
## pParty_Ind:wave.cub:Neg_Emo            -6.311e-02  9.887e-02  5.959e+03  -0.638
## pDem_Rep:wave.lin:trustGovt             5.801e-02  1.844e-01  6.175e+03   0.315
## pDem_Rep:wave.quad:trustGovt           -2.886e-01  2.780e-01  5.933e+03  -1.038
## pDem_Rep:wave.cub:trustGovt             8.723e-02  1.705e-01  5.842e+03   0.512
## pParty_Ind:wave.lin:trustGovt           9.670e-01  3.165e-01  6.564e+03   3.055
## pParty_Ind:wave.quad:trustGovt         -2.742e-01  4.461e-01  5.955e+03  -0.615
## pParty_Ind:wave.cub:trustGovt           4.416e-02  2.655e-01  5.992e+03   0.166
## pDem_Rep:Pos_Emo:trustGovt              7.290e-03  1.811e-02  7.179e+03   0.402
## pDem_Rep:Neg_Emo:trustGovt              2.274e-02  2.042e-02  7.334e+03   1.114
## pParty_Ind:Pos_Emo:trustGovt           -2.471e-02  3.150e-02  6.991e+03  -0.785
## pParty_Ind:Neg_Emo:trustGovt           -7.836e-02  3.149e-02  7.205e+03  -2.489
## wave.lin:Pos_Emo:trustGovt             -1.763e-02  2.910e-02  6.304e+03  -0.606
## wave.lin:Neg_Emo:trustGovt             -5.105e-02  2.877e-02  6.500e+03  -1.775
## wave.quad:Pos_Emo:trustGovt             1.654e-03  4.138e-02  5.922e+03   0.040
## wave.quad:Neg_Emo:trustGovt            -3.954e-02  4.138e-02  5.896e+03  -0.956
## wave.cub:Pos_Emo:trustGovt              3.488e-02  2.433e-02  5.949e+03   1.434
## wave.cub:Neg_Emo:trustGovt             -3.801e-02  2.517e-02  5.865e+03  -1.510
## pDem_Rep:wave.lin:Pos_Emo:trustGovt    -5.123e-02  4.089e-02  6.220e+03  -1.253
## pDem_Rep:wave.lin:Neg_Emo:trustGovt    -1.003e-01  4.679e-02  6.166e+03  -2.143
## pDem_Rep:wave.quad:Pos_Emo:trustGovt    1.551e-03  6.216e-02  5.985e+03   0.025
## pDem_Rep:wave.quad:Neg_Emo:trustGovt    2.105e-02  6.911e-02  5.960e+03   0.305
## pDem_Rep:wave.cub:Pos_Emo:trustGovt     3.476e-05  3.847e-02  5.900e+03   0.001
## pDem_Rep:wave.cub:Neg_Emo:trustGovt    -2.730e-02  4.101e-02  5.820e+03  -0.666
## pParty_Ind:wave.lin:Pos_Emo:trustGovt  -2.237e-01  7.969e-02  6.317e+03  -2.807
## pParty_Ind:wave.lin:Neg_Emo:trustGovt  -1.892e-01  7.616e-02  6.583e+03  -2.484
## pParty_Ind:wave.quad:Pos_Emo:trustGovt  4.627e-02  1.122e-01  5.929e+03   0.412
## pParty_Ind:wave.quad:Neg_Emo:trustGovt -2.161e-02  1.092e-01  5.903e+03  -0.198
## pParty_Ind:wave.cub:Pos_Emo:trustGovt   3.292e-02  6.531e-02  6.002e+03   0.504
## pParty_Ind:wave.cub:Neg_Emo:trustGovt  -1.037e-02  6.710e-02  5.921e+03  -0.155
##                                        Pr(>|t|)    
## (Intercept)                             < 2e-16 ***
## pDem_Rep                               0.000953 ***
## pParty_Ind                             0.535430    
## wave.lin                               0.000298 ***
## wave.quad                              0.793804    
## wave.cub                               0.940942    
## Pos_Emo                                1.20e-15 ***
## Neg_Emo                                0.000523 ***
## trustGovt                              4.97e-08 ***
## pDem_Rep:wave.lin                      0.695532    
## pDem_Rep:wave.quad                     0.517676    
## pDem_Rep:wave.cub                      0.021162 *  
## pParty_Ind:wave.lin                    0.472156    
## pParty_Ind:wave.quad                   0.477555    
## pParty_Ind:wave.cub                    0.674790    
## pDem_Rep:Pos_Emo                       0.032803 *  
## pDem_Rep:Neg_Emo                       0.443350    
## pParty_Ind:Pos_Emo                     0.484722    
## pParty_Ind:Neg_Emo                     0.488737    
## wave.lin:Pos_Emo                       0.239208    
## wave.lin:Neg_Emo                       0.029498 *  
## wave.quad:Pos_Emo                      0.001948 ** 
## wave.quad:Neg_Emo                      0.077856 .  
## wave.cub:Pos_Emo                       0.388361    
## wave.cub:Neg_Emo                       0.717907    
## pDem_Rep:trustGovt                     0.855860    
## pParty_Ind:trustGovt                   0.045245 *  
## wave.lin:trustGovt                     0.783768    
## wave.quad:trustGovt                    0.477552    
## wave.cub:trustGovt                     0.415166    
## Pos_Emo:trustGovt                      0.322017    
## Neg_Emo:trustGovt                      0.634697    
## pDem_Rep:wave.lin:Pos_Emo              0.104734    
## pDem_Rep:wave.lin:Neg_Emo              0.130030    
## pDem_Rep:wave.quad:Pos_Emo             0.032253 *  
## pDem_Rep:wave.quad:Neg_Emo             0.165425    
## pDem_Rep:wave.cub:Pos_Emo              0.282250    
## pDem_Rep:wave.cub:Neg_Emo              0.304822    
## pParty_Ind:wave.lin:Pos_Emo            0.195413    
## pParty_Ind:wave.lin:Neg_Emo            0.016388 *  
## pParty_Ind:wave.quad:Pos_Emo           0.117846    
## pParty_Ind:wave.quad:Neg_Emo           0.862343    
## pParty_Ind:wave.cub:Pos_Emo            0.782225    
## pParty_Ind:wave.cub:Neg_Emo            0.523298    
## pDem_Rep:wave.lin:trustGovt            0.753060    
## pDem_Rep:wave.quad:trustGovt           0.299152    
## pDem_Rep:wave.cub:trustGovt            0.608922    
## pParty_Ind:wave.lin:trustGovt          0.002261 ** 
## pParty_Ind:wave.quad:trustGovt         0.538803    
## pParty_Ind:wave.cub:trustGovt          0.867904    
## pDem_Rep:Pos_Emo:trustGovt             0.687341    
## pDem_Rep:Neg_Emo:trustGovt             0.265466    
## pParty_Ind:Pos_Emo:trustGovt           0.432725    
## pParty_Ind:Neg_Emo:trustGovt           0.012834 *  
## wave.lin:Pos_Emo:trustGovt             0.544660    
## wave.lin:Neg_Emo:trustGovt             0.075991 .  
## wave.quad:Pos_Emo:trustGovt            0.968120    
## wave.quad:Neg_Emo:trustGovt            0.339318    
## wave.cub:Pos_Emo:trustGovt             0.151728    
## wave.cub:Neg_Emo:trustGovt             0.131022    
## pDem_Rep:wave.lin:Pos_Emo:trustGovt    0.210288    
## pDem_Rep:wave.lin:Neg_Emo:trustGovt    0.032165 *  
## pDem_Rep:wave.quad:Pos_Emo:trustGovt   0.980093    
## pDem_Rep:wave.quad:Neg_Emo:trustGovt   0.760651    
## pDem_Rep:wave.cub:Pos_Emo:trustGovt    0.999279    
## pDem_Rep:wave.cub:Neg_Emo:trustGovt    0.505691    
## pParty_Ind:wave.lin:Pos_Emo:trustGovt  0.005009 ** 
## pParty_Ind:wave.lin:Neg_Emo:trustGovt  0.013028 *  
## pParty_Ind:wave.quad:Pos_Emo:trustGovt 0.680071    
## pParty_Ind:wave.quad:Neg_Emo:trustGovt 0.843149    
## pParty_Ind:wave.cub:Pos_Emo:trustGovt  0.614255    
## pParty_Ind:wave.cub:Neg_Emo:trustGovt  0.877194    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

5. Moderator: Polling Info

d$pollsource <- as.factor(d$pollsource)

d$pollsource <- recode_factor(d$pollsource,
                              `1` = "NYT",
                              `2` = "Fox News",
                              `3` = "538/ABC",
                              `4` = "Silver Bulletin",
                              `5` = "CNN",
                              `6` = "NPR",
                              `7` = "Other") 

d$pollsource_other <- as.factor(as.character(d$pollsource_other))


# Using if_else for a single replacement condition:
d$pollsource_combined <- NA

d <- d %>%
  dplyr::mutate(pollsource_combined = if_else(pollsource == "Other", pollsource_other, pollsource))

table(d$pollsource_combined)
## 
##                   AP   friends and family               Google 
##                   11                   17                   32 
##    Left-wing sources       Major Networks             Multiple 
##                    3                   65                   18 
## newspaper/local news                Other   Right-wing sources 
##                   64                  105                   22 
##         Social Media              YouTube                  NYT 
##                   76                   14                  628 
##             Fox News              538/ABC      Silver Bulletin 
##                 1878                  646                  113 
##                  CNN                  NPR 
##                 1456                  554
d <- d %>%
  group_by(pid) %>%
  fill(pollsource_combined, .direction = "downup") %>%
  ungroup()

addmargins(table(d$pollsource_combined,d$wave, exclude = F))
##                       
##                           1    2    3    4  Sum
##   AP                     11   11   11    7   40
##   friends and family     17   17   14   13   61
##   Google                 32   32   27   17  108
##   Left-wing sources       3    3    3    0    9
##   Major Networks         65   65   61   40  231
##   Multiple               18   18   17   13   66
##   newspaper/local news   64   64   57   43  228
##   Other                 105  105   95   70  375
##   Right-wing sources     22   22   20   13   77
##   Social Media           76   76   63   43  258
##   YouTube                14   14   10    6   44
##   NYT                   185  185  157  101  628
##   Fox News              545  545  485  303 1878
##   538/ABC               186  186  168  106  646
##   Silver Bulletin        35   35   28   15  113
##   CNN                   428  428  363  237 1456
##   NPR                   159  159  141   95  554
##   <NA>                  650  290  245  148 1333
##   Sum                  2615 2255 1965 1270 8105
d$pollTilt <- NA
d$pollTilt[d$pollsource_combined == "Left-wing sources"] <- "Left-wing"
d$pollTilt[d$pollsource_combined == "NYT" | d$pollsource_combined == "NPR" | d$pollsource_combined == "Silver Bulletin"] <- "Skews Left"
d$pollTilt[d$pollsource_combined == "538/ABC" | d$pollsource_combined == "CNN" | d$pollsource_combined == "AP" | d$pollsource_combined == "Major Networks"] <- "Center"
d$pollTilt[d$pollsource_combined == "Fox News" ] <- "Skews Right"
d$pollTilt[d$pollsource_combined == "Right-wing sources" ] <- "Right-wing"
d$pollTilt[d$pollsource_combined == "Other" | d$pollsource_combined == "newspaper/local news" | d$pollsource_combined == "friends and family" | d$pollsource_combined == "Google" | d$pollsource_combined == "YouTube"] <- NA

d$pollTilt <- factor(d$pollTilt, levels = c("Left-wing",
                                            "Skews Left",
                                            "Center",
                                            "Skews Right",
                                            "Right-wing"))

d$pollTilt_3 <- NA
d$pollTilt_3[d$pollTilt == "Skews Left" | d$pollTilt == "Left-wing"] <- "Skews Left" 
d$pollTilt_3[d$pollTilt == "Center"] <- "Center" 
d$pollTilt_3[d$pollTilt == "Skews Right" | d$pollTilt == "Right-wing"] <- "Skews Right" 

d$pollTilt_3 <- factor(d$pollTilt_3, levels = c("Skews Left",
                                            "Center",
                                            "Skews Right"))

table(d$pollTilt_3)
## 
##  Skews Left      Center Skews Right 
##        1304        2373        1955
n_pollTilt_3_party <- d %>%
  filter(!is.na(party_factor) & !is.na(pollTilt_3)) %>%
  group_by(party_factor, pollTilt_3) %>%
  tally()

n_pollTilt_3 <- d %>%
  filter(!is.na(party_factor) & !is.na(pollTilt_3)) %>%
  group_by(pollTilt_3) %>%
  tally()
ggplot(d, aes(x=pollAcc)) +
  geom_density(fill="#69b3a2", color="#e9ecef", alpha=0.9) +
  theme_bw() +
  labs(x = "Poll Accuracy") +
  scale_x_continuous(breaks = seq(-3,3,1))

ggplot(d[!is.na(d$party_factor),], aes(x=pollAcc, fill = party_factor)) +
  geom_density(color="black", alpha=0.5, position = 'identity') +
  theme_bw() +
  scale_fill_manual("Participant Party ID",
                    values = c("#1696d2","grey","#db2b27")) +
  labs(x = "Perceived Poll Accuracy") +
  scale_x_continuous(breaks = seq(-3,3,1))

ggplot(d[!is.na(d$pollTilt),], aes(x=pollAcc, fill = pollTilt_3)) +
  geom_density(color="black", alpha=0.5, position = 'identity') +
  theme_bw() +
  scale_fill_manual("Poll Source Tilt",
                    values = c("#1696d2","grey","#db2b27")) +
  labs(x = "Perceived Poll Accuracy") +
  scale_x_continuous(breaks = seq(-3,3,1))

ggplot(d, aes(x=pollFreq)) +
  geom_density(fill="#69b3a2", color="#e9ecef", alpha=0.9) +
  theme_bw() +
  labs(x = "Poll Frequency") +
  scale_x_continuous(breaks = seq(1,7,1))

ggplot(d[!is.na(d$party_factor),], aes(x=pollFreq, fill = party_factor)) +
  geom_density(color="black", alpha=0.5, position = 'identity') +
  theme_bw() +
  scale_fill_manual("Participant Party ID",
                    values = c("#1696d2","grey","#db2b27")) +
  labs(x = "Poll Frequency") +
  scale_x_continuous(breaks = seq(1,7,1))

ggplot(d[!is.na(d$pollTilt_3),]) +
   geom_smooth(aes(x = pollAcc, 
                   y = voteconfidence),
               color = "#69b3a2",
               method = "lm") +
   facet_wrap(~pollTilt_3) +
   labs(x = "Perceived Poll Accuracy",
        y = "Perceived Election Legitimacy") +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) +
  scale_x_continuous(breaks = seq(-3,3,1))

ggplot(d[!is.na(d$party_factor) & !is.na(d$pollTilt_3) & d$wave == 2,]) +
   geom_smooth(aes(x = pollAcc, 
                   y = voteconfidence, 
                   fill = party_factor,
                   color = party_factor),
               method = "lm") +
  facet_wrap(~pollTilt_3) +
   labs(x = "Perceived Polling Accuracy",
        y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) +
  scale_x_continuous(breaks = seq(-3,3,1))

ggplot(d[!is.na(d$party_factor),]) +
   geom_smooth(aes(x = pollFreq, 
                   y = voteconfidence, 
                   fill = party_factor,
                   color = party_factor),
               method = "lm") +
   labs(x = "Attention to Polling",
        y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) +
  scale_x_continuous(breaks = seq(1,7,1))

Summary

Models

d$poll_LR <- NA
d$poll_LR[d$pollTilt_3 == "Skews Left"] <- -1/2
d$poll_LR[d$pollTilt_3 == "Center"] <- 0
d$poll_LR[d$pollTilt_3 == "Skews Right"] <- 1/2

d$poll_LR_C <- NA
d$poll_LR_C[d$pollTilt_3 == "Skews Left"] <- -1/3
d$poll_LR_C[d$pollTilt_3 == "Center"] <- 2/3
d$poll_LR_C[d$pollTilt_3 == "Skews Right"] <- -1/3

PEL.m6 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * pollFreq * pollAcc + (1|pid), 
               data = d)
summary(PEL.m6)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_Rep + pParty_Ind) * pollFreq * pollAcc +  
##     (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22297.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6487 -0.5118  0.1154  0.5633  3.2757 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.6440   0.8025  
##  Residual             0.6825   0.8261  
## Number of obs: 7740, groups:  pid, 2255
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                  3.564e+00  5.719e-02  3.661e+03  62.312  < 2e-16
## pDem_Rep                    -1.340e-01  8.375e-02  3.284e+03  -1.599   0.1098
## pParty_Ind                  -3.102e-01  1.377e-01  6.754e+03  -2.252   0.0244
## pollFreq                    -4.584e-02  1.085e-02  3.223e+03  -4.226 2.45e-05
## pollAcc                      2.362e-02  2.989e-02  7.663e+03   0.790   0.4294
## pDem_Rep:pollFreq           -2.355e-02  1.790e-02  3.250e+03  -1.315   0.1885
## pParty_Ind:pollFreq         -2.315e-02  2.485e-02  6.483e+03  -0.932   0.3516
## pDem_Rep:pollAcc            -5.448e-02  3.889e-02  7.608e+03  -1.401   0.1613
## pParty_Ind:pollAcc          -2.019e-01  7.954e-02  7.711e+03  -2.538   0.0112
## pollFreq:pollAcc             7.813e-03  5.587e-03  7.600e+03   1.398   0.1621
## pDem_Rep:pollFreq:pollAcc    9.654e-03  8.529e-03  7.523e+03   1.132   0.2577
## pParty_Ind:pollFreq:pollAcc  4.727e-02  1.437e-02  7.725e+03   3.290   0.0010
##                                
## (Intercept)                 ***
## pDem_Rep                       
## pParty_Ind                  *  
## pollFreq                    ***
## pollAcc                        
## pDem_Rep:pollFreq              
## pParty_Ind:pollFreq            
## pDem_Rep:pollAcc               
## pParty_Ind:pollAcc          *  
## pollFreq:pollAcc               
## pDem_Rep:pollFreq:pollAcc      
## pParty_Ind:pollFreq:pollAcc ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pDm_Rp pPrt_I pllFrq pllAcc pDm_R:F pPr_I:F pD_R:A pP_I:A
## pDem_Rep     0.050                                                          
## pParty_Ind   0.646 -0.035                                                   
## pollFreq    -0.913 -0.051 -0.548                                            
## pollAcc      0.125  0.009  0.131 -0.123                                     
## pDm_Rp:pllF -0.045 -0.885  0.029  0.059 -0.011                              
## pPrty_Ind:F -0.575  0.034 -0.927  0.542 -0.124 -0.034                       
## pDm_Rp:pllA -0.005 -0.012 -0.002  0.000  0.029 -0.012   0.004               
## pPrty_Ind:A  0.129  0.009  0.152 -0.117  0.752 -0.006  -0.149  -0.004       
## pllFrq:pllA -0.126 -0.012 -0.120  0.150 -0.909  0.017   0.129  -0.029 -0.651
## pDm_Rp:pF:A -0.001 -0.017  0.003  0.009 -0.025  0.062  -0.009  -0.863  0.004
## pPrty_I:F:A -0.122 -0.005 -0.150  0.127 -0.675 -0.001   0.177   0.006 -0.923
##             pllF:A pD_R:F:
## pDem_Rep                  
## pParty_Ind                
## pollFreq                  
## pollAcc                   
## pDm_Rp:pllF               
## pPrty_Ind:F               
## pDm_Rp:pllA               
## pPrty_Ind:A               
## pllFrq:pllA               
## pDm_Rp:pF:A  0.033        
## pPrty_I:F:A  0.657 -0.011

Simple-effects Models

PEL.m6.0 <- lmer(voteconfidence ~ pollFreq * pollAcc + wave + (1|pid), 
               data = d)
summary(PEL.m6.0)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ pollFreq * pollAcc + wave + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22220
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5567 -0.5087  0.0891  0.5598  3.6003 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.6953   0.8339  
##  Residual             0.6617   0.8135  
## Number of obs: 7740, groups:  pid, 2255
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       3.507e+00  4.668e-02  2.721e+03  75.118  < 2e-16 ***
## pollFreq         -5.229e-02  9.204e-03  2.264e+03  -5.681 1.51e-08 ***
## pollAcc           7.727e-02  1.963e-02  7.446e+03   3.937 8.33e-05 ***
## wave2             3.019e-01  2.423e-02  5.477e+03  12.459  < 2e-16 ***
## wave3             2.678e-01  2.542e-02  5.586e+03  10.537  < 2e-16 ***
## wave4             1.629e-01  2.962e-02  5.739e+03   5.501 3.94e-08 ***
## pollFreq:pollAcc -3.165e-03  4.158e-03  7.423e+03  -0.761    0.447    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pllFrq pllAcc wave2  wave3  wave4 
## pollFreq    -0.850                                   
## pollAcc      0.027 -0.047                            
## wave2       -0.260  0.000  0.000                     
## wave3       -0.249  0.003  0.021  0.477              
## wave4       -0.213  0.001  0.021  0.409  0.410       
## pllFrq:pllA -0.045  0.087 -0.872  0.000 -0.010 -0.008
PEL.m6.1 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * pollFreq + (pDem_Rep + pParty_Ind) * pollAcc  + wave + (1|pid), 
               data = d)
summary(PEL.m6.1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_Rep + pParty_Ind) * pollFreq + (pDem_Rep +  
##     pParty_Ind) * pollAcc + wave + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22127.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6191 -0.5107  0.0914  0.5645  3.5330 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.6507   0.8066  
##  Residual             0.6623   0.8138  
## Number of obs: 7740, groups:  pid, 2255
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)            3.41215    0.05820 3920.40171  58.627  < 2e-16 ***
## pDem_Rep              -0.13555    0.08354 3313.80317  -1.623    0.105    
## pParty_Ind            -0.21845    0.13514 6624.71796  -1.616    0.106    
## pollFreq              -0.05020    0.01070 3085.76953  -4.693 2.80e-06 ***
## pollAcc                0.07241    0.01195 7610.19184   6.057 1.45e-09 ***
## wave2                  0.29946    0.02426 5476.87662  12.344  < 2e-16 ***
## wave3                  0.26348    0.02544 5587.89569  10.358  < 2e-16 ***
## wave4                  0.16135    0.02963 5750.12304   5.446 5.36e-08 ***
## pDem_Rep:pollFreq     -0.02541    0.01782 3249.47708  -1.426    0.154    
## pParty_Ind:pollFreq   -0.03754    0.02429 6301.79316  -1.546    0.122    
## pDem_Rep:pollAcc      -0.01561    0.01946 7577.14908  -0.802    0.422    
## pParty_Ind:pollAcc     0.03761    0.02997 7716.14196   1.255    0.210    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pDm_Rp pPrt_I pllFrq pllAcc wave2  wave3  wave4  pD_R:F
## pDem_Rep     0.050                                                        
## pParty_Ind   0.615 -0.037                                                 
## pollFreq    -0.885 -0.050 -0.536                                          
## pollAcc      0.009 -0.004  0.030  0.045                                   
## wave2       -0.195 -0.002  0.019 -0.008  0.005                            
## wave3       -0.195 -0.011  0.008  0.002  0.020  0.477                     
## wave4       -0.178 -0.013 -0.011  0.010  0.018  0.409  0.411              
## pDm_Rp:pllF -0.044 -0.886  0.029  0.058  0.007 -0.007  0.006  0.006       
## pPrty_Ind:F -0.548  0.036 -0.925  0.530  0.016 -0.008  0.002  0.017 -0.034
## pDm_Rp:pllA -0.016 -0.054  0.001  0.017  0.032 -0.007  0.023  0.015  0.082
## pPrty_Ind:A  0.031  0.010  0.030  0.014  0.604  0.008 -0.001 -0.009 -0.013
##             pP_I:F pD_R:A
## pDem_Rep                 
## pParty_Ind               
## pollFreq                 
## pollAcc                  
## wave2                    
## wave3                    
## wave4                    
## pDm_Rp:pllF              
## pPrty_Ind:F              
## pDm_Rp:pllA -0.006       
## pPrty_Ind:A  0.040 -0.016
PEL.m6.2 <- lmer(voteconfidence ~ (poll_LR + poll_LR_C) + pollFreq + pollAcc  + wave + (1|pid), 
               data = d)
summary(PEL.m6.2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (poll_LR + poll_LR_C) + pollFreq + pollAcc +  
##     wave + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 15883.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6745 -0.5081  0.0996  0.5561  3.6281 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.6361   0.7975  
##  Residual             0.6363   0.7977  
## Number of obs: 5629, groups:  pid, 1639
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    3.53615    0.05141 2010.55695  68.781  < 2e-16 ***
## poll_LR       -0.38325    0.06032 1628.55221  -6.354 2.72e-10 ***
## poll_LR_C      0.12214    0.04593 1624.83887   2.659 0.007904 ** 
## pollFreq      -0.03171    0.01067 1628.45974  -2.972 0.003002 ** 
## pollAcc        0.06224    0.01088 5458.50942   5.720 1.12e-08 ***
## wave2          0.23154    0.02787 3986.97019   8.309  < 2e-16 ***
## wave3          0.21119    0.02916 4062.72592   7.243 5.22e-13 ***
## wave4          0.11347    0.03412 4182.99044   3.325 0.000891 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr) pll_LR p_LR_C pllFrq pllAcc wave2  wave3 
## poll_LR   -0.089                                          
## poll_LR_C -0.087  0.129                                   
## pollFreq  -0.833  0.015  0.001                            
## pollAcc   -0.028 -0.030  0.002  0.050                     
## wave2     -0.271  0.000  0.000  0.000  0.000              
## wave3     -0.259 -0.003  0.000  0.000  0.014  0.478       
## wave4     -0.222 -0.001 -0.002  0.001  0.016  0.408  0.409
PEL.m6.3 <- lmer(voteconfidence ~ (poll_LR + poll_LR_C) + pollFreq + pollAcc + (pDem_Rep + pParty_Ind) + wave + (1|pid), 
               data = d)
summary(PEL.m6.3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (poll_LR + poll_LR_C) + pollFreq + pollAcc +  
##     (pDem_Rep + pParty_Ind) + wave + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 15842.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6956 -0.5126  0.0985  0.5655  3.5874 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.6104   0.7813  
##  Residual             0.6370   0.7981  
## Number of obs: 5629, groups:  pid, 1639
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    3.40341    0.05422 2213.33892  62.765  < 2e-16 ***
## poll_LR       -0.33058    0.06371 1717.62394  -5.189 2.37e-07 ***
## poll_LR_C      0.10358    0.04688 1673.72918   2.209 0.027286 *  
## pollFreq      -0.02529    0.01056 1639.40233  -2.395 0.016735 *  
## pollAcc        0.06132    0.01082 5427.28317   5.666 1.54e-08 ***
## pDem_Rep      -0.11202    0.04920 2567.59083  -2.277 0.022869 *  
## pParty_Ind    -0.40662    0.06243 4330.95251  -6.513 8.22e-11 ***
## wave2          0.22809    0.02790 3991.11653   8.175 3.92e-16 ***
## wave3          0.20883    0.02918 4065.12957   7.157 9.76e-13 ***
## wave4          0.11546    0.03413 4188.99663   3.383 0.000724 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) pll_LR p_LR_C pllFrq pllAcc pDm_Rp pPrt_I wave2  wave3 
## poll_LR    -0.092                                                        
## poll_LR_C  -0.079  0.021                                                 
## pollFreq   -0.808  0.003  0.012                                          
## pollAcc    -0.018 -0.031  0.003  0.048                                   
## pDem_Rep    0.041 -0.362  0.263  0.030  0.006                            
## pParty_Ind  0.349  0.023 -0.047 -0.102  0.023 -0.063                     
## wave2      -0.248  0.009 -0.008 -0.003  0.000 -0.025  0.029              
## wave3      -0.239  0.004 -0.005 -0.002  0.014 -0.018  0.020  0.478       
## wave4      -0.212  0.005 -0.006  0.001  0.015 -0.019  0.000  0.409  0.409

6. Moderator: GCB-5

Generic Conspiracist Beliefs are measured by agreement (-2 = Definitely false, +2 = Definitely true) with the following items:

  • The government permits or perpetrates acts of terrorism on its own soil, disguising its involvement

  • Evidence of alien contact is being concealed from the public

  • New and advanced technology which would harm current industry is being suppressed

  • Certain significant events have been the result of the activity of a small group who secretly manipulate world events

  • Experiments involving new drugs or technologies are routinely carried out on the public without their knowledge or consent

(Kay & Slovic, 2023)

ggplot(d, aes(x=GCB)) +
  geom_density(fill="#69b3a2", color="#e9ecef", alpha=0.9) +
  theme_bw() +
  labs(x = "Generic Conspiracist Beliefs") +
  scale_x_continuous(breaks = seq(-3,3,1))

ggplot(d[!is.na(d$party_factor),], aes(x=GCB, fill = party_factor)) +
  geom_density(color="black", alpha=0.5, position = 'identity') +
  theme_bw() +
  scale_fill_manual("Participant Party ID",
                    values = c("#1696d2","grey","#db2b27")) +
  labs(x = "Generic Conspiracist Beliefs") +
  scale_x_continuous(breaks = seq(-3,3,1))

ggplot(d[!is.na(d$party_factor),]) +
   geom_smooth(aes(x = GCB, 
                   y = voteconfidence, 
                   fill = party_factor,
                   color = party_factor),
               method = "lm") +
   labs(x = "Generic Conspiracist Beliefs",
        y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) +
  scale_x_continuous(breaks = seq(-2,2,1))

ggplot(d[!is.na(d$party_factor),]) +
   geom_smooth(aes(x = GCB, 
                   y = voteconfidence, 
                   fill = party_factor,
                   color = party_factor),
               method = "lm") +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
   labs(x = "Generic Conspiracist Beliefs",
        y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) +
  scale_x_continuous(breaks = seq(-2,2,1))

ggplot(d[!is.na(d$party_factor),],
       aes(x = GCB, 
           y = voteconfidence, 
           fill = party_factor,
           color = party_factor)) +
  geom_jitter(height = .2, width =.2, alpha=0.4, size = .2, show.legend = F ) +
  geom_smooth(method = "lm", se = F) +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Generic Conspiracist Beliefs",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","black","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","black","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) +
  scale_x_continuous(breaks = seq(-2,2,1))

Summary

Models

PEL.m7 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * GCB * (wave.lin + wave.quad + wave.cub) + (1|pid), 
               data = d)
summary(PEL.m7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_Rep + pParty_Ind) * GCB * (wave.lin +  
##     wave.quad + wave.cub) + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22064.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6565 -0.5093  0.0581  0.5483  3.7626 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.6635   0.8146  
##  Residual             0.5405   0.7352  
## Number of obs: 8102, groups:  pid, 2613
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               3.371e+00  2.161e-02  3.298e+03 155.962  < 2e-16 ***
## pDem_Rep                 -4.632e-02  3.840e-02  3.758e+03  -1.206  0.22775    
## pParty_Ind               -3.980e-01  4.726e-02  6.617e+03  -8.422  < 2e-16 ***
## GCB                      -2.664e-01  2.344e-02  3.457e+03 -11.368  < 2e-16 ***
## wave.lin                  1.385e-01  2.891e-02  5.960e+03   4.791 1.70e-06 ***
## wave.quad                 4.424e-01  4.344e-02  5.721e+03  10.184  < 2e-16 ***
## wave.cub                 -8.769e-02  2.665e-02  5.630e+03  -3.291  0.00101 ** 
## pDem_Rep:GCB              1.076e-01  3.966e-02  3.745e+03   2.713  0.00671 ** 
## pParty_Ind:GCB           -9.788e-02  5.354e-02  6.361e+03  -1.828  0.06757 .  
## pDem_Rep:wave.lin         1.148e+00  5.209e-02  5.902e+03  22.033  < 2e-16 ***
## pDem_Rep:wave.quad        1.045e+00  7.768e-02  5.697e+03  13.456  < 2e-16 ***
## pDem_Rep:wave.cub        -6.209e-01  4.695e-02  5.607e+03 -13.224  < 2e-16 ***
## pParty_Ind:wave.lin       2.154e-02  7.485e-02  6.041e+03   0.288  0.77354    
## pParty_Ind:wave.quad      2.745e-02  1.133e-01  5.816e+03   0.242  0.80853    
## pParty_Ind:wave.cub       7.832e-02  6.969e-02  5.708e+03   1.124  0.26110    
## GCB:wave.lin              7.678e-02  3.171e-02  5.975e+03   2.422  0.01548 *  
## GCB:wave.quad             7.300e-02  4.731e-02  5.681e+03   1.543  0.12290    
## GCB:wave.cub             -5.552e-03  2.917e-02  5.639e+03  -0.190  0.84904    
## pDem_Rep:GCB:wave.lin     2.536e-01  5.410e-02  5.912e+03   4.688 2.82e-06 ***
## pDem_Rep:GCB:wave.quad    1.886e-01  8.050e-02  5.704e+03   2.342  0.01919 *  
## pDem_Rep:GCB:wave.cub    -1.571e-01  4.857e-02  5.612e+03  -3.234  0.00123 ** 
## pParty_Ind:GCB:wave.lin   2.371e-02  8.349e-02  6.040e+03   0.284  0.77644    
## pParty_Ind:GCB:wave.quad  6.863e-02  1.251e-01  5.742e+03   0.549  0.58321    
## pParty_Ind:GCB:wave.cub   2.682e-02  7.753e-02  5.701e+03   0.346  0.72942    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Simple-effects Models

PEL.m7.0 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * GCB + (1|pid), 
               data = d)
summary(PEL.m7.0)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_Rep + pParty_Ind) * GCB + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 23306.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5381 -0.5199  0.0979  0.5607  3.3561 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.6156   0.7846  
##  Residual             0.6831   0.8265  
## Number of obs: 8102, groups:  pid, 2613
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       3.34503    0.02148 3095.59821 155.736  < 2e-16 ***
## pDem_Rep         -0.19022    0.03851 3369.86973  -4.939 8.22e-07 ***
## pParty_Ind       -0.46573    0.04854 5753.39743  -9.595  < 2e-16 ***
## GCB              -0.28365    0.02327 3211.07762 -12.188  < 2e-16 ***
## pDem_Rep:GCB      0.07192    0.03974 3357.92863   1.810   0.0704 .  
## pParty_Ind:GCB   -0.12838    0.05461 5506.64832  -2.351   0.0188 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pDm_Rp pPrt_I GCB    pD_R:G
## pDem_Rep     0.115                            
## pParty_Ind   0.467 -0.066                     
## GCB         -0.167 -0.156 -0.086              
## pDem_Rp:GCB -0.166 -0.202  0.095  0.137       
## pPrty_I:GCB -0.083  0.091 -0.176  0.528 -0.067
PEL.m7.w1 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * GCB * (wave1_2 + wave1_3 + wave1_4) + (1|pid), 
               data = d)
summary(PEL.m7.w1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_Rep + pParty_Ind) * GCB * (wave1_2 + wave1_3 +  
##     wave1_4) + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22069.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6565 -0.5093  0.0581  0.5483  3.7626 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.6635   0.8146  
##  Residual             0.5405   0.7352  
## Number of obs: 8102, groups:  pid, 2613
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               3.16895    0.02528 5582.28287 125.335  < 2e-16 ***
## pDem_Rep                 -1.03667    0.04619 6327.61928 -22.442  < 2e-16 ***
## pParty_Ind               -0.39605    0.05857 7995.19287  -6.762 1.46e-11 ***
## GCB                      -0.32445    0.02728 5750.56636 -11.892  < 2e-16 ***
## wave1_2                   0.32160    0.02708 5822.29057  11.875  < 2e-16 ***
## wave1_3                   0.30316    0.02854 5887.68835  10.623  < 2e-16 ***
## wave1_4                   0.18233    0.03269 5951.93540   5.578 2.55e-08 ***
## pDem_Rep:GCB             -0.10563    0.04761 6291.21192  -2.218  0.02656 *  
## pParty_Ind:GCB           -0.12019    0.06516 7936.28258  -1.845  0.06513 .  
## pDem_Rep:wave1_2          1.27521    0.04854 5753.21974  26.273  < 2e-16 ***
## pDem_Rep:wave1_3          1.22811    0.05079 5816.27556  24.182  < 2e-16 ***
## pDem_Rep:wave1_4          1.45809    0.05943 5901.14699  24.535  < 2e-16 ***
## pParty_Ind:wave1_2       -0.03963    0.07069 5951.24269  -0.561  0.57506    
## pParty_Ind:wave1_3        0.04946    0.07451 5997.72256   0.664  0.50684    
## pParty_Ind:wave1_4       -0.01762    0.08452 6040.26282  -0.208  0.83485    
## GCB:wave1_2               0.05986    0.02934 5797.66177   2.041  0.04134 *  
## GCB:wave1_3               0.09270    0.03123 5884.80484   2.968  0.00301 ** 
## GCB:wave1_4               0.07956    0.03577 5948.09336   2.224  0.02619 *  
## pDem_Rep:GCB:wave1_2      0.27549    0.05012 5763.63808   5.497 4.03e-08 ***
## pDem_Rep:GCB:wave1_3      0.24524    0.05237 5824.45712   4.683 2.90e-06 ***
## pDem_Rep:GCB:wave1_4      0.33217    0.06182 5913.85382   5.373 8.03e-08 ***
## pParty_Ind:GCB:wave1_2    0.02013    0.07757 5885.38597   0.259  0.79527    
## pParty_Ind:GCB:wave1_3    0.05880    0.08299 5973.61777   0.709  0.47861    
## pParty_Ind:GCB:wave1_4    0.01030    0.09391 6005.72698   0.110  0.91268    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary( lmer(voteconfidence ~ (pDem_Rep + pParty_Ind) * GCB + (wave1_2 + wave1_3 + wave1_4) + (1|pid), 
               data = d) )
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_Rep + pParty_Ind) * GCB + (wave1_2 + wave1_3 +  
##     wave1_4) + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 23143.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5694 -0.5132  0.0778  0.5640  3.6261 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.6208   0.7879  
##  Residual             0.6623   0.8138  
## Number of obs: 8102, groups:  pid, 2613
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       3.19048    0.02475 5199.19156 128.929  < 2e-16 ***
## pDem_Rep         -0.20229    0.03841 3396.46442  -5.267 1.47e-07 ***
## pParty_Ind       -0.44091    0.04824 5825.54476  -9.140  < 2e-16 ***
## GCB              -0.28024    0.02321 3222.64460 -12.073  < 2e-16 ***
## wave1_2           0.29643    0.02383 5802.06437  12.439  < 2e-16 ***
## wave1_3           0.25710    0.02500 5893.38065  10.282  < 2e-16 ***
## wave1_4           0.15053    0.02924 6009.75169   5.148 2.72e-07 ***
## pDem_Rep:GCB      0.06739    0.03962 3384.64848   1.701   0.0890 .  
## pParty_Ind:GCB   -0.12219    0.05427 5579.50877  -2.251   0.0244 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pDm_Rp pPrt_I GCB    wav1_2 wav1_3 wav1_4 pD_R:G
## pDem_Rep     0.114                                                 
## pParty_Ind   0.385 -0.067                                          
## GCB         -0.153 -0.157 -0.085                                   
## wave1_2     -0.419 -0.024  0.031  0.009                            
## wave1_3     -0.400 -0.020  0.028  0.013  0.460                     
## wave1_4     -0.347 -0.023  0.014  0.018  0.393  0.394              
## pDem_Rp:GCB -0.138 -0.202  0.095  0.137 -0.008 -0.008 -0.010       
## pPrty_I:GCB -0.078  0.091 -0.176  0.526  0.008  0.009  0.011 -0.067
summary( lm(voteconfidence ~ (pDem_Rep + pParty_Ind) * GCB, 
               data = d[d$wave == 1,]) )
## 
## Call:
## lm(formula = voteconfidence ~ (pDem_Rep + pParty_Ind) * GCB, 
##     data = d[d$wave == 1, ])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3.03023 -0.78634  0.08107  0.78248  2.96906 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     3.13994    0.02594 121.024  < 2e-16 ***
## pDem_Rep       -1.05660    0.04822 -21.912  < 2e-16 ***
## pParty_Ind     -0.52410    0.06568  -7.979 2.18e-15 ***
## GCB            -0.31513    0.02813 -11.202  < 2e-16 ***
## pDem_Rep:GCB   -0.09736    0.04967  -1.960   0.0501 .  
## pParty_Ind:GCB -0.09701    0.07261  -1.336   0.1817    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.092 on 2607 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.2619, Adjusted R-squared:  0.2605 
## F-statistic:   185 on 5 and 2607 DF,  p-value: < 2.2e-16

7. Moderator: Affective Polarization

Outgroup Rating Version

ggplot(d, aes(x=FT_Outgroup)) +
  geom_density(fill="#69b3a2", color="#e9ecef", alpha=0.9) +
  theme_bw() +
  labs(x = "Perception of Outparty") 

ggplot(d[!is.na(d$party_factor),], aes(x=FT_Outgroup, fill = party_factor)) +
  geom_density(color="black", alpha=0.5, position = 'identity') +
  theme_bw() +
  scale_fill_manual("Participant Party ID",
                    values = c("#1696d2","#db2b27")) +
  labs(x = "Perception of Outparty") 

ggplot(d[!is.na(d$party_factor),]) +
  geom_smooth(aes(x = FT_Outgroup, 
                  y = voteconfidence, 
                  fill = party_factor,
                  color = party_factor),
              method = "lm") +
  labs(x = "Perception of Outparty",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) 

ggplot(d[!is.na(d$party_factor),]) +
  geom_smooth(aes(x = FT_Outgroup, 
                  y = voteconfidence, 
                  fill = party_factor,
                  color = party_factor),
              method = "lm") +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Perception of Outparty",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) 

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",],
       aes(x = FT_Outgroup, 
           y = voteconfidence, 
           fill = party_factor,
           color = party_factor)) +
  geom_jitter(height = .2, width =.2, alpha=0.4, size = .2, show.legend = F ) +
  geom_smooth(method = "lm", se = F) +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Perception of Outparty",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5))

#### Ingroup - Outgroup Version

ggplot(d, aes(x=affPol)) +
  geom_density(fill="#69b3a2", color="#e9ecef", alpha=0.9) +
  theme_bw() +
  labs(x = "Affective Polarization") 

ggplot(d, aes(x=affPol, y = voteconfidence)) +
  geom_jitter(alpha = .4, size = .2) +
  geom_smooth(method = "lm", color="#69b3a2", se = F) +
  theme_bw() +
  labs(x = "Affective Polarization",
       y = "Perceived Election Legitimacy") +
  coord_cartesian(ylim = c(1,5), xlim = c(0,100))

ggplot(d[!is.na(d$party_factor),], aes(x=affPol, fill = party_factor)) +
  geom_density(color="black", alpha=0.5, position = 'identity') +
  theme_bw() +
  scale_fill_manual("Participant Party ID",
                    values = c("#1696d2","#db2b27")) +
  labs(x = "Affective Polarization") 

ggplot(d[!is.na(d$party_factor),], aes(x=affPol, fill = party_factor)) +
  geom_density(color="black", alpha=0.5, position = 'identity') +
  facet_grid(wave~., labeller = as_labeller(wave_label)) +
  theme_bw() +
  scale_fill_manual("Participant Party ID",
                    values = c("#1696d2","#db2b27")) +
  labs(x = "Affective Polarization") 

ggplot(d[!is.na(d$party_factor),]) +
   geom_smooth(aes(x = affPol, 
                   y = voteconfidence, 
                   fill = party_factor,
                   color = party_factor),
               method = "lm") +
   labs(x = "Affective Polarization",
        y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5), xlim = c(0,100)) 

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",],
       aes(x = affPol, 
                   y = voteconfidence, 
                   fill = party_factor,
                   color = party_factor)) +
   geom_jitter(alpha = .4, size = .2) +
   geom_smooth(method = "lm", se = F, fullrange = T) +
   labs(x = "Affective Polarization",
        y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw()# +

#  coord_cartesian(ylim = c(1,5), xlim = c(0,100)) 

ggplot(d[!is.na(d$party_factor),]) +
   geom_smooth(aes(x = affPol, 
                   y = voteconfidence, 
                   fill = party_factor,
                   color = party_factor),
               method = "lm") +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
   labs(x = "Affective Polarization",
        y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5), xlim = c(0,100))  

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",],
       aes(x = affPol, 
           y = voteconfidence, 
           fill = party_factor,
           color = party_factor)) +
  geom_jitter(height = .2, width =.2, alpha=0.4, size = .2, show.legend = F ) +
  geom_smooth(method = "lm", se = F) +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Affective Polarization",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5), xlim = c(0,100)) 

Displaying ingroup and outgroup ratings separately

d.FT <- d %>% 
  pivot_longer(cols = c(FT_parties_1, FT_parties_2, FT_pols_1, FT_pols_2),
               names_to = "FTgroup",
               values_to = "FT")

d.FT$FTgroup <- recode_factor(d.FT$FTgroup,
                              "FT_parties_1" = "Democrats",
                              "FT_parties_2" = "Republicans",
                              "FT_pols_1" = "Harris",
                              "FT_pols_2" = "Trump")

d.FT$FTgroup <- factor(d.FT$FTgroup,
                       levels = c("Democrats",
                                  "Republicans",
                                  "Harris",
                                  "Trump"))

# Ingroup & Outgroup Plotted

ggplot(d.FT[!is.na(d.FT$party_factor) & d.FT$FTgroup != "Trump" & d.FT$FTgroup != "Harris",], 
       aes(x = wave, 
           y = FT, 
           color = FTgroup,
           group = FTgroup)) +
  geom_jitter(alpha = .2, size = .2) +
   stat_summary(geom = "path", fun = "mean", color = "black", linetype = "dashed") +
   stat_summary(geom = "errorbar", color = "black", width = .1) +
   stat_summary(geom = "point", fun = "mean") +
   facet_wrap(~party_factor) +
   labs(x = "Participant Party ID",
        y = "Feeling Thermometer Ratings") +
  scale_color_manual("Target Party", 
                     values = c("#1696d2","#db2b27")) +
  coord_cartesian(ylim = c(0,100)) +
  scale_x_discrete(labels = c("Wave 1", "Wave 2", "Wave 3", "Wave 4")) +
  theme_bw()

ggplot(d.FT[!is.na(d.FT$party_factor) & d.FT$FTgroup != "Democrats" & d.FT$FTgroup != "Republicans",], 
       aes(x = wave, 
           y = FT, 
           color = FTgroup,
           group = FTgroup)) +
  geom_jitter(alpha = .2, size = .2) +
   stat_summary(geom = "path", fun = "mean", color = "black", linetype = "dashed") +
   stat_summary(geom = "errorbar", color = "black", width = .1) +
   stat_summary(geom = "point", fun = "mean") +
   facet_wrap(~party_factor) +
   labs(x = "Participant Party ID",
        y = "Feeling Thermometer Ratings") +
  scale_color_manual("Target Candidate", 
                     values = c("darkblue","darkred")) +
  coord_cartesian(ylim = c(0,100)) +
  scale_x_discrete(labels = c("Wave 1", "Wave 2", "Wave 3", "Wave 4")) +
  theme_bw()

ggplot(d.FT[!is.na(d.FT$party_factor),], 
       aes(x = wave, 
           y = FT, 
           color = FTgroup,
           group = FTgroup)) +
#  geom_jitter(alpha = .2, size = .2) +
   stat_summary(geom = "path", fun = "mean", color = "black", linetype = "dashed") +
   stat_summary(geom = "errorbar", color = "black", width = .1) +
   stat_summary(geom = "point", fun = "mean") +
   facet_wrap(~party_factor) +
   labs(x = "Participant Party ID",
        y = "Feeling Thermometer Ratings") +
  scale_color_manual("Partisan Target", 
                     values = c("#1696d2","#db2b27", "darkblue", "darkred")) +
  coord_cartesian(ylim = c(0,100)) +
  scale_x_discrete(labels = c("Wave 1", "Wave 2", "Wave 3", "Wave 4")) +
  theme_bw()

Summary

Models

PEL.m8 <- lmer(voteconfidence ~ (pDem_Rep) * affPol * (wave.lin + wave.quad + wave.cub) + (1|pid), 
               data = d[d$party_factor != "Independent",])
summary(PEL.m8)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_Rep) * affPol * (wave.lin + wave.quad +  
##     wave.cub) + (1 | pid)
##    Data: d[d$party_factor != "Independent", ]
## 
## REML criterion at convergence: 19318.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6017 -0.5009  0.0580  0.5456  3.6555 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.6912   0.8314  
##  Residual             0.5066   0.7118  
## Number of obs: 7162, groups:  pid, 2367
## 
## Fixed effects:
##                             Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                3.541e+00  2.807e-02  4.631e+03 126.161  < 2e-16 ***
## pDem_Rep                  -1.366e-01  5.214e-02  6.076e+03  -2.620 0.008822 ** 
## affPol                    -8.816e-04  3.877e-04  7.026e+03  -2.274 0.023019 *  
## wave.lin                   2.691e-01  4.401e-02  5.346e+03   6.114 1.04e-09 ***
## wave.quad                  2.192e-01  6.540e-02  5.172e+03   3.352 0.000809 ***
## wave.cub                  -1.118e-01  3.938e-02  5.082e+03  -2.839 0.004541 ** 
## pDem_Rep:affPol           -5.855e-04  7.638e-04  7.067e+03  -0.767 0.443358    
## pDem_Rep:wave.lin          4.202e-01  8.865e-02  5.388e+03   4.740 2.20e-06 ***
## pDem_Rep:wave.quad         6.248e-01  1.318e-01  5.216e+03   4.741 2.18e-06 ***
## pDem_Rep:wave.cub         -2.889e-01  7.925e-02  5.119e+03  -3.646 0.000269 ***
## affPol:wave.lin           -1.099e-03  6.900e-04  5.353e+03  -1.593 0.111115    
## affPol:wave.quad           5.012e-03  1.028e-03  5.185e+03   4.876 1.11e-06 ***
## affPol:wave.cub           -7.415e-04  6.213e-04  5.110e+03  -1.194 0.232721    
## pDem_Rep:affPol:wave.lin   1.482e-02  1.385e-03  5.376e+03  10.696  < 2e-16 ***
## pDem_Rep:affPol:wave.quad  1.021e-02  2.064e-03  5.211e+03   4.947 7.77e-07 ***
## pDem_Rep:affPol:wave.cub  -6.971e-03  1.244e-03  5.122e+03  -5.603 2.22e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Simple-effects models Y ~ X m ~ X Y ~ m + X

PEL.m8.w <- lmer(voteconfidence ~ (pDem_Rep) * affPol * wave + (1|pid), 
               data = d[d$party_factor != "Independent",])
summary(PEL.m8.w)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_Rep) * affPol * wave + (1 | pid)
##    Data: d[d$party_factor != "Independent", ]
## 
## REML criterion at convergence: 19322.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6017 -0.5009  0.0580  0.5456  3.6555 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.6912   0.8314  
##  Residual             0.5066   0.7118  
## Number of obs: 7162, groups:  pid, 2367
## 
## Fixed effects:
##                         Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)            3.324e+00  3.467e-02  6.608e+03  95.867  < 2e-16 ***
## pDem_Rep              -5.751e-01  6.659e-02  7.133e+03  -8.636  < 2e-16 ***
## affPol                -1.770e-03  5.227e-04  7.023e+03  -3.387 0.000711 ***
## wave2                  2.607e-01  4.002e-02  5.317e+03   6.514 8.00e-11 ***
## wave3                  2.834e-01  4.214e-02  5.326e+03   6.726 1.92e-11 ***
## wave4                  3.250e-01  5.036e-02  5.360e+03   6.453 1.20e-10 ***
## pDem_Rep:affPol       -1.229e-02  1.041e-03  7.005e+03 -11.803  < 2e-16 ***
## pDem_Rep:wave2         6.342e-01  8.096e-02  5.388e+03   7.833 5.68e-15 ***
## pDem_Rep:wave3         5.553e-01  8.502e-02  5.381e+03   6.532 7.11e-11 ***
## pDem_Rep:wave4         5.647e-01  1.015e-01  5.406e+03   5.562 2.79e-08 ***
## affPol:wave2           2.787e-03  6.371e-04  5.347e+03   4.375 1.24e-05 ***
## affPol:wave3           1.496e-03  6.758e-04  5.336e+03   2.214 0.026868 *  
## affPol:wave4          -7.288e-04  7.888e-04  5.368e+03  -0.924 0.355591    
## pDem_Rep:affPol:wave2  1.404e-02  1.280e-03  5.381e+03  10.968  < 2e-16 ***
## pDem_Rep:affPol:wave3  1.447e-02  1.357e-03  5.365e+03  10.668  < 2e-16 ***
## pDem_Rep:affPol:wave4  1.830e-02  1.582e-03  5.389e+03  11.567  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

8. Moderator: Process variable

ggplot(d, aes(x=govt_process)) +
  geom_density(fill="#69b3a2", color="#e9ecef", alpha=0.9) +
  theme_bw() +
  labs(x = "Governmental Process Preference") +
  scale_x_continuous(breaks = seq(1,7,1))

ggplot(d[!is.na(d$party_factor),], aes(x=govt_process, fill = party_factor)) +
  geom_density(color="black", alpha=0.5, position = 'identity') +
  theme_bw() +
  scale_fill_manual("Participant Party ID",
                    values = c("#1696d2","grey","#db2b27")) +
  labs(x = "Governmental Process Preference") +
  scale_x_continuous(breaks = seq(1,7,1)) 

ggplot(d[!is.na(d$party_factor),]) +
  geom_smooth(aes(x = govt_process, 
                  y = voteconfidence, 
                  fill = party_factor,
                  color = party_factor),
              method = "lm") +
  labs(x = "Governmental Process Preference",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) +
  scale_x_continuous(breaks = seq(1,7,1)) 

ggplot(d[!is.na(d$party_factor),]) +
  geom_smooth(aes(x = govt_process, 
                  y = voteconfidence, 
                  fill = party_factor,
                  color = party_factor),
              method = "lm") +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Governmental Process Preference",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) +
  scale_x_continuous(breaks = seq(1,7,1))

ggplot(d[!is.na(d$party_factor),],
       aes(x = govt_process, 
           y = voteconfidence, 
           fill = party_factor,
           color = party_factor)) +
  geom_jitter(height = .2, width =.2, alpha=0.4, size = .2, show.legend = F ) +
  geom_smooth(method = "lm", se = F) +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Governmental Process Preference",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) +
  scale_x_continuous(breaks = seq(1,7,1))

Summary

Models

PEL.m9 <- lmer(voteconfidence ~ (pDem_Rep) * govt_process * (wave.lin + wave.quad + wave.cub) + (1|pid), 
               data = d)
summary(PEL.m9)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_Rep) * govt_process * (wave.lin + wave.quad +  
##     wave.cub) + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 13666.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7917 -0.5032  0.0590  0.5514  4.0064 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.7418   0.8613  
##  Residual             0.5341   0.7308  
## Number of obs: 5076, groups:  pid, 1269
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                      3.076e+00  9.396e-02  1.262e+03  32.740
## pDem_Rep                        -1.573e-01  1.795e-01  2.183e+03  -0.876
## govt_process                     9.569e-02  2.255e-02  1.262e+03   4.243
## wave.lin                         2.570e-01  9.290e-02  3.796e+03   2.766
## wave.quad                        7.317e-01  1.468e-01  3.792e+03   4.983
## wave.cub                        -2.950e-01  9.287e-02  3.793e+03  -3.176
## pDem_Rep:govt_process           -3.515e-04  4.290e-02  2.155e+03  -0.008
## pDem_Rep:wave.lin                1.559e+00  2.023e-01  3.815e+03   7.708
## pDem_Rep:wave.quad               1.425e+00  3.185e-01  3.808e+03   4.476
## pDem_Rep:wave.cub               -9.841e-01  2.011e-01  3.808e+03  -4.894
## govt_process:wave.lin           -2.205e-02  2.230e-02  3.797e+03  -0.989
## govt_process:wave.quad          -5.384e-02  3.525e-02  3.792e+03  -1.527
## govt_process:wave.cub            3.109e-02  2.229e-02  3.793e+03   1.395
## pDem_Rep:govt_process:wave.lin  -7.777e-02  4.819e-02  3.815e+03  -1.614
## pDem_Rep:govt_process:wave.quad -6.664e-02  7.587e-02  3.807e+03  -0.878
## pDem_Rep:govt_process:wave.cub   7.982e-02  4.792e-02  3.807e+03   1.666
##                                 Pr(>|t|)    
## (Intercept)                      < 2e-16 ***
## pDem_Rep                          0.3809    
## govt_process                    2.36e-05 ***
## wave.lin                          0.0057 ** 
## wave.quad                       6.53e-07 ***
## wave.cub                          0.0015 ** 
## pDem_Rep:govt_process             0.9935    
## pDem_Rep:wave.lin               1.62e-14 ***
## pDem_Rep:wave.quad              7.84e-06 ***
## pDem_Rep:wave.cub               1.03e-06 ***
## govt_process:wave.lin             0.3229    
## govt_process:wave.quad            0.1267    
## govt_process:wave.cub             0.1632    
## pDem_Rep:govt_process:wave.lin    0.1067    
## pDem_Rep:govt_process:wave.quad   0.3798    
## pDem_Rep:govt_process:wave.cub    0.0959 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Simple-effects models

# Wave 4, govt process midpoint
d$gov_proc.4 <- d$govt_process - 4

PEL.m9.W4 <- lm(voteconfidence ~ (pDem_Rep) + govt_process, 
               data = d[d$wave == 4,])
summary(PEL.m9.W4)
## 
## Call:
## lm(formula = voteconfidence ~ (pDem_Rep) + govt_process, data = d[d$wave == 
##     4, ])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8438 -0.5961  0.1701  0.9224  1.9362 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.09896    0.11693  26.502  < 2e-16 ***
## pDem_Rep      0.24772    0.06982   3.548 0.000403 ***
## govt_process  0.08871    0.02806   3.161 0.001608 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.164 on 1266 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.01707,    Adjusted R-squared:  0.01552 
## F-statistic: 10.99 on 2 and 1266 DF,  p-value: 1.849e-05
PEL.m9 <- lmer(voteconfidence ~ (pDem_Rep) * gov_proc.4 * (wave.lin + wave.quad + wave.cub) + (1|pid), 
               data = d)
summary(PEL.m9)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_Rep) * gov_proc.4 * (wave.lin + wave.quad +  
##     wave.cub) + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 13666.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7917 -0.5032  0.0590  0.5514  4.0064 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.7418   0.8613  
##  Residual             0.5341   0.7308  
## Number of obs: 5076, groups:  pid, 1269
## 
## Fixed effects:
##                                 Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    3.459e+00  2.638e-02  1.267e+03 131.106  < 2e-16
## pDem_Rep                      -1.587e-01  5.006e-02  2.130e+03  -3.171  0.00154
## gov_proc.4                     9.569e-02  2.255e-02  1.262e+03   4.243 2.36e-05
## wave.lin                       1.688e-01  2.612e-02  3.794e+03   6.464 1.15e-10
## wave.quad                      5.164e-01  4.128e-02  3.792e+03  12.510  < 2e-16
## wave.cub                      -1.706e-01  2.610e-02  3.792e+03  -6.537 7.10e-11
## pDem_Rep:gov_proc.4           -3.515e-04  4.290e-02  2.155e+03  -0.008  0.99346
## pDem_Rep:wave.lin              1.248e+00  5.603e-02  3.813e+03  22.271  < 2e-16
## pDem_Rep:wave.quad             1.159e+00  8.830e-02  3.808e+03  13.123  < 2e-16
## pDem_Rep:wave.cub             -6.648e-01  5.578e-02  3.807e+03 -11.917  < 2e-16
## gov_proc.4:wave.lin           -2.205e-02  2.230e-02  3.797e+03  -0.989  0.32288
## gov_proc.4:wave.quad          -5.384e-02  3.525e-02  3.792e+03  -1.527  0.12673
## gov_proc.4:wave.cub            3.109e-02  2.229e-02  3.793e+03   1.395  0.16322
## pDem_Rep:gov_proc.4:wave.lin  -7.777e-02  4.819e-02  3.815e+03  -1.614  0.10665
## pDem_Rep:gov_proc.4:wave.quad -6.664e-02  7.587e-02  3.807e+03  -0.878  0.37984
## pDem_Rep:gov_proc.4:wave.cub   7.982e-02  4.792e-02  3.807e+03   1.666  0.09586
##                                  
## (Intercept)                   ***
## pDem_Rep                      ** 
## gov_proc.4                    ***
## wave.lin                      ***
## wave.quad                     ***
## wave.cub                      ***
## pDem_Rep:gov_proc.4              
## pDem_Rep:wave.lin             ***
## pDem_Rep:wave.quad            ***
## pDem_Rep:wave.cub             ***
## gov_proc.4:wave.lin              
## gov_proc.4:wave.quad             
## gov_proc.4:wave.cub              
## pDem_Rep:gov_proc.4:wave.lin     
## pDem_Rep:gov_proc.4:wave.quad    
## pDem_Rep:gov_proc.4:wave.cub  .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

9. Moderator: Representation

ggplot(d, aes(x=representation_Dem)) +
  geom_density(fill="#69b3a2", color="#e9ecef", alpha=0.9) +
  theme_bw() +
  labs(x = "Representation (Democratic elites)") +
  scale_x_continuous(breaks = seq(1,7,1))

ggplot(d[!is.na(d$party_factor),], aes(x=representation_Dem, fill = party_factor)) +
  geom_density(color="black", alpha=0.5, position = 'identity') +
  theme_bw() +
  scale_fill_manual("Participant Party ID",
                    values = c("#1696d2","grey","#db2b27")) +
  labs(x = "Representation (Democratic elites)") +
  scale_x_continuous(breaks = seq(1,7,1)) 

ggplot(d, aes(x=representation_Rep)) +
  geom_density(fill="#69b3a2", color="#e9ecef", alpha=0.9) +
  theme_bw() +
  labs(x = "Representation (Republican elites)") +
  scale_x_continuous(breaks = seq(1,7,1))

ggplot(d[!is.na(d$party_factor),], aes(x=representation_Rep, fill = party_factor)) +
  geom_density(color="black", alpha=0.5, position = 'identity') +
  theme_bw() +
  scale_fill_manual("Participant Party ID",
                    values = c("#1696d2","grey","#db2b27")) +
  labs(x = "Representation (Republican elites)") +
  scale_x_continuous(breaks = seq(1,7,1)) 

ggplot(d[!is.na(d$party_factor),], 
       aes(x = representation_Rep,
           y = representation_Dem)) +
  geom_jitter(size = .2, alpha = .3) +
  geom_smooth(method = "lm", color = "#69b3a2") +
  theme_bw() +
  labs(x = "Representation (Republican elites)",
       y = "Representation (Democratic elites)") +
  scale_x_continuous(breaks = seq(1,5,1)) +
  scale_y_continuous(breaks = seq(1,5,1)) +
  coord_cartesian(ylim = c(1,5)) +
  facet_wrap(~party_factor)

ggplot(d[!is.na(d$party_factor),],
       aes(x = representation_Dem, 
                  y = voteconfidence, 
                  fill = party_factor,
                  color = party_factor)) +
  geom_jitter(size = .2, alpha = .4) +
  geom_smooth(method = "lm", se = F) +
  labs(x = "Representation (Democratic elites)",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","black","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","black","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5), xlim = c(1,5)) +
  scale_x_continuous(breaks = seq(1,5,1)) 

ggplot(d[!is.na(d$party_factor),]) +
  geom_smooth(aes(x = representation_Dem, 
                  y = voteconfidence, 
                  fill = party_factor,
                  color = party_factor),
              method = "lm") +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Representation (Democratic elites)",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) +
  scale_x_continuous(breaks = seq(1,7,1))

ggplot(d[!is.na(d$party_factor),],
       aes(x = representation_Dem, 
           y = voteconfidence, 
           fill = party_factor,
           color = party_factor)) +
  geom_jitter(height = .2, width =.2, alpha=0.4, size = .2, show.legend = F ) +
  geom_smooth(method = "lm", se = F) +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Representation (Democratic elites)",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) +
  scale_x_continuous(breaks = seq(1,7,1))

ggplot(d[!is.na(d$party_factor),],
       aes(x = representation_Rep, 
                  y = voteconfidence, 
                  fill = party_factor,
                  color = party_factor)) +
  geom_jitter(size = .2, alpha = .4) +
  geom_smooth(method = "lm", se = F) +
  labs(x = "Representation (Republican elites)",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","black","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","black","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5), xlim = c(1,5)) +
  scale_x_continuous(breaks = seq(1,5,1)) 

ggplot(d[!is.na(d$party_factor),]) +
  geom_smooth(aes(x = representation_Rep, 
                  y = voteconfidence, 
                  fill = party_factor,
                  color = party_factor),
              method = "lm") +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Representation (Republican elites)",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) +
  scale_x_continuous(breaks = seq(1,7,1))

ggplot(d[!is.na(d$party_factor),],
       aes(x = representation_Rep, 
           y = voteconfidence, 
           fill = party_factor,
           color = party_factor)) +
  geom_jitter(height = .2, width =.2, alpha=0.4, size = .2, show.legend = F ) +
  geom_smooth(method = "lm", se = F) +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Representation (Republican elites)",
       y = "Perceived Election Legitimacy") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) +
  scale_x_continuous(breaks = seq(1,7,1))

Summary

Models

PEL.m10 <- lmer(voteconfidence ~ (pDem_Rep) * (representation_Dem + representation_Rep) * (wave.lin + wave.quad + wave.cub) + (1|pid), 
               data = d)
summary(PEL.m10)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## voteconfidence ~ (pDem_Rep) * (representation_Dem + representation_Rep) *  
##     (wave.lin + wave.quad + wave.cub) + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 13551.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7723 -0.4901  0.0511  0.5526  3.9093 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.7111   0.8433  
##  Residual             0.5222   0.7226  
## Number of obs: 5072, groups:  pid, 1268
## 
## Fixed effects:
##                                         Estimate Std. Error         df t value
## (Intercept)                              2.83426    0.07991 1281.94068  35.467
## pDem_Rep                                -0.15197    0.15500 2378.47435  -0.981
## representation_Dem                       0.14858    0.02226 1340.71752   6.675
## representation_Rep                       0.07453    0.02128 1339.00659   3.502
## wave.lin                                 0.10669    0.08010 3786.68883   1.332
## wave.quad                                0.67254    0.12655 3781.69043   5.314
## wave.cub                                -0.22251    0.08001 3781.96041  -2.781
## pDem_Rep:representation_Dem             -0.08389    0.04280 1967.51050  -1.960
## pDem_Rep:representation_Rep              0.09381    0.04059 2105.13157   2.311
## pDem_Rep:wave.lin                        1.10436    0.18054 3811.84915   6.117
## pDem_Rep:wave.quad                       1.23725    0.28393 3804.81534   4.358
## pDem_Rep:wave.cub                       -0.58854    0.17880 3801.01526  -3.292
## representation_Dem:wave.lin             -0.12648    0.02260 3787.71937  -5.598
## representation_Dem:wave.quad            -0.14066    0.03572 3785.25083  -3.938
## representation_Dem:wave.cub              0.06927    0.02260 3784.38430   3.065
## representation_Rep:wave.lin              0.13856    0.02161 3789.93910   6.411
## representation_Rep:wave.quad             0.04834    0.03416 3785.24094   1.415
## representation_Rep:wave.cub             -0.03621    0.02161 3785.30136  -1.676
## pDem_Rep:representation_Dem:wave.lin    -0.02489    0.04738 3800.25501  -0.525
## pDem_Rep:representation_Dem:wave.quad   -0.25092    0.07474 3795.25798  -3.357
## pDem_Rep:representation_Dem:wave.cub     0.08281    0.04728 3796.93371   1.752
## pDem_Rep:representation_Rep:wave.lin    -0.00125    0.04578 3806.55662  -0.027
## pDem_Rep:representation_Rep:wave.quad    0.15247    0.07221 3801.16405   2.111
## pDem_Rep:representation_Rep:wave.cub    -0.07391    0.04559 3796.25040  -1.621
##                                       Pr(>|t|)    
## (Intercept)                            < 2e-16 ***
## pDem_Rep                              0.326934    
## representation_Dem                    3.61e-11 ***
## representation_Rep                    0.000477 ***
## wave.lin                              0.182939    
## wave.quad                             1.13e-07 ***
## wave.cub                              0.005445 ** 
## pDem_Rep:representation_Dem           0.050130 .  
## pDem_Rep:representation_Rep           0.020917 *  
## pDem_Rep:wave.lin                     1.05e-09 ***
## pDem_Rep:wave.quad                    1.35e-05 ***
## pDem_Rep:wave.cub                     0.001005 ** 
## representation_Dem:wave.lin           2.33e-08 ***
## representation_Dem:wave.quad          8.37e-05 ***
## representation_Dem:wave.cub           0.002189 ** 
## representation_Rep:wave.lin           1.62e-10 ***
## representation_Rep:wave.quad          0.157157    
## representation_Rep:wave.cub           0.093786 .  
## pDem_Rep:representation_Dem:wave.lin  0.599332    
## pDem_Rep:representation_Dem:wave.quad 0.000795 ***
## pDem_Rep:representation_Dem:wave.cub  0.079914 .  
## pDem_Rep:representation_Rep:wave.lin  0.978212    
## pDem_Rep:representation_Rep:wave.quad 0.034798 *  
## pDem_Rep:representation_Rep:wave.cub  0.105059    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Simple-effects models

PEL.m10.w <- lmer(voteconfidence ~ (pDem_Rep) * (representation_Dem + representation_Rep) * wave + (pDem_Rep | pid), 
               data = d)
summary(PEL.m10.w)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## voteconfidence ~ (pDem_Rep) * (representation_Dem + representation_Rep) *  
##     wave + (pDem_Rep | pid)
##    Data: d
## 
## REML criterion at convergence: 13546.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7708 -0.4922  0.0553  0.5473  3.9583 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  pid      (Intercept) 0.6777   0.8232        
##           pDem_Rep    0.1391   0.3729   -0.36
##  Residual             0.5192   0.7206        
## Number of obs: 5072, groups:  pid, 1268
## 
## Fixed effects:
##                                     Estimate Std. Error         df t value
## (Intercept)                        2.544e+00  9.632e-02  2.554e+03  26.416
## pDem_Rep                          -1.158e+00  2.009e-01  2.128e+03  -5.762
## representation_Dem                 2.656e-01  2.696e-02  2.567e+03   9.853
## representation_Rep                -1.476e-02  2.572e-02  2.559e+03  -0.574
## wave2                              5.279e-01  8.944e-02  3.752e+03   5.903
## wave3                              3.627e-01  8.939e-02  3.763e+03   4.057
## wave4                              2.138e-01  8.952e-02  3.791e+03   2.389
## pDem_Rep:representation_Dem        4.198e-03  5.400e-02  2.170e+03   0.078
## pDem_Rep:representation_Rep        4.426e-02  5.141e-02  2.005e+03   0.861
## pDem_Rep:wave2                     1.331e+00  2.007e-01  3.698e+03   6.631
## pDem_Rep:wave3                     1.292e+00  2.010e-01  3.712e+03   6.429
## pDem_Rep:wave4                     1.391e+00  2.022e-01  3.744e+03   6.879
## representation_Dem:wave2          -1.535e-01  2.519e-02  3.765e+03  -6.095
## representation_Dem:wave3          -1.482e-01  2.521e-02  3.751e+03  -5.879
## representation_Dem:wave4          -1.602e-01  2.524e-02  3.773e+03  -6.348
## representation_Rep:wave2           8.656e-02  2.413e-02  3.756e+03   3.588
## representation_Rep:wave3           1.191e-01  2.408e-02  3.759e+03   4.945
## representation_Rep:wave4           1.573e-01  2.414e-02  3.788e+03   6.516
## pDem_Rep:representation_Dem:wave2 -1.919e-01  5.286e-02  3.703e+03  -3.631
## pDem_Rep:representation_Dem:wave3 -1.211e-01  5.291e-02  3.701e+03  -2.288
## pDem_Rep:representation_Dem:wave4 -6.479e-02  5.294e-02  3.722e+03  -1.224
## pDem_Rep:representation_Rep:wave2  1.315e-01  5.099e-02  3.697e+03   2.579
## pDem_Rep:representation_Rep:wave3  5.707e-02  5.100e-02  3.703e+03   1.119
## pDem_Rep:representation_Rep:wave4  3.703e-02  5.116e-02  3.729e+03   0.724
##                                   Pr(>|t|)    
## (Intercept)                        < 2e-16 ***
## pDem_Rep                          9.55e-09 ***
## representation_Dem                 < 2e-16 ***
## representation_Rep                0.566151    
## wave2                             3.89e-09 ***
## wave3                             5.06e-05 ***
## wave4                             0.016957 *  
## pDem_Rep:representation_Dem       0.938036    
## pDem_Rep:representation_Rep       0.389399    
## pDem_Rep:wave2                    3.81e-11 ***
## pDem_Rep:wave3                    1.45e-10 ***
## pDem_Rep:wave4                    7.05e-12 ***
## representation_Dem:wave2          1.20e-09 ***
## representation_Dem:wave3          4.50e-09 ***
## representation_Dem:wave4          2.44e-10 ***
## representation_Rep:wave2          0.000338 ***
## representation_Rep:wave3          7.96e-07 ***
## representation_Rep:wave4          8.18e-11 ***
## pDem_Rep:representation_Dem:wave2 0.000286 ***
## pDem_Rep:representation_Dem:wave3 0.022201 *  
## pDem_Rep:representation_Dem:wave4 0.221107    
## pDem_Rep:representation_Rep:wave2 0.009942 ** 
## pDem_Rep:representation_Rep:wave3 0.263218    
## pDem_Rep:representation_Rep:wave4 0.469211    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

misc. other plots

ggplot(d[!is.na(d$party_factor),], 
       aes(x = wave, 
           y = voteconf_natl, 
           fill = party_factor)) +
  geom_bar(stat = "summary",
           fun = "mean",
           position = position_dodge(.9))  +
     stat_summary(geom = "errorbar",position = position_dodge(.9), color = "black", width = .1) +
   labs(x = "Participant Party ID",
        y = "Perceived Election Legitimacy (National)") +
  coord_cartesian(ylim = c(1,5)) 

ggplot(d[!is.na(d$party_factor),], 
       aes(x = wave, 
           y = voteconf_natl, 
           color = wave,
           group = 1)) +
   stat_summary(geom = "path", fun = "mean", color = "black", linetype = "dashed") +
   stat_summary(geom = "errorbar",position = position_dodge(.9), color = "black", width = .1) +
   stat_summary(geom = "point", fun = "mean", position = position_dodge(.9)) +
   facet_wrap(~party_factor) +
   labs(x = "Participant Party ID",
        y = "Perceived Election Legitimacy (National)") +
   coord_cartesian(ylim = c(1,5)) +
   scale_y_continuous(breaks = seq(1,5,1))

ggplot(d[!is.na(d$party_factor),], 
       aes(x = wave, 
           y = voteconf_self, 
           fill = party_factor)) +
  geom_bar(stat = "summary",
           fun = "mean",
           position = position_dodge(.9))  +
     stat_summary(geom = "errorbar",position = position_dodge(.9), color = "black", width = .1) +
   labs(x = "Participant Party ID",
        y = "Perceived Election Legitimacy (Own Vote)") +
  coord_cartesian(ylim = c(1,5)) 

ggplot(d[!is.na(d$party_factor),], 
       aes(x = wave, 
           y = voteconf_self, 
           color = wave,
           group = 1)) +
   stat_summary(geom = "path", fun = "mean", color = "black", linetype = "dashed") +
   stat_summary(geom = "errorbar",position = position_dodge(.9), color = "black", width = .1) +
   stat_summary(geom = "point", fun = "mean", position = position_dodge(.9)) +
   facet_wrap(~party_factor) +
   labs(x = "Participant Party ID",
        y = "Perceived Election Legitimacy (Own Vote)") +
   coord_cartesian(ylim = c(1,5)) +
   scale_y_continuous(breaks = seq(1,5,1))

10. Full Model

Model

d$FT_Diff.100 <- d$FT_Diff/100
  
PEL.m11 <- lmer(voteconfidence ~ (pDem_Rep + pParty_Ind)
                * wave
                * trustGovt.c
                * (Pos_Emo.c + Neg_Emo.c)
                * FT_Diff.100
                + (govt_process + representation_Dem + representation_Rep)
                + GCB.c
                + pollAcc
                + pollFreq.c
                + vs_age
                + vs_race
                + male_female
                + nonbinary_mf
                + (1 | pid),
                data = d)

summary(PEL.m11)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_Rep + pParty_Ind) * wave * trustGovt.c *  
##     (Pos_Emo.c + Neg_Emo.c) * FT_Diff.100 + (govt_process + representation_Dem +  
##     representation_Rep) + GCB.c + pollAcc + pollFreq.c + vs_age +  
##     vs_race + male_female + nonbinary_mf + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 11295.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7996 -0.5210  0.0347  0.5595  3.5720 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.5102   0.7143  
##  Residual             0.4501   0.6709  
## Number of obs: 4423, groups:  pid, 1159
## 
## Fixed effects:
##                                                    Estimate Std. Error
## (Intercept)                                       2.729e+00  1.821e-01
## pDem_Rep                                         -6.852e-01  1.018e-01
## wave2                                             2.048e-01  6.437e-02
## wave3                                             1.981e-01  6.438e-02
## wave4                                             3.302e-01  6.422e-02
## trustGovt.c                                       2.405e-01  4.586e-02
## Pos_Emo.c                                         2.016e-01  4.116e-02
## Neg_Emo.c                                        -2.495e-02  4.365e-02
## FT_Diff.100                                      -1.691e-01  8.358e-02
## govt_process                                      4.027e-02  2.103e-02
## representation_Dem                                5.335e-02  2.173e-02
## representation_Rep                                4.162e-02  2.011e-02
## GCB.c                                            -2.314e-01  2.664e-02
## pollAcc                                           3.780e-02  1.082e-02
## pollFreq.c                                       -3.399e-03  1.095e-02
## vs_age                                            5.300e-03  1.765e-03
## vs_raceBlack                                     -3.299e-01  7.953e-02
## vs_raceHispanic                                   3.445e-02  8.428e-02
## vs_raceOther                                     -1.310e-05  8.983e-02
## male_female                                      -2.566e-01  4.858e-02
## nonbinary_mf                                     -2.802e-02  3.633e-01
## pDem_Rep:wave2                                    5.087e-01  1.301e-01
## pDem_Rep:wave3                                    6.205e-01  1.297e-01
## pDem_Rep:wave4                                    6.377e-01  1.298e-01
## pDem_Rep:trustGovt.c                              2.179e-01  9.077e-02
## wave2:trustGovt.c                                -1.220e-01  5.855e-02
## wave3:trustGovt.c                                -8.621e-02  6.508e-02
## wave4:trustGovt.c                                -1.773e-02  6.549e-02
## pDem_Rep:Pos_Emo.c                               -7.716e-02  8.181e-02
## pDem_Rep:Neg_Emo.c                               -6.210e-02  8.661e-02
## wave2:Pos_Emo.c                                  -6.019e-02  5.580e-02
## wave3:Pos_Emo.c                                  -1.453e-01  5.495e-02
## wave4:Pos_Emo.c                                  -1.916e-01  5.628e-02
## wave2:Neg_Emo.c                                  -6.865e-02  5.639e-02
## wave3:Neg_Emo.c                                  -8.053e-02  5.625e-02
## wave4:Neg_Emo.c                                   3.417e-02  5.601e-02
## trustGovt.c:Pos_Emo.c                            -7.277e-02  3.382e-02
## trustGovt.c:Neg_Emo.c                             2.366e-03  4.007e-02
## pDem_Rep:FT_Diff.100                             -7.123e-01  1.680e-01
## wave2:FT_Diff.100                                 9.005e-02  1.156e-01
## wave3:FT_Diff.100                                 1.784e-01  1.117e-01
## wave4:FT_Diff.100                                -6.686e-02  1.154e-01
## trustGovt.c:FT_Diff.100                          -5.871e-02  7.530e-02
## Pos_Emo.c:FT_Diff.100                            -2.485e-02  6.297e-02
## Neg_Emo.c:FT_Diff.100                            -3.541e-02  6.946e-02
## pDem_Rep:wave2:trustGovt.c                       -1.369e-01  1.181e-01
## pDem_Rep:wave3:trustGovt.c                       -2.142e-01  1.301e-01
## pDem_Rep:wave4:trustGovt.c                       -2.563e-01  1.314e-01
## pDem_Rep:wave2:Pos_Emo.c                          1.404e-01  1.129e-01
## pDem_Rep:wave3:Pos_Emo.c                          2.386e-01  1.102e-01
## pDem_Rep:wave4:Pos_Emo.c                          2.536e-02  1.133e-01
## pDem_Rep:wave2:Neg_Emo.c                          1.771e-02  1.137e-01
## pDem_Rep:wave3:Neg_Emo.c                          7.510e-02  1.131e-01
## pDem_Rep:wave4:Neg_Emo.c                          2.024e-03  1.131e-01
## pDem_Rep:trustGovt.c:Pos_Emo.c                    7.145e-02  6.746e-02
## pDem_Rep:trustGovt.c:Neg_Emo.c                    1.056e-01  8.001e-02
## wave2:trustGovt.c:Pos_Emo.c                       9.325e-02  4.787e-02
## wave3:trustGovt.c:Pos_Emo.c                       1.240e-01  4.617e-02
## wave4:trustGovt.c:Pos_Emo.c                       8.237e-02  4.617e-02
## wave2:trustGovt.c:Neg_Emo.c                       5.027e-02  5.106e-02
## wave3:trustGovt.c:Neg_Emo.c                       3.436e-02  5.219e-02
## wave4:trustGovt.c:Neg_Emo.c                       2.130e-02  5.329e-02
## pDem_Rep:wave2:FT_Diff.100                        3.944e-01  2.318e-01
## pDem_Rep:wave3:FT_Diff.100                        6.653e-01  2.238e-01
## pDem_Rep:wave4:FT_Diff.100                        6.602e-01  2.319e-01
## pDem_Rep:trustGovt.c:FT_Diff.100                  1.712e-01  1.506e-01
## wave2:trustGovt.c:FT_Diff.100                     8.928e-02  1.026e-01
## wave3:trustGovt.c:FT_Diff.100                    -5.404e-02  1.124e-01
## wave4:trustGovt.c:FT_Diff.100                    -7.614e-02  1.141e-01
## pDem_Rep:Pos_Emo.c:FT_Diff.100                    8.913e-02  1.259e-01
## pDem_Rep:Neg_Emo.c:FT_Diff.100                   -4.261e-02  1.386e-01
## wave2:Pos_Emo.c:FT_Diff.100                       2.024e-01  8.829e-02
## wave3:Pos_Emo.c:FT_Diff.100                       1.251e-01  8.652e-02
## wave4:Pos_Emo.c:FT_Diff.100                       1.681e-01  8.763e-02
## wave2:Neg_Emo.c:FT_Diff.100                       2.101e-02  9.054e-02
## wave3:Neg_Emo.c:FT_Diff.100                       1.466e-01  9.014e-02
## wave4:Neg_Emo.c:FT_Diff.100                      -6.985e-02  9.333e-02
## trustGovt.c:Pos_Emo.c:FT_Diff.100                 6.630e-02  5.272e-02
## trustGovt.c:Neg_Emo.c:FT_Diff.100                -1.297e-02  5.960e-02
## pDem_Rep:wave2:trustGovt.c:Pos_Emo.c             -1.144e-01  9.724e-02
## pDem_Rep:wave3:trustGovt.c:Pos_Emo.c             -1.149e-01  9.273e-02
## pDem_Rep:wave4:trustGovt.c:Pos_Emo.c             -2.021e-02  9.215e-02
## pDem_Rep:wave2:trustGovt.c:Neg_Emo.c             -7.020e-02  1.029e-01
## pDem_Rep:wave3:trustGovt.c:Neg_Emo.c             -6.499e-02  1.042e-01
## pDem_Rep:wave4:trustGovt.c:Neg_Emo.c             -4.573e-02  1.071e-01
## pDem_Rep:wave2:trustGovt.c:FT_Diff.100           -1.294e-01  2.056e-01
## pDem_Rep:wave3:trustGovt.c:FT_Diff.100           -2.610e-01  2.250e-01
## pDem_Rep:wave4:trustGovt.c:FT_Diff.100           -1.606e-01  2.288e-01
## pDem_Rep:wave2:Pos_Emo.c:FT_Diff.100             -6.534e-02  1.781e-01
## pDem_Rep:wave3:Pos_Emo.c:FT_Diff.100             -9.340e-02  1.735e-01
## pDem_Rep:wave4:Pos_Emo.c:FT_Diff.100              1.382e-01  1.762e-01
## pDem_Rep:wave2:Neg_Emo.c:FT_Diff.100             -1.184e-01  1.815e-01
## pDem_Rep:wave3:Neg_Emo.c:FT_Diff.100              1.366e-01  1.801e-01
## pDem_Rep:wave4:Neg_Emo.c:FT_Diff.100              1.843e-01  1.881e-01
## pDem_Rep:trustGovt.c:Pos_Emo.c:FT_Diff.100       -8.941e-02  1.054e-01
## pDem_Rep:trustGovt.c:Neg_Emo.c:FT_Diff.100       -1.407e-01  1.191e-01
## wave2:trustGovt.c:Pos_Emo.c:FT_Diff.100          -1.516e-01  7.488e-02
## wave3:trustGovt.c:Pos_Emo.c:FT_Diff.100          -1.277e-01  7.296e-02
## wave4:trustGovt.c:Pos_Emo.c:FT_Diff.100          -4.273e-02  7.117e-02
## wave2:trustGovt.c:Neg_Emo.c:FT_Diff.100          -4.688e-02  7.956e-02
## wave3:trustGovt.c:Neg_Emo.c:FT_Diff.100          -7.227e-02  7.911e-02
## wave4:trustGovt.c:Neg_Emo.c:FT_Diff.100           2.180e-02  8.424e-02
## pDem_Rep:wave2:trustGovt.c:Pos_Emo.c:FT_Diff.100  1.441e-01  1.513e-01
## pDem_Rep:wave3:trustGovt.c:Pos_Emo.c:FT_Diff.100  1.750e-01  1.463e-01
## pDem_Rep:wave4:trustGovt.c:Pos_Emo.c:FT_Diff.100 -2.013e-02  1.418e-01
## pDem_Rep:wave2:trustGovt.c:Neg_Emo.c:FT_Diff.100  1.238e-01  1.596e-01
## pDem_Rep:wave3:trustGovt.c:Neg_Emo.c:FT_Diff.100 -4.645e-02  1.588e-01
## pDem_Rep:wave4:trustGovt.c:Neg_Emo.c:FT_Diff.100 -4.083e-02  1.689e-01
##                                                          df t value Pr(>|t|)
## (Intercept)                                       1.279e+03  14.984  < 2e-16
## pDem_Rep                                          4.300e+03  -6.728 1.95e-11
## wave2                                             3.368e+03   3.181 0.001482
## wave3                                             3.416e+03   3.077 0.002111
## wave4                                             3.404e+03   5.142 2.87e-07
## trustGovt.c                                       3.839e+03   5.245 1.65e-07
## Pos_Emo.c                                         3.693e+03   4.898 1.01e-06
## Neg_Emo.c                                         3.710e+03  -0.572 0.567629
## FT_Diff.100                                       4.049e+03  -2.024 0.043051
## govt_process                                      1.123e+03   1.915 0.055788
## representation_Dem                                1.243e+03   2.455 0.014226
## representation_Rep                                1.218e+03   2.070 0.038703
## GCB.c                                             1.166e+03  -8.688  < 2e-16
## pollAcc                                           4.307e+03   3.495 0.000479
## pollFreq.c                                        1.132e+03  -0.310 0.756346
## vs_age                                            1.161e+03   3.003 0.002731
## vs_raceBlack                                      1.164e+03  -4.148 3.60e-05
## vs_raceHispanic                                   1.136e+03   0.409 0.682765
## vs_raceOther                                      1.111e+03   0.000 0.999884
## male_female                                       1.118e+03  -5.283 1.53e-07
## nonbinary_mf                                      1.122e+03  -0.077 0.938540
## pDem_Rep:wave2                                    3.410e+03   3.910 9.39e-05
## pDem_Rep:wave3                                    3.437e+03   4.783 1.80e-06
## pDem_Rep:wave4                                    3.434e+03   4.914 9.34e-07
## pDem_Rep:trustGovt.c                              3.810e+03   2.401 0.016412
## wave2:trustGovt.c                                 3.358e+03  -2.083 0.037347
## wave3:trustGovt.c                                 3.483e+03  -1.325 0.185351
## wave4:trustGovt.c                                 3.560e+03  -0.271 0.786598
## pDem_Rep:Pos_Emo.c                                3.672e+03  -0.943 0.345646
## pDem_Rep:Neg_Emo.c                                3.647e+03  -0.717 0.473468
## wave2:Pos_Emo.c                                   3.462e+03  -1.079 0.280800
## wave3:Pos_Emo.c                                   3.478e+03  -2.645 0.008205
## wave4:Pos_Emo.c                                   3.539e+03  -3.405 0.000670
## wave2:Neg_Emo.c                                   3.484e+03  -1.217 0.223514
## wave3:Neg_Emo.c                                   3.487e+03  -1.432 0.152333
## wave4:Neg_Emo.c                                   3.478e+03   0.610 0.541834
## trustGovt.c:Pos_Emo.c                             3.673e+03  -2.152 0.031491
## trustGovt.c:Neg_Emo.c                             3.659e+03   0.059 0.952920
## pDem_Rep:FT_Diff.100                              4.047e+03  -4.239 2.29e-05
## wave2:FT_Diff.100                                 3.441e+03   0.779 0.435977
## wave3:FT_Diff.100                                 3.476e+03   1.597 0.110330
## wave4:FT_Diff.100                                 3.487e+03  -0.579 0.562471
## trustGovt.c:FT_Diff.100                           3.737e+03  -0.780 0.435596
## Pos_Emo.c:FT_Diff.100                             3.631e+03  -0.395 0.693113
## Neg_Emo.c:FT_Diff.100                             3.672e+03  -0.510 0.610171
## pDem_Rep:wave2:trustGovt.c                        3.386e+03  -1.159 0.246660
## pDem_Rep:wave3:trustGovt.c                        3.486e+03  -1.647 0.099617
## pDem_Rep:wave4:trustGovt.c                        3.566e+03  -1.950 0.051213
## pDem_Rep:wave2:Pos_Emo.c                          3.513e+03   1.244 0.213711
## pDem_Rep:wave3:Pos_Emo.c                          3.494e+03   2.165 0.030454
## pDem_Rep:wave4:Pos_Emo.c                          3.562e+03   0.224 0.822968
## pDem_Rep:wave2:Neg_Emo.c                          3.508e+03   0.156 0.876242
## pDem_Rep:wave3:Neg_Emo.c                          3.499e+03   0.664 0.506874
## pDem_Rep:wave4:Neg_Emo.c                          3.506e+03   0.018 0.985724
## pDem_Rep:trustGovt.c:Pos_Emo.c                    3.649e+03   1.059 0.289617
## pDem_Rep:trustGovt.c:Neg_Emo.c                    3.640e+03   1.319 0.187098
## wave2:trustGovt.c:Pos_Emo.c                       3.487e+03   1.948 0.051465
## wave3:trustGovt.c:Pos_Emo.c                       3.520e+03   2.686 0.007273
## wave4:trustGovt.c:Pos_Emo.c                       3.525e+03   1.784 0.074514
## wave2:trustGovt.c:Neg_Emo.c                       3.430e+03   0.985 0.324913
## wave3:trustGovt.c:Neg_Emo.c                       3.523e+03   0.658 0.510422
## wave4:trustGovt.c:Neg_Emo.c                       3.533e+03   0.400 0.689371
## pDem_Rep:wave2:FT_Diff.100                        3.446e+03   1.702 0.088885
## pDem_Rep:wave3:FT_Diff.100                        3.476e+03   2.973 0.002971
## pDem_Rep:wave4:FT_Diff.100                        3.503e+03   2.847 0.004445
## pDem_Rep:trustGovt.c:FT_Diff.100                  3.740e+03   1.137 0.255618
## wave2:trustGovt.c:FT_Diff.100                     3.448e+03   0.870 0.384417
## wave3:trustGovt.c:FT_Diff.100                     3.527e+03  -0.481 0.630686
## wave4:trustGovt.c:FT_Diff.100                     3.624e+03  -0.667 0.504578
## pDem_Rep:Pos_Emo.c:FT_Diff.100                    3.632e+03   0.708 0.479148
## pDem_Rep:Neg_Emo.c:FT_Diff.100                    3.661e+03  -0.307 0.758597
## wave2:Pos_Emo.c:FT_Diff.100                       3.509e+03   2.293 0.021927
## wave3:Pos_Emo.c:FT_Diff.100                       3.466e+03   1.446 0.148395
## wave4:Pos_Emo.c:FT_Diff.100                       3.551e+03   1.918 0.055171
## wave2:Neg_Emo.c:FT_Diff.100                       3.468e+03   0.232 0.816537
## wave3:Neg_Emo.c:FT_Diff.100                       3.527e+03   1.626 0.103970
## wave4:Neg_Emo.c:FT_Diff.100                       3.498e+03  -0.748 0.454264
## trustGovt.c:Pos_Emo.c:FT_Diff.100                 3.628e+03   1.257 0.208660
## trustGovt.c:Neg_Emo.c:FT_Diff.100                 3.655e+03  -0.218 0.827737
## pDem_Rep:wave2:trustGovt.c:Pos_Emo.c              3.546e+03  -1.176 0.239510
## pDem_Rep:wave3:trustGovt.c:Pos_Emo.c              3.534e+03  -1.239 0.215301
## pDem_Rep:wave4:trustGovt.c:Pos_Emo.c              3.518e+03  -0.219 0.826400
## pDem_Rep:wave2:trustGovt.c:Neg_Emo.c              3.457e+03  -0.682 0.495357
## pDem_Rep:wave3:trustGovt.c:Neg_Emo.c              3.519e+03  -0.624 0.532987
## pDem_Rep:wave4:trustGovt.c:Neg_Emo.c              3.554e+03  -0.427 0.669402
## pDem_Rep:wave2:trustGovt.c:FT_Diff.100            3.452e+03  -0.629 0.529246
## pDem_Rep:wave3:trustGovt.c:FT_Diff.100            3.532e+03  -1.160 0.246049
## pDem_Rep:wave4:trustGovt.c:FT_Diff.100            3.625e+03  -0.702 0.482817
## pDem_Rep:wave2:Pos_Emo.c:FT_Diff.100              3.545e+03  -0.367 0.713765
## pDem_Rep:wave3:Pos_Emo.c:FT_Diff.100              3.486e+03  -0.538 0.590457
## pDem_Rep:wave4:Pos_Emo.c:FT_Diff.100              3.582e+03   0.784 0.432976
## pDem_Rep:wave2:Neg_Emo.c:FT_Diff.100              3.473e+03  -0.652 0.514282
## pDem_Rep:wave3:Neg_Emo.c:FT_Diff.100              3.517e+03   0.758 0.448207
## pDem_Rep:wave4:Neg_Emo.c:FT_Diff.100              3.527e+03   0.980 0.327292
## pDem_Rep:trustGovt.c:Pos_Emo.c:FT_Diff.100        3.622e+03  -0.848 0.396465
## pDem_Rep:trustGovt.c:Neg_Emo.c:FT_Diff.100        3.637e+03  -1.181 0.237675
## wave2:trustGovt.c:Pos_Emo.c:FT_Diff.100           3.529e+03  -2.024 0.043030
## wave3:trustGovt.c:Pos_Emo.c:FT_Diff.100           3.551e+03  -1.750 0.080175
## wave4:trustGovt.c:Pos_Emo.c:FT_Diff.100           3.536e+03  -0.600 0.548325
## wave2:trustGovt.c:Neg_Emo.c:FT_Diff.100           3.444e+03  -0.589 0.555727
## wave3:trustGovt.c:Neg_Emo.c:FT_Diff.100           3.610e+03  -0.913 0.361070
## wave4:trustGovt.c:Neg_Emo.c:FT_Diff.100           3.590e+03   0.259 0.795807
## pDem_Rep:wave2:trustGovt.c:Pos_Emo.c:FT_Diff.100  3.570e+03   0.952 0.340971
## pDem_Rep:wave3:trustGovt.c:Pos_Emo.c:FT_Diff.100  3.564e+03   1.197 0.231576
## pDem_Rep:wave4:trustGovt.c:Pos_Emo.c:FT_Diff.100  3.522e+03  -0.142 0.887064
## pDem_Rep:wave2:trustGovt.c:Neg_Emo.c:FT_Diff.100  3.453e+03   0.776 0.437913
## pDem_Rep:wave3:trustGovt.c:Neg_Emo.c:FT_Diff.100  3.620e+03  -0.293 0.769904
## pDem_Rep:wave4:trustGovt.c:Neg_Emo.c:FT_Diff.100  3.597e+03  -0.242 0.808973
##                                                     
## (Intercept)                                      ***
## pDem_Rep                                         ***
## wave2                                            ** 
## wave3                                            ** 
## wave4                                            ***
## trustGovt.c                                      ***
## Pos_Emo.c                                        ***
## Neg_Emo.c                                           
## FT_Diff.100                                      *  
## govt_process                                     .  
## representation_Dem                               *  
## representation_Rep                               *  
## GCB.c                                            ***
## pollAcc                                          ***
## pollFreq.c                                          
## vs_age                                           ** 
## vs_raceBlack                                     ***
## vs_raceHispanic                                     
## vs_raceOther                                        
## male_female                                      ***
## nonbinary_mf                                        
## pDem_Rep:wave2                                   ***
## pDem_Rep:wave3                                   ***
## pDem_Rep:wave4                                   ***
## pDem_Rep:trustGovt.c                             *  
## wave2:trustGovt.c                                *  
## wave3:trustGovt.c                                   
## wave4:trustGovt.c                                   
## pDem_Rep:Pos_Emo.c                                  
## pDem_Rep:Neg_Emo.c                                  
## wave2:Pos_Emo.c                                     
## wave3:Pos_Emo.c                                  ** 
## wave4:Pos_Emo.c                                  ***
## wave2:Neg_Emo.c                                     
## wave3:Neg_Emo.c                                     
## wave4:Neg_Emo.c                                     
## trustGovt.c:Pos_Emo.c                            *  
## trustGovt.c:Neg_Emo.c                               
## pDem_Rep:FT_Diff.100                             ***
## wave2:FT_Diff.100                                   
## wave3:FT_Diff.100                                   
## wave4:FT_Diff.100                                   
## trustGovt.c:FT_Diff.100                             
## Pos_Emo.c:FT_Diff.100                               
## Neg_Emo.c:FT_Diff.100                               
## pDem_Rep:wave2:trustGovt.c                          
## pDem_Rep:wave3:trustGovt.c                       .  
## pDem_Rep:wave4:trustGovt.c                       .  
## pDem_Rep:wave2:Pos_Emo.c                            
## pDem_Rep:wave3:Pos_Emo.c                         *  
## pDem_Rep:wave4:Pos_Emo.c                            
## pDem_Rep:wave2:Neg_Emo.c                            
## pDem_Rep:wave3:Neg_Emo.c                            
## pDem_Rep:wave4:Neg_Emo.c                            
## pDem_Rep:trustGovt.c:Pos_Emo.c                      
## pDem_Rep:trustGovt.c:Neg_Emo.c                      
## wave2:trustGovt.c:Pos_Emo.c                      .  
## wave3:trustGovt.c:Pos_Emo.c                      ** 
## wave4:trustGovt.c:Pos_Emo.c                      .  
## wave2:trustGovt.c:Neg_Emo.c                         
## wave3:trustGovt.c:Neg_Emo.c                         
## wave4:trustGovt.c:Neg_Emo.c                         
## pDem_Rep:wave2:FT_Diff.100                       .  
## pDem_Rep:wave3:FT_Diff.100                       ** 
## pDem_Rep:wave4:FT_Diff.100                       ** 
## pDem_Rep:trustGovt.c:FT_Diff.100                    
## wave2:trustGovt.c:FT_Diff.100                       
## wave3:trustGovt.c:FT_Diff.100                       
## wave4:trustGovt.c:FT_Diff.100                       
## pDem_Rep:Pos_Emo.c:FT_Diff.100                      
## pDem_Rep:Neg_Emo.c:FT_Diff.100                      
## wave2:Pos_Emo.c:FT_Diff.100                      *  
## wave3:Pos_Emo.c:FT_Diff.100                         
## wave4:Pos_Emo.c:FT_Diff.100                      .  
## wave2:Neg_Emo.c:FT_Diff.100                         
## wave3:Neg_Emo.c:FT_Diff.100                         
## wave4:Neg_Emo.c:FT_Diff.100                         
## trustGovt.c:Pos_Emo.c:FT_Diff.100                   
## trustGovt.c:Neg_Emo.c:FT_Diff.100                   
## pDem_Rep:wave2:trustGovt.c:Pos_Emo.c                
## pDem_Rep:wave3:trustGovt.c:Pos_Emo.c                
## pDem_Rep:wave4:trustGovt.c:Pos_Emo.c                
## pDem_Rep:wave2:trustGovt.c:Neg_Emo.c                
## pDem_Rep:wave3:trustGovt.c:Neg_Emo.c                
## pDem_Rep:wave4:trustGovt.c:Neg_Emo.c                
## pDem_Rep:wave2:trustGovt.c:FT_Diff.100              
## pDem_Rep:wave3:trustGovt.c:FT_Diff.100              
## pDem_Rep:wave4:trustGovt.c:FT_Diff.100              
## pDem_Rep:wave2:Pos_Emo.c:FT_Diff.100                
## pDem_Rep:wave3:Pos_Emo.c:FT_Diff.100                
## pDem_Rep:wave4:Pos_Emo.c:FT_Diff.100                
## pDem_Rep:wave2:Neg_Emo.c:FT_Diff.100                
## pDem_Rep:wave3:Neg_Emo.c:FT_Diff.100                
## pDem_Rep:wave4:Neg_Emo.c:FT_Diff.100                
## pDem_Rep:trustGovt.c:Pos_Emo.c:FT_Diff.100          
## pDem_Rep:trustGovt.c:Neg_Emo.c:FT_Diff.100          
## wave2:trustGovt.c:Pos_Emo.c:FT_Diff.100          *  
## wave3:trustGovt.c:Pos_Emo.c:FT_Diff.100          .  
## wave4:trustGovt.c:Pos_Emo.c:FT_Diff.100             
## wave2:trustGovt.c:Neg_Emo.c:FT_Diff.100             
## wave3:trustGovt.c:Neg_Emo.c:FT_Diff.100             
## wave4:trustGovt.c:Neg_Emo.c:FT_Diff.100             
## pDem_Rep:wave2:trustGovt.c:Pos_Emo.c:FT_Diff.100    
## pDem_Rep:wave3:trustGovt.c:Pos_Emo.c:FT_Diff.100    
## pDem_Rep:wave4:trustGovt.c:Pos_Emo.c:FT_Diff.100    
## pDem_Rep:wave2:trustGovt.c:Neg_Emo.c:FT_Diff.100    
## pDem_Rep:wave3:trustGovt.c:Neg_Emo.c:FT_Diff.100    
## pDem_Rep:wave4:trustGovt.c:Neg_Emo.c:FT_Diff.100    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 48 columns / coefficients

PEL Path Models

LGM

library(lavaan)

#d1 <- read.csv("Documents/Research/24_ElectionStudy/data + analyses/2024ElectionStudy_cleancases_w1.csv", na = "NA")
#d2 <- read.csv("Documents/Research/24_ElectionStudy/data + analyses/2024ElectionStudy_cleancases_w2.csv", fileEncoding="latin1")
#d3 <- read.csv("Documents/Research/24_ElectionStudy/data + analyses/2024ElectionStudy_cleancases_w3.csv", na = "NA")
#d4 <- read.csv("Documents/Research/24_ElectionStudy/data + analyses/2024ElectionStudy_cleancases_w4.csv", na = "NA")

#d.wide <- d1 %>% left_join(d2, by = "pid")
#d.wide <- d.wide %>% left_join(d3, by = "pid")
#d.wide <- d.wide %>% left_join(d4, by = "pid")

#write.csv(d.wide, "Documents/Research/24_ElectionStudy/data + analyses/2024ElectionStudy_cleancases_wide.csv")

d.wide <- read.csv("Documents/Research/24_ElectionStudy/data + analyses/2024ElectionStudy_cleancases_wide.csv")

PEL.lgm_model <- '
  # Define latent intercept and slope factors
  i =~ 1*voteconfidence_w1 + 1*voteconfidence_w2 + 1*voteconfidence_w3 + 1*voteconfidence_w4
  s =~ 0*voteconfidence_w1 + 1*voteconfidence_w2 + 2*voteconfidence_w3 + 3*voteconfidence_w4

  # Estimate means of latent factors
  i ~ 1
  s ~ 1

  # Estimate variances and covariance
  i ~~ i
  s ~~ s
  i ~~ s

  # Estimate residual variances of observed variables
  voteconfidence_w1 ~~ voteconfidence_w1
  voteconfidence_w2 ~~ voteconfidence_w2
  voteconfidence_w3 ~~ voteconfidence_w3
  voteconfidence_w4 ~~ voteconfidence_w4
'

fit <- lavaan::growth(PEL.lgm_model, data = d.wide)
summary(fit, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-19 ended normally after 30 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         9
## 
##                                                   Used       Total
##   Number of observations                          1270        2615
## 
## Model Test User Model:
##                                                       
##   Test statistic                               134.438
##   Degrees of freedom                                 5
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2114.906
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.939
##   Tucker-Lewis Index (TLI)                       0.926
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -7018.605
##   Loglikelihood unrestricted model (H1)      -6951.386
##                                                       
##   Akaike (AIC)                               14055.210
##   Bayesian (BIC)                             14101.531
##   Sample-size adjusted Bayesian (SABIC)      14072.943
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.143
##   90 Percent confidence interval - lower         0.123
##   90 Percent confidence interval - upper         0.164
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.075
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   i =~                                                                  
##     voteconfdnc_w1    1.000                               0.789    0.581
##     voteconfdnc_w2    1.000                               0.789    0.706
##     voteconfdnc_w3    1.000                               0.789    0.736
##     voteconfdnc_w4    1.000                               0.789    0.660
##   s =~                                                                  
##     voteconfdnc_w1    0.000                               0.000    0.000
##     voteconfdnc_w2    1.000                               0.152    0.136
##     voteconfdnc_w3    2.000                               0.304    0.284
##     voteconfdnc_w4    3.000                               0.456    0.381
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   i ~~                                                                  
##     s                 0.031    0.017    1.843    0.065    0.262    0.262
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     i                 3.502    0.031  113.159    0.000    4.436    4.436
##     s                 0.001    0.011    0.070    0.944    0.005    0.005
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     i                 0.623    0.053   11.844    0.000    1.000    1.000
##     s                 0.023    0.009    2.670    0.008    1.000    1.000
##    .voteconfdnc_w1    1.223    0.062   19.678    0.000    1.223    0.662
##    .voteconfdnc_w2    0.541    0.028   19.388    0.000    0.541    0.433
##    .voteconfdnc_w3    0.309    0.020   15.521    0.000    0.309    0.268
##    .voteconfdnc_w4    0.410    0.032   12.675    0.000    0.410    0.287

LGM with moderators

d.wide$dem_rep_w1 <- ifelse(d.wide$party_factor_w1 == "Republican", 1, 0)
d.wide$dem_ind_w1 <- ifelse(d.wide$party_factor_w1 == "Independent", 1, 0)

d.wide$dem_rep_w2 <- ifelse(d.wide$party_factor_w2 == "Republican", 1, 0)
d.wide$dem_ind_w2 <- ifelse(d.wide$party_factor_w2 == "Independent", 1, 0)

d.wide$dem_rep_w3 <- ifelse(d.wide$party_factor_w3 == "Republican", 1, 0)
d.wide$dem_ind_w3 <- ifelse(d.wide$party_factor_w3 == "Independent", 1, 0)

d.wide$dem_rep_w4 <- ifelse(d.wide$party_factor_w4 == "Republican", 1, 0)
d.wide$dem_ind_w4 <- ifelse(d.wide$party_factor_w4 == "Independent", 1, 0)

d.wide$FT_DemminusRep_w1.100 <- d.wide$FT_DemminusRep_w1/100
d.wide$FT_DemminusRep_w2.100 <- d.wide$FT_DemminusRep_w2/100
d.wide$FT_DemminusRep_w3.100 <- d.wide$FT_DemminusRep_w3/100
d.wide$FT_DemminusRep_w4.100 <- d.wide$FT_DemminusRep_w4/100

PEL.lgm_exp <- '
  ### 1. Latent growth factors ###
  i =~ 1*voteconfidence_w1 + 1*voteconfidence_w2 + 1*voteconfidence_w3 + 1*voteconfidence_w4
  s =~ 0*voteconfidence_w1 + 1*voteconfidence_w2 + 2*voteconfidence_w3 + 3*voteconfidence_w4

  ### 2. Time-invariant predictors (trait-level moderators) ###
  i ~ pollAcc
  s ~ pollAcc

  ### 3. Time-varying predictors (state-level moderators)
  voteconfidence_w1 ~ trustGovt_w1
  voteconfidence_w3 ~ trustGovt_w3
  voteconfidence_w4 ~ trustGovt_w4
  
  voteconfidence_w1 ~ dem_rep_w1
  voteconfidence_w2 ~ dem_rep_w2
  voteconfidence_w3 ~ dem_rep_w3
  voteconfidence_w4 ~ dem_rep_w4
  
  voteconfidence_w1 ~ dem_ind_w1
  voteconfidence_w2 ~ dem_ind_w2
  voteconfidence_w3 ~ dem_ind_w3
  voteconfidence_w4 ~ dem_ind_w4
  
  voteconfidence_w1 ~ Pos_Emo_w1
  voteconfidence_w2 ~ Pos_Emo_w2
  voteconfidence_w3 ~ Pos_Emo_w3
  voteconfidence_w4 ~ Pos_Emo_w4
  
  voteconfidence_w1 ~ Neg_Emo_w1
  voteconfidence_w2 ~ Neg_Emo_w2
  voteconfidence_w3 ~ Neg_Emo_w3
  voteconfidence_w4 ~ Neg_Emo_w4
  
  voteconfidence_w1 ~ FT_DemminusRep_w1.100
  voteconfidence_w2 ~ FT_DemminusRep_w2.100
  voteconfidence_w3 ~ FT_DemminusRep_w3.100
  voteconfidence_w4 ~ FT_DemminusRep_w4.100

  ### 4. Optional: Variances and covariances ###
  i ~~ s
  i ~~ i
  s ~~ s
  voteconfidence_w1 ~~ voteconfidence_w1
  voteconfidence_w2 ~~ voteconfidence_w2
  voteconfidence_w3 ~~ voteconfidence_w3
  voteconfidence_w4 ~~ voteconfidence_w4
'

#fit.lgm_exp <- sem(PEL.lgm_exp, data = d.wide, missing = "ML", fixed.x = F)
#summary(fit.lgm_exp, standardized = TRUE, fit.measures = TRUE)

PEL.lgm_dexp <- '
  ### 1. Latent growth factors ###
  i =~ 1*voteconfidence_w1 + 1*voteconfidence_w2 + 1*voteconfidence_w3 + 1*voteconfidence_w4
  s =~ 0*voteconfidence_w1 + 1*voteconfidence_w2 + 2*voteconfidence_w3 + 3*voteconfidence_w4

  ### 2. Time-invariant predictors (trait-level moderators) ###
  i ~ pollAcc + dem_rep_w1 + dem_ind_w1
  s ~ pollAcc + dem_rep_w1 + dem_ind_w1

  ### 3. Time-varying predictors (state-level moderators)
  voteconfidence_w1 ~ trustGovt_w1
  voteconfidence_w3 ~ trustGovt_w3
  voteconfidence_w4 ~ trustGovt_w4
  
  voteconfidence_w1 ~ Pos_Emo_w1
  voteconfidence_w2 ~ Pos_Emo_w2
  voteconfidence_w3 ~ Pos_Emo_w3
  voteconfidence_w4 ~ Pos_Emo_w4
  
  voteconfidence_w1 ~ Neg_Emo_w1
  voteconfidence_w2 ~ Neg_Emo_w2
  voteconfidence_w3 ~ Neg_Emo_w3
  voteconfidence_w4 ~ Neg_Emo_w4
  
  ### 4. Optional: Variances and covariances ###
  i ~~ s
  i ~~ i
  s ~~ s
  voteconfidence_w1 ~~ voteconfidence_w1
  voteconfidence_w2 ~~ voteconfidence_w2
  voteconfidence_w3 ~~ voteconfidence_w3
  voteconfidence_w4 ~~ voteconfidence_w4
'

#fit.lgm_dexp <- sem(PEL.lgm_dexp, data = d.wide, missing = "ML", fixed.x = F)
#summary(fit.lgm_dexp, standardized = TRUE, fit.measures = TRUE)

d.wide$trustDR_int1 <- d.wide$trustGovt_w1 * d.wide$dem_rep_w1
# d.wide$trustDR_int2 <- d.wide$trustGovt_w2 * d.wide$dem_rep_w2
d.wide$trustDR_int3 <- d.wide$trustGovt_w3 * d.wide$dem_rep_w3
d.wide$trustDR_int4 <- d.wide$trustGovt_w4 * d.wide$dem_rep_w4

d.wide$trustDI_int1 <- d.wide$trustGovt_w1 * d.wide$dem_ind_w1
# d.wide$trustDI_int2 <- d.wide$trustGovt_w2 * d.wide$dem_ind_w2
d.wide$trustDI_int3 <- d.wide$trustGovt_w3 * d.wide$dem_ind_w3
d.wide$trustDI_int4 <- d.wide$trustGovt_w4 * d.wide$dem_ind_w4

d.wide$posemoDR_int1 <- d.wide$Pos_Emo_w1 * d.wide$dem_rep_w1
d.wide$posemoDR_int2 <- d.wide$Pos_Emo_w2 * d.wide$dem_rep_w2
d.wide$posemoDR_int3 <- d.wide$Pos_Emo_w3 * d.wide$dem_rep_w3
d.wide$posemoDR_int4 <- d.wide$Pos_Emo_w4 * d.wide$dem_rep_w4

d.wide$negemoDR_int1 <- d.wide$Neg_Emo_w1 * d.wide$dem_rep_w1
d.wide$negemoDR_int2 <- d.wide$Neg_Emo_w2 * d.wide$dem_rep_w2
d.wide$negemoDR_int3 <- d.wide$Neg_Emo_w3 * d.wide$dem_rep_w3
d.wide$negemoDR_int4 <- d.wide$Neg_Emo_w4 * d.wide$dem_rep_w4

d.wide$posemoDI_int1 <- d.wide$Pos_Emo_w1 * d.wide$dem_ind_w1
d.wide$posemoDI_int2 <- d.wide$Pos_Emo_w2 * d.wide$dem_ind_w2
d.wide$posemoDI_int3 <- d.wide$Pos_Emo_w3 * d.wide$dem_ind_w3
d.wide$posemoDI_int4 <- d.wide$Pos_Emo_w4 * d.wide$dem_ind_w4

d.wide$negemoDI_int1 <- d.wide$Neg_Emo_w1 * d.wide$dem_ind_w1
d.wide$negemoDI_int2 <- d.wide$Neg_Emo_w2 * d.wide$dem_ind_w2
d.wide$negemoDI_int3 <- d.wide$Neg_Emo_w3 * d.wide$dem_ind_w3
d.wide$negemoDI_int4 <- d.wide$Neg_Emo_w4 * d.wide$dem_ind_w4


PEL.lgm_int <- '
  ### 1. Latent growth factors ###
  i =~ 1*voteconfidence_w1 + 1*voteconfidence_w2 + 1*voteconfidence_w3 + 1*voteconfidence_w4
  s =~ 0*voteconfidence_w1 + 1*voteconfidence_w2 + 2*voteconfidence_w3 + 5*voteconfidence_w4

  ### 2. Time-invariant predictors (trait-level moderators) ###
  i ~ pollAcc + dem_rep_w1 + dem_ind_w1 + GCB
  s ~ pollAcc + dem_rep_w1 + dem_ind_w1 + GCB

  ### 3. Time-varying predictors (state-level moderators)
  voteconfidence_w1 ~ trustGovt_w1 + trustDR_int1 + trustDI_int1
  voteconfidence_w3 ~ trustGovt_w3 + trustDR_int3 + trustDI_int3
  voteconfidence_w4 ~ trustGovt_w4 + trustDR_int4 + trustDI_int4
  
  voteconfidence_w1 ~ Pos_Emo_w1 + posemoDR_int1 + posemoDI_int1
  voteconfidence_w2 ~ Pos_Emo_w2 + posemoDR_int2 + posemoDI_int2
  voteconfidence_w3 ~ Pos_Emo_w3 + posemoDR_int3 + posemoDI_int3
  voteconfidence_w4 ~ Pos_Emo_w4 + posemoDR_int4 + posemoDI_int4
  
  voteconfidence_w1 ~ Neg_Emo_w1 + negemoDR_int1 + negemoDI_int1
  voteconfidence_w2 ~ Neg_Emo_w2 + negemoDR_int2 + negemoDI_int2
  voteconfidence_w3 ~ Neg_Emo_w3 + negemoDR_int3 + negemoDI_int3
  voteconfidence_w4 ~ Neg_Emo_w4 + negemoDR_int4 + negemoDI_int4
  
  ### 4. Optional: Variances and covariances ###
  i ~~ s
  i ~~ i
  s ~~ s
  voteconfidence_w1 ~~ voteconfidence_w1
  voteconfidence_w2 ~~ voteconfidence_w2
  voteconfidence_w3 ~~ voteconfidence_w3
  voteconfidence_w4 ~~ voteconfidence_w4
'

fit.lgm_int <- sem(PEL.lgm_int, data = d.wide, missing = "ML", fixed.x = F)
kable(summary(fit.lgm_int, standardized = TRUE, fit.measures = TRUE))
x
0.6-19
x
FALSE
x
nlminb
x
670
x
TRUE
x
ML
x
nlminb
x
792
x
FALSE
x
0
x
0
x
0
x
0
x
1
x
2615
x
10
x
standard
x
457.3762
x
457.3762
x
110
x
chisq
x
0
x
npar 7.920000e+02
fmin 8.745243e-02
chisq 4.573762e+02
df 1.100000e+02
pvalue 0.000000e+00
baseline.chisq 5.271884e+03
baseline.df 1.540000e+02
baseline.pvalue 0.000000e+00
cfi 9.321250e-01
tli 9.049750e-01
cfi.robust 9.325320e-01
tli.robust 9.055448e-01
logl -7.659463e+04
unrestricted.logl -7.636594e+04
aic 1.547733e+05
bic 1.594215e+05
ntotal 2.615000e+03
bic2 1.569051e+05
rmsea 3.475104e-02
rmsea.ci.lower 3.148405e-02
rmsea.ci.upper 3.808313e-02
rmsea.ci.level 9.000000e-01
rmsea.pvalue 1.000000e+00
rmsea.close.h0 5.000000e-02
rmsea.notclose.pvalue 3.044113e-120
rmsea.notclose.h0 8.000000e-02
rmsea.robust 4.065754e-02
rmsea.ci.lower.robust 3.627730e-02
rmsea.ci.upper.robust 4.511980e-02
rmsea.pvalue.robust 9.997605e-01
rmsea.notclose.pvalue.robust 5.394358e-52
srmr 1.689579e-02
lhs op rhs exo est se z pvalue std.lv std.all
i =~ voteconfidence_w1 0 1.0000000 0.0000000 NA NA 0.7881601 0.6142407
i =~ voteconfidence_w2 0 1.0000000 0.0000000 NA NA 0.7881601 0.7077050
i =~ voteconfidence_w3 0 1.0000000 0.0000000 NA NA 0.7881601 0.7356515
i =~ voteconfidence_w4 0 1.0000000 0.0000000 NA NA 0.7881601 0.6550102
s =~ voteconfidence_w1 0 0.0000000 0.0000000 NA NA 0.0000000 0.0000000
s =~ voteconfidence_w2 0 1.0000000 0.0000000 NA NA 0.1203052 0.1080245
s =~ voteconfidence_w3 0 2.0000000 0.0000000 NA NA 0.2406105 0.2245806
s =~ voteconfidence_w4 0 5.0000000 0.0000000 NA NA 0.6015262 0.4999058
i ~ pollAcc 0 0.0508841 0.0129362 3.9334654 0.0000837 0.0645606 0.0954478
i ~ dem_rep_w1 0 -0.2622965 0.0828406 -3.1662790 0.0015440 -0.3327959 -0.1611265
i ~ dem_ind_w1 0 -0.4711020 0.0955068 -4.9326521 0.0000008 -0.5977237 -0.1992547
i ~ GCB 0 -0.2632639 0.0191712 -13.7322770 0.0000000 -0.3340233 -0.3212397
s ~ pollAcc 0 0.0003663 0.0036162 0.1012877 0.9193221 0.0030445 0.0045011
s ~ dem_rep_w1 0 -0.0286552 0.0271094 -1.0570211 0.2905020 -0.2381876 -0.1153209
s ~ dem_ind_w1 0 -0.0080355 0.0298444 -0.2692456 0.7877407 -0.0667925 -0.0222657
s ~ GCB 0 -0.0030682 0.0056640 -0.5417108 0.5880177 -0.0255038 -0.0245277
voteconfidence_w1 ~ trustGovt_w1 0 0.1025832 0.0256548 3.9986028 0.0000637 0.1025832 0.0890279
voteconfidence_w1 ~ trustDR_int1 0 0.2966660 0.0381918 7.7677968 0.0000000 0.2966660 0.1701645
voteconfidence_w1 ~ trustDI_int1 0 0.2672628 0.0556394 4.8034838 0.0000016 0.2672628 0.0872270
voteconfidence_w3 ~ trustGovt_w3 0 0.1368361 0.0256778 5.3289529 0.0000001 0.1368361 0.1277304
voteconfidence_w3 ~ trustDR_int3 0 -0.0388816 0.0354454 -1.0969444 0.2726657 -0.0388816 -0.0262558
voteconfidence_w3 ~ trustDI_int3 0 0.0817003 0.0583502 1.4001732 0.1614615 0.0817003 0.0329637
voteconfidence_w4 ~ trustGovt_w4 0 0.1992302 0.0359172 5.5469225 0.0000000 0.1992302 0.1814645
voteconfidence_w4 ~ trustDR_int4 0 -0.1368555 0.0485065 -2.8213856 0.0047817 -0.1368555 -0.0809501
voteconfidence_w4 ~ trustDI_int4 0 0.0662837 0.0774932 0.8553489 0.3923580 0.0662837 0.0268718
voteconfidence_w1 ~ Pos_Emo_w1 0 0.1948502 0.0201583 9.6660178 0.0000000 0.1948502 0.1740981
voteconfidence_w1 ~ posemoDR_int1 0 -0.0636449 0.0261577 -2.4331246 0.0149691 -0.0636449 -0.0748295
voteconfidence_w1 ~ posemoDI_int1 0 -0.1617716 0.0375320 -4.3102337 0.0000163 -0.1617716 -0.1138799
voteconfidence_w2 ~ Pos_Emo_w2 0 0.2029460 0.0195129 10.4006334 0.0000000 0.2029460 0.2592217
voteconfidence_w2 ~ posemoDR_int2 0 0.0784617 0.0214742 3.6537741 0.0002584 0.0784617 0.1368476
voteconfidence_w2 ~ posemoDI_int2 0 -0.0191156 0.0350118 -0.5459771 0.5850817 -0.0191156 -0.0139599
voteconfidence_w3 ~ Pos_Emo_w3 0 0.0997236 0.0206496 4.8293222 0.0000014 0.0997236 0.1261762
voteconfidence_w3 ~ posemoDR_int3 0 0.0932459 0.0221097 4.2174148 0.0000247 0.0932459 0.1613522
voteconfidence_w3 ~ posemoDI_int3 0 0.1093713 0.0358772 3.0484923 0.0022999 0.1093713 0.0800408
voteconfidence_w4 ~ Pos_Emo_w4 0 0.0803650 0.0286062 2.8093565 0.0049641 0.0803650 0.0901176
voteconfidence_w4 ~ posemoDR_int4 0 0.0630613 0.0316608 1.9917802 0.0463952 0.0630613 0.0956866
voteconfidence_w4 ~ posemoDI_int4 0 0.0500256 0.0523499 0.9556000 0.3392744 0.0500256 0.0311001
voteconfidence_w1 ~ Neg_Emo_w1 0 0.0099144 0.0208464 0.4755933 0.6343641 0.0099144 0.0087312
voteconfidence_w1 ~ negemoDR_int1 0 -0.1072739 0.0295065 -3.6356066 0.0002773 -0.1072739 -0.1100851
voteconfidence_w1 ~ negemoDI_int1 0 0.0683000 0.0421729 1.6195230 0.1053348 0.0683000 0.0443967
voteconfidence_w2 ~ Neg_Emo_w2 0 -0.0454578 0.0165071 -2.7538343 0.0058902 -0.0454578 -0.0582467
voteconfidence_w2 ~ negemoDR_int2 0 -0.1107204 0.0281555 -3.9324620 0.0000841 -0.1107204 -0.0927912
voteconfidence_w2 ~ negemoDI_int2 0 -0.0181926 0.0324257 -0.5610534 0.5747611 -0.0181926 -0.0131814
voteconfidence_w3 ~ Neg_Emo_w3 0 -0.0359255 0.0181492 -1.9794578 0.0477645 -0.0359255 -0.0440943
voteconfidence_w3 ~ negemoDR_int3 0 -0.0142648 0.0290386 -0.4912377 0.6232583 -0.0142648 -0.0124021
voteconfidence_w3 ~ negemoDI_int3 0 -0.0237109 0.0381958 -0.6207718 0.5347498 -0.0237109 -0.0175006
voteconfidence_w4 ~ Neg_Emo_w4 0 -0.1015488 0.0245649 -4.1339041 0.0000357 -0.1015488 -0.1200268
voteconfidence_w4 ~ negemoDR_int4 0 0.0712595 0.0387558 1.8386809 0.0659621 0.0712595 0.0571874
voteconfidence_w4 ~ negemoDI_int4 0 0.0100488 0.0497373 0.2020373 0.8398876 0.0100488 0.0076562
i ~~ s 0 0.0142628 0.0060514 2.3569624 0.0184251 0.1674553 0.1674553
i ~~ i 0 0.5083576 0.0239887 21.1915675 0.0000000 0.8183525 0.8183525
s ~~ s 0 0.0142707 0.0030810 4.6318211 0.0000036 0.9859970 0.9859970
voteconfidence_w1 ~~ voteconfidence_w1 0 0.5489217 0.0236905 23.1705801 0.0000000 0.5489217 0.3333946
voteconfidence_w2 ~~ voteconfidence_w2 0 0.4925552 0.0194490 25.3255342 0.0000000 0.4925552 0.3971281
voteconfidence_w3 ~~ voteconfidence_w3 0 0.3535119 0.0167308 21.1294304 0.0000000 0.3535119 0.3079778
voteconfidence_w4 ~~ voteconfidence_w4 0 0.2266665 0.0476463 4.7572750 0.0000020 0.2266665 0.1565506
pollAcc ~~ pollAcc 0 2.1857302 0.0651286 33.5602031 0.0000000 2.1857302 1.0000000
pollAcc ~~ dem_rep_w1 0 0.0168810 0.0149316 1.1305558 0.2582421 0.0168810 0.0235836
pollAcc ~~ dem_ind_w1 0 -0.0236061 0.0105194 -2.2440506 0.0248291 -0.0236061 -0.0478981
pollAcc ~~ GCB 0 0.0533177 0.0298028 1.7890146 0.0736125 0.0533177 0.0374991
pollAcc ~~ trustGovt_w1 0 0.3250801 0.0351561 9.2467572 0.0000000 0.3250801 0.1974542
pollAcc ~~ trustDR_int1 0 0.1700030 0.0227633 7.4682828 0.0000000 0.1700030 0.1562360
pollAcc ~~ trustDI_int1 0 0.0552967 0.0130130 4.2493455 0.0000214 0.0552967 0.0893125
pollAcc ~~ trustGovt_w3 0 0.4574822 0.0336913 13.5786291 0.0000000 0.4574822 0.3094140
pollAcc ~~ trustDR_int3 0 0.2140029 0.0234629 9.1208869 0.0000000 0.2140029 0.2000772
pollAcc ~~ trustDI_int3 0 0.0617681 0.0139657 4.4228348 0.0000097 0.0617681 0.0966520
pollAcc ~~ trustGovt_w4 0 0.3684903 0.0416124 8.8553087 0.0000000 0.3684903 0.2274180
pollAcc ~~ trustDR_int4 0 0.1364494 0.0269716 5.0590097 0.0000004 0.1364494 0.1296736
pollAcc ~~ trustDI_int4 0 0.0447930 0.0181121 2.4731026 0.0133946 0.0447930 0.0621092
pollAcc ~~ Pos_Emo_w1 0 0.1614659 0.0357672 4.5143626 0.0000064 0.1614659 0.0952607
pollAcc ~~ posemoDR_int1 0 0.1174147 0.0469674 2.4999195 0.0124222 0.1174147 0.0526428
pollAcc ~~ posemoDI_int1 0 -0.0389133 0.0288150 -1.3504495 0.1768718 -0.0389133 -0.0291393
pollAcc ~~ Pos_Emo_w2 0 0.2846469 0.0446708 6.3721030 0.0000000 0.2846469 0.1353491
pollAcc ~~ posemoDR_int2 0 0.1294326 0.0602202 2.1493221 0.0316089 0.1294326 0.0450717
pollAcc ~~ posemoDI_int2 0 -0.0567938 0.0256129 -2.2173894 0.0265965 -0.0567938 -0.0472331
pollAcc ~~ Pos_Emo_w3 0 0.1921938 0.0435881 4.4093201 0.0000104 0.1921938 0.0959001
pollAcc ~~ posemoDR_int3 0 0.0895577 0.0580620 1.5424497 0.1229643 0.0895577 0.0326751
pollAcc ~~ posemoDI_int3 0 -0.0410977 0.0254180 -1.6168700 0.1059063 -0.0410977 -0.0354543
pollAcc ~~ Pos_Emo_w4 0 0.1569258 0.0479503 3.2726762 0.0010653 0.1569258 0.0786659
pollAcc ~~ posemoDR_int4 0 0.0774516 0.0600189 1.2904536 0.1968932 0.0774516 0.0286931
pollAcc ~~ posemoDI_int4 0 -0.0224487 0.0269673 -0.8324421 0.4051595 -0.0224487 -0.0202982
pollAcc ~~ Neg_Emo_w1 0 -0.0601753 0.0350506 -1.7168150 0.0860130 -0.0601753 -0.0360192
pollAcc ~~ negemoDR_int1 0 0.0356873 0.0406608 0.8776840 0.3801152 0.0356873 0.0183318
pollAcc ~~ negemoDI_int1 0 -0.0474525 0.0261478 -1.8147762 0.0695583 -0.0474525 -0.0384817
pollAcc ~~ Neg_Emo_w2 0 -0.1404398 0.0443904 -3.1637398 0.0015576 -0.1404398 -0.0665682
pollAcc ~~ negemoDR_int2 0 0.0749496 0.0289996 2.5844993 0.0097521 0.0749496 0.0543162
pollAcc ~~ negemoDI_int2 0 -0.0436135 0.0252954 -1.7241683 0.0846775 -0.0436135 -0.0365588
pollAcc ~~ Neg_Emo_w3 0 -0.1174336 0.0419200 -2.8013735 0.0050886 -0.1174336 -0.0604049
pollAcc ~~ negemoDR_int3 0 0.0907784 0.0295146 3.0757144 0.0021000 0.0907784 0.0659195
pollAcc ~~ negemoDI_int3 0 -0.0515612 0.0252898 -2.0388131 0.0414687 -0.0515612 -0.0441039
pollAcc ~~ Neg_Emo_w4 0 -0.0960592 0.0495324 -1.9393177 0.0524627 -0.0960592 -0.0456847
pollAcc ~~ negemoDR_int4 0 0.0946843 0.0337109 2.8087134 0.0049740 0.0946843 0.0663217
pollAcc ~~ negemoDI_int4 0 -0.0132618 0.0330632 -0.4011033 0.6883441 -0.0132618 -0.0097845
dem_rep_w1 ~~ dem_rep_w1 0 0.2344111 0.0064827 36.1593313 0.0000000 0.2344111 1.0000000
dem_rep_w1 ~~ dem_ind_w1 0 -0.0477714 0.0032915 -14.5134515 0.0000000 -0.0477714 -0.2959858
dem_rep_w1 ~~ GCB 0 0.0903031 0.0092769 9.7341461 0.0000000 0.0903031 0.1939371
dem_rep_w1 ~~ trustGovt_w1 0 -0.1836945 0.0111992 -16.4024854 0.0000000 -0.1836945 -0.3407073
dem_rep_w1 ~~ trustDR_int1 0 -0.1956235 0.0079799 -24.5144942 0.0000000 -0.1956235 -0.5489780
dem_rep_w1 ~~ trustDI_int1 0 0.0313238 0.0040363 7.7604620 0.0000000 0.0313238 0.1544888
dem_rep_w1 ~~ trustGovt_w3 0 -0.0049173 0.0104092 -0.4723980 0.6366427 -0.0049173 -0.0101555
dem_rep_w1 ~~ trustDR_int3 0 -0.1592588 0.0080173 -19.8642869 0.0000000 -0.1592588 -0.4546641
dem_rep_w1 ~~ trustDI_int3 0 0.0372215 0.0044759 8.3160090 0.0000000 0.0372215 0.1778482
dem_rep_w1 ~~ trustGovt_w4 0 0.1600033 0.0135723 11.7889997 0.0000000 0.1600033 0.3015344
dem_rep_w1 ~~ trustDR_int4 0 -0.0853229 0.0088519 -9.6388863 0.0000000 -0.0853229 -0.2476023
dem_rep_w1 ~~ trustDI_int4 0 0.0425822 0.0058619 7.2642078 0.0000000 0.0425822 0.1802946
dem_rep_w1 ~~ Pos_Emo_w1 0 -0.0151027 0.0108588 -1.3908260 0.1642782 -0.0151027 -0.0272081
dem_rep_w1 ~~ posemoDR_int1 0 0.6501860 0.0191228 34.0005109 0.0000000 0.6501860 0.8901509
dem_rep_w1 ~~ posemoDI_int1 0 -0.1162007 0.0088489 -13.1317160 0.0000000 -0.1162007 -0.2657046
dem_rep_w1 ~~ Pos_Emo_w2 0 0.3551344 0.0156767 22.6535941 0.0000000 0.3551344 0.5156449
dem_rep_w1 ~~ posemoDR_int2 0 0.7984275 0.0243875 32.7392290 0.0000000 0.7984275 0.8489945
dem_rep_w1 ~~ posemoDI_int2 0 -0.0819497 0.0081167 -10.0964110 0.0000000 -0.0819497 -0.2081144
dem_rep_w1 ~~ Pos_Emo_w3 0 0.3113032 0.0151355 20.5677608 0.0000000 0.3113032 0.4743212
dem_rep_w1 ~~ posemoDR_int3 0 0.7550752 0.0233786 32.2976415 0.0000000 0.7550752 0.8412283
dem_rep_w1 ~~ posemoDI_int3 0 -0.0826339 0.0080422 -10.2750939 0.0000000 -0.0826339 -0.2176802
dem_rep_w1 ~~ Pos_Emo_w4 0 0.3128534 0.0164993 18.9615713 0.0000000 0.3128534 0.4788973
dem_rep_w1 ~~ posemoDR_int4 0 0.7264890 0.0235887 30.7981235 0.0000000 0.7264890 0.8218367
dem_rep_w1 ~~ posemoDI_int4 0 -0.0772504 0.0086595 -8.9209324 0.0000000 -0.0772504 -0.2132926
dem_rep_w1 ~~ Neg_Emo_w1 0 0.0057453 0.0106995 0.5369686 0.5912893 0.0057453 0.0105012
dem_rep_w1 ~~ negemoDR_int1 0 0.5370431 0.0163009 32.9455278 0.0000000 0.5370431 0.8423835
dem_rep_w1 ~~ negemoDI_int1 0 -0.1047240 0.0081582 -12.8367073 0.0000000 -0.1047240 -0.2593290
dem_rep_w1 ~~ Neg_Emo_w2 0 -0.3342036 0.0155239 -21.5283569 0.0000000 -0.3342036 -0.4837234
dem_rep_w1 ~~ negemoDR_int2 0 0.3233165 0.0111003 29.1267144 0.0000000 0.3233165 0.7154801
dem_rep_w1 ~~ negemoDI_int2 0 -0.0822874 0.0080827 -10.1806927 0.0000000 -0.0822874 -0.2106268
dem_rep_w1 ~~ Neg_Emo_w3 0 -0.3069251 0.0146255 -20.9856605 0.0000000 -0.3069251 -0.4820824
dem_rep_w1 ~~ negemoDR_int3 0 0.3305942 0.0113341 29.1680504 0.0000000 0.3305942 0.7330543
dem_rep_w1 ~~ negemoDI_int3 0 -0.0806658 0.0081016 -9.9567601 0.0000000 -0.0806658 -0.2106944
dem_rep_w1 ~~ Neg_Emo_w4 0 -0.3600442 0.0173040 -20.8069472 0.0000000 -0.3600442 -0.5228737
dem_rep_w1 ~~ negemoDR_int4 0 0.3279917 0.0124928 26.2543990 0.0000000 0.3279917 0.7015359
dem_rep_w1 ~~ negemoDI_int4 0 -0.0921116 0.0106451 -8.6529456 0.0000000 -0.0921116 -0.2075203
dem_ind_w1 ~~ dem_ind_w1 0 0.1111261 0.0030732 36.1593934 0.0000000 0.1111261 1.0000000
dem_ind_w1 ~~ GCB 0 0.0095417 0.0062725 1.5212031 0.1282089 0.0095417 0.0297621
dem_ind_w1 ~~ trustGovt_w1 0 -0.0396118 0.0073423 -5.3950270 0.0000001 -0.0396118 -0.1067066
dem_ind_w1 ~~ trustDR_int1 0 0.0397844 0.0048831 8.1473513 0.0000000 0.0397844 0.1621539
dem_ind_w1 ~~ trustDI_int1 0 -0.0726759 0.0030921 -23.5039850 0.0000000 -0.0726759 -0.5205875
dem_ind_w1 ~~ trustGovt_w3 0 -0.0319889 0.0073936 -4.3265516 0.0000151 -0.0319889 -0.0959522
dem_ind_w1 ~~ trustDR_int3 0 0.0236410 0.0052225 4.5267583 0.0000060 0.0236410 0.0980243
dem_ind_w1 ~~ trustDI_int3 0 -0.0852923 0.0035299 -24.1629929 0.0000000 -0.0852923 -0.5918979
dem_ind_w1 ~~ trustGovt_w4 0 -0.0338135 0.0093879 -3.6018345 0.0003160 -0.0338135 -0.0925506
dem_ind_w1 ~~ trustDR_int4 0 0.0057336 0.0061705 0.9291838 0.3527939 0.0057336 0.0241654
dem_ind_w1 ~~ trustDI_int4 0 -0.0931565 0.0044908 -20.7437436 0.0000000 -0.0931565 -0.5728603
dem_ind_w1 ~~ Pos_Emo_w1 0 -0.0485842 0.0075339 -6.4487086 0.0000000 -0.0485842 -0.1271211
dem_ind_w1 ~~ posemoDR_int1 0 -0.1325035 0.0101702 -13.0285701 0.0000000 -0.1325035 -0.2634720
dem_ind_w1 ~~ posemoDI_int1 0 0.2703068 0.0079129 34.1604034 0.0000000 0.2703068 0.8976938
dem_ind_w1 ~~ Pos_Emo_w2 0 -0.0373665 0.0098542 -3.7919374 0.0001495 -0.0373665 -0.0787992
dem_ind_w1 ~~ posemoDR_int2 0 -0.1280571 0.0132275 -9.6810981 0.0000000 -0.1280571 -0.1977671
dem_ind_w1 ~~ posemoDI_int2 0 0.1945683 0.0067247 28.9334555 0.0000000 0.1945683 0.7176421
dem_ind_w1 ~~ Pos_Emo_w3 0 -0.0421853 0.0098006 -4.3043500 0.0000167 -0.0421853 -0.0933537
dem_ind_w1 ~~ posemoDR_int3 0 -0.1250763 0.0128461 -9.7365373 0.0000000 -0.1250763 -0.2023856
dem_ind_w1 ~~ posemoDI_int3 0 0.1838801 0.0065925 27.8922730 0.0000000 0.1838801 0.7035200
dem_ind_w1 ~~ Pos_Emo_w4 0 -0.0513731 0.0108606 -4.7302041 0.0000022 -0.0513731 -0.1142136
dem_ind_w1 ~~ posemoDR_int4 0 -0.1094281 0.0133100 -8.2214908 0.0000000 -0.1094281 -0.1797904
dem_ind_w1 ~~ posemoDI_int4 0 0.1627898 0.0068005 23.9380383 0.0000000 0.1627898 0.6528045
dem_ind_w1 ~~ Neg_Emo_w1 0 -0.0106363 0.0073694 -1.4433079 0.1489338 -0.0106363 -0.0282355
dem_ind_w1 ~~ negemoDR_int1 0 -0.1094457 0.0088467 -12.3714261 0.0000000 -0.1094457 -0.2493334
dem_ind_w1 ~~ negemoDI_int1 0 0.2436098 0.0072290 33.6991661 0.0000000 0.2436098 0.8761547
dem_ind_w1 ~~ Neg_Emo_w2 0 -0.0388747 0.0098708 -3.9383616 0.0000820 -0.0388747 -0.0817210
dem_ind_w1 ~~ negemoDR_int2 0 -0.0503615 0.0064318 -7.8300976 0.0000000 -0.0503615 -0.1618635
dem_ind_w1 ~~ negemoDI_int2 0 0.1817074 0.0065699 27.6577094 0.0000000 0.1817074 0.6755135
dem_ind_w1 ~~ Neg_Emo_w3 0 -0.0269853 0.0093938 -2.8726856 0.0040700 -0.0269853 -0.0615599
dem_ind_w1 ~~ negemoDR_int3 0 -0.0515892 0.0065967 -7.8204491 0.0000000 -0.0515892 -0.1661423
dem_ind_w1 ~~ negemoDI_int3 0 0.1811659 0.0066050 27.4285873 0.0000000 0.1811659 0.6872599
dem_ind_w1 ~~ Neg_Emo_w4 0 -0.0266866 0.0111448 -2.3945249 0.0166419 -0.0266866 -0.0562879
dem_ind_w1 ~~ negemoDR_int4 0 -0.0492478 0.0076006 -6.4794836 0.0000000 -0.0492478 -0.1529872
dem_ind_w1 ~~ negemoDI_int4 0 0.1941039 0.0083141 23.3463935 0.0000000 0.1941039 0.6351283
GCB ~~ GCB 0 0.9249212 0.0255892 36.1449370 0.0000000 0.9249212 1.0000000
GCB ~~ trustGovt_w1 0 -0.2701901 0.0217154 -12.4423054 0.0000000 -0.2701901 -0.2522849
GCB ~~ trustDR_int1 0 -0.1404082 0.0141744 -9.9057672 0.0000000 -0.1404082 -0.1983641
GCB ~~ trustDI_int1 0 -0.0194187 0.0079301 -2.4487458 0.0143355 -0.0194187 -0.0482146
GCB ~~ trustGovt_w3 0 -0.0804152 0.0207919 -3.8676191 0.0001099 -0.0804152 -0.0836084
GCB ~~ trustDR_int3 0 -0.1248815 0.0149072 -8.3772542 0.0000000 -0.1248815 -0.1794824
GCB ~~ trustDI_int3 0 -0.0108466 0.0087951 -1.2332451 0.2174843 -0.0108466 -0.0260906
GCB ~~ trustGovt_w4 0 0.0979583 0.0265002 3.6965138 0.0002186 0.0979583 0.0929364
GCB ~~ trustDR_int4 0 -0.0705912 0.0174552 -4.0441293 0.0000525 -0.0705912 -0.1031279
GCB ~~ trustDI_int4 0 -0.0124763 0.0116110 -1.0745229 0.2825884 -0.0124763 -0.0265935
GCB ~~ Pos_Emo_w1 0 0.0623640 0.0216053 2.8865218 0.0038953 0.0623640 0.0565604
GCB ~~ posemoDR_int1 0 0.2900101 0.0289383 10.0216766 0.0000000 0.2900101 0.1998830
GCB ~~ posemoDI_int1 0 0.0325966 0.0170004 1.9174000 0.0551871 0.0325966 0.0375231
GCB ~~ Pos_Emo_w2 0 0.3432646 0.0288052 11.9167450 0.0000000 0.3432646 0.2509133
GCB ~~ posemoDR_int2 0 0.4341250 0.0382259 11.3568428 0.0000000 0.4341250 0.2323919
GCB ~~ posemoDI_int2 0 0.0154241 0.0158476 0.9732779 0.3304152 0.0154241 0.0197193
GCB ~~ Pos_Emo_w3 0 0.3242380 0.0283228 11.4479611 0.0000000 0.3242380 0.2487079
GCB ~~ posemoDR_int3 0 0.4056354 0.0369170 10.9877771 0.0000000 0.4056354 0.2275078
GCB ~~ posemoDI_int3 0 0.0142461 0.0156841 0.9083191 0.3637096 0.0142461 0.0188927
GCB ~~ Pos_Emo_w4 0 0.3087772 0.0312206 9.8901600 0.0000000 0.3087772 0.2379488
GCB ~~ posemoDR_int4 0 0.4065783 0.0383664 10.5972460 0.0000000 0.4065783 0.2315461
GCB ~~ posemoDI_int4 0 0.0029980 0.0170430 0.1759087 0.8603657 0.0029980 0.0041672
GCB ~~ Neg_Emo_w1 0 0.1410496 0.0214397 6.5788947 0.0000000 0.1410496 0.1297877
GCB ~~ negemoDR_int1 0 0.2945877 0.0254289 11.5847588 0.0000000 0.2945877 0.2326227
GCB ~~ negemoDI_int1 0 0.0386563 0.0157051 2.4613813 0.0138403 0.0386563 0.0481906
GCB ~~ Neg_Emo_w2 0 -0.1915722 0.0283135 -6.7661025 0.0000000 -0.1915722 -0.1395903
GCB ~~ negemoDR_int2 0 0.1732546 0.0184814 9.3745142 0.0000000 0.1732546 0.1930150
GCB ~~ negemoDI_int2 0 0.0116752 0.0157781 0.7399633 0.4593223 0.0116752 0.0150447
GCB ~~ Neg_Emo_w3 0 -0.1491584 0.0267240 -5.5814491 0.0000000 -0.1491584 -0.1179433
GCB ~~ negemoDR_int3 0 0.1815825 0.0188658 9.6249546 0.0000000 0.1815825 0.2026990
GCB ~~ negemoDI_int3 0 0.0200770 0.0158246 1.2687177 0.2045418 0.0200770 0.0263997
GCB ~~ Neg_Emo_w4 0 -0.2478098 0.0319506 -7.7560244 0.0000000 -0.2478098 -0.1811741
GCB ~~ negemoDR_int4 0 0.1660188 0.0216576 7.6656323 0.0000000 0.1660188 0.1787644
GCB ~~ negemoDI_int4 0 0.0060799 0.0209734 0.2898875 0.7719023 0.0060799 0.0068957
trustGovt_w1 ~~ trustGovt_w1 0 1.2400846 0.0345566 35.8855581 0.0000000 1.2400846 1.0000000
trustGovt_w1 ~~ trustDR_int1 0 0.5315861 0.0192381 27.6319065 0.0000000 0.5315861 0.6485909
trustGovt_w1 ~~ trustDI_int1 0 0.1537784 0.0096889 15.8715932 0.0000000 0.1537784 0.3297472
trustGovt_w1 ~~ trustGovt_w3 0 0.5570455 0.0264518 21.0589101 0.0000000 0.5570455 0.5001831
trustGovt_w1 ~~ trustDR_int3 0 0.3816052 0.0186565 20.4542411 0.0000000 0.3816052 0.4736581
trustGovt_w1 ~~ trustDI_int3 0 0.0782396 0.0103539 7.5565224 0.0000000 0.0782396 0.1625347
trustGovt_w1 ~~ trustGovt_w4 0 0.2327785 0.0309523 7.5205694 0.0000000 0.2327785 0.1907280
trustGovt_w1 ~~ trustDR_int4 0 0.2482631 0.0207067 11.9895208 0.0000000 0.2482631 0.3132310
trustGovt_w1 ~~ trustDI_int4 0 0.0678010 0.0135151 5.0166992 0.0000005 0.0678010 0.1248113
trustGovt_w1 ~~ Pos_Emo_w1 0 0.4325306 0.0264748 16.3374443 0.0000000 0.4325306 0.3387834
trustGovt_w1 ~~ posemoDR_int1 0 -0.3992237 0.0339480 -11.7598494 0.0000000 -0.3992237 -0.2376324
trustGovt_w1 ~~ posemoDI_int1 0 -0.0447804 0.0197924 -2.2625057 0.0236662 -0.0447804 -0.0445187
trustGovt_w1 ~~ Pos_Emo_w2 0 -0.1875965 0.0327263 -5.7322914 0.0000000 -0.1875965 -0.1184257
trustGovt_w1 ~~ posemoDR_int2 0 -0.7024821 0.0454390 -15.4598769 0.0000000 -0.7024821 -0.3247641
trustGovt_w1 ~~ posemoDI_int2 0 -0.0609316 0.0185241 -3.2893153 0.0010043 -0.0609316 -0.0672761
trustGovt_w1 ~~ Pos_Emo_w3 0 -0.1644930 0.0322980 -5.0929846 0.0000004 -0.1644930 -0.1089682
trustGovt_w1 ~~ posemoDR_int3 0 -0.6377918 0.0438107 -14.5579044 0.0000000 -0.6377918 -0.3089342
trustGovt_w1 ~~ posemoDI_int3 0 -0.0437309 0.0183345 -2.3851708 0.0170712 -0.0437309 -0.0500856
trustGovt_w1 ~~ Pos_Emo_w4 0 -0.1797315 0.0356821 -5.0370275 0.0000005 -0.1797315 -0.1196160
trustGovt_w1 ~~ posemoDR_int4 0 -0.6703502 0.0455166 -14.7276087 0.0000000 -0.6703502 -0.3297020
trustGovt_w1 ~~ posemoDI_int4 0 -0.0380409 0.0198136 -1.9199424 0.0548652 -0.0380409 -0.0456656
trustGovt_w1 ~~ Neg_Emo_w1 0 -0.2187496 0.0250979 -8.7158547 0.0000000 -0.2187496 -0.1738344
trustGovt_w1 ~~ negemoDR_int1 0 -0.5213307 0.0305864 -17.0445356 0.0000000 -0.5213307 -0.3555309
trustGovt_w1 ~~ negemoDI_int1 0 -0.1132557 0.0184068 -6.1529167 0.0000000 -0.1132557 -0.1219350
trustGovt_w1 ~~ Neg_Emo_w2 0 0.3142345 0.0332091 9.4622976 0.0000000 0.3142345 0.1977439
trustGovt_w1 ~~ negemoDR_int2 0 -0.2483827 0.0217144 -11.4386106 0.0000000 -0.2483827 -0.2389760
trustGovt_w1 ~~ negemoDI_int2 0 -0.0666963 0.0183577 -3.6331491 0.0002800 -0.0666963 -0.0742243
trustGovt_w1 ~~ Neg_Emo_w3 0 0.2713789 0.0313467 8.6573333 0.0000000 0.2713789 0.1853226
trustGovt_w1 ~~ negemoDR_int3 0 -0.2489040 0.0221076 -11.2587483 0.0000000 -0.2489040 -0.2399586
trustGovt_w1 ~~ negemoDI_int3 0 -0.0650594 0.0184570 -3.5249120 0.0004236 -0.0650594 -0.0738818
trustGovt_w1 ~~ Neg_Emo_w4 0 0.3208497 0.0371406 8.6387848 0.0000000 0.3208497 0.2025844
trustGovt_w1 ~~ negemoDR_int4 0 -0.2679839 0.0253973 -10.5516762 0.0000000 -0.2679839 -0.2492064
trustGovt_w1 ~~ negemoDI_int4 0 -0.0647034 0.0243076 -2.6618625 0.0077710 -0.0647034 -0.0633778
trustDR_int1 ~~ trustDR_int1 0 0.5416942 0.0150890 35.8999189 0.0000000 0.5416942 1.0000000
trustDR_int1 ~~ trustDI_int1 0 -0.0260830 0.0061011 -4.2750983 0.0000191 -0.0260830 -0.0846236
trustDR_int1 ~~ trustGovt_w3 0 0.2291982 0.0163433 14.0239734 0.0000000 0.2291982 0.3113854
trustDR_int1 ~~ trustDR_int3 0 0.3602233 0.0132128 27.2631774 0.0000000 0.3602233 0.6765050
trustDR_int1 ~~ trustDI_int3 0 -0.0318483 0.0067178 -4.7408750 0.0000021 -0.0318483 -0.1001048
trustDR_int1 ~~ trustGovt_w4 0 0.0252905 0.0199985 1.2646171 0.2060086 0.0252905 0.0313528
trustDR_int1 ~~ trustDR_int4 0 0.2266235 0.0138740 16.3344396 0.0000000 0.2266235 0.4326195
trustDR_int1 ~~ trustDI_int4 0 -0.0351934 0.0088202 -3.9900835 0.0000661 -0.0351934 -0.0980230
trustDR_int1 ~~ Pos_Emo_w1 0 0.1222016 0.0167379 7.3008754 0.0000000 0.1222016 0.1448208
trustDR_int1 ~~ posemoDR_int1 0 -0.4325440 0.0233969 -18.4872371 0.0000000 -0.4325440 -0.3895545
trustDR_int1 ~~ posemoDI_int1 0 0.0968181 0.0131927 7.3387752 0.0000000 0.0968181 0.1456326
trustDR_int1 ~~ Pos_Emo_w2 0 -0.3206522 0.0221830 -14.4548332 0.0000000 -0.3206522 -0.3062698
trustDR_int1 ~~ posemoDR_int2 0 -0.7047177 0.0316461 -22.2687300 0.0000000 -0.7047177 -0.4929428
trustDR_int1 ~~ posemoDI_int2 0 0.0687345 0.0121815 5.6425578 0.0000000 0.0687345 0.1148264
trustDR_int1 ~~ Pos_Emo_w3 0 -0.2819787 0.0216921 -12.9991357 0.0000000 -0.2819787 -0.2826293
trustDR_int1 ~~ posemoDR_int3 0 -0.6669517 0.0305120 -21.8586678 0.0000000 -0.6669517 -0.4887988
trustDR_int1 ~~ posemoDI_int3 0 0.0737033 0.0120603 6.1112123 0.0000000 0.0737033 0.1277202
trustDR_int1 ~~ Pos_Emo_w4 0 -0.2968815 0.0239337 -12.4043499 0.0000000 -0.2968815 -0.2989487
trustDR_int1 ~~ posemoDR_int4 0 -0.6615612 0.0314183 -21.0565265 0.0000000 -0.6615612 -0.4923098
trustDR_int1 ~~ posemoDI_int4 0 0.0626124 0.0130099 4.8126682 0.0000015 0.0626124 0.1137228
trustDR_int1 ~~ Neg_Emo_w1 0 -0.1054252 0.0164600 -6.4049260 0.0000000 -0.1054252 -0.1267598
trustDR_int1 ~~ negemoDR_int1 0 -0.5486387 0.0218556 -25.1028594 0.0000000 -0.5486387 -0.5661078
trustDR_int1 ~~ negemoDI_int1 0 0.0870486 0.0121830 7.1450588 0.0000000 0.0870486 0.1418008
trustDR_int1 ~~ Neg_Emo_w2 0 0.3268165 0.0222875 14.6636579 0.0000000 0.3268165 0.3111730
trustDR_int1 ~~ negemoDR_int2 0 -0.2382449 0.0146324 -16.2820427 0.0000000 -0.2382449 -0.3468209
trustDR_int1 ~~ negemoDI_int2 0 0.0722647 0.0120815 5.9814253 0.0000000 0.0722647 0.1216799
trustDR_int1 ~~ Neg_Emo_w3 0 0.2981155 0.0210188 14.1832640 0.0000000 0.2981155 0.3080246
trustDR_int1 ~~ negemoDR_int3 0 -0.2528102 0.0149644 -16.8941224 0.0000000 -0.2528102 -0.3687631
trustDR_int1 ~~ negemoDI_int3 0 0.0758355 0.0121370 6.2482754 0.0000000 0.0758355 0.1303012
trustDR_int1 ~~ Neg_Emo_w4 0 0.3397587 0.0248627 13.6653990 0.0000000 0.3397587 0.3245814
trustDR_int1 ~~ negemoDR_int4 0 -0.2558034 0.0170256 -15.0245988 0.0000000 -0.2558034 -0.3599195
trustDR_int1 ~~ negemoDI_int4 0 0.0782879 0.0159644 4.9039179 0.0000009 0.0782879 0.1160253
trustDI_int1 ~~ trustDI_int1 0 0.1753787 0.0048996 35.7941689 0.0000000 0.1753787 1.0000000
trustDI_int1 ~~ trustGovt_w3 0 0.0813419 0.0095079 8.5551630 0.0000000 0.0813419 0.1942181
trustDI_int1 ~~ trustDR_int3 0 -0.0025243 0.0066151 -0.3815898 0.7027656 -0.0025243 -0.0083315
trustDI_int1 ~~ trustDI_int3 0 0.0984085 0.0044007 22.3620168 0.0000000 0.0984085 0.5436124
trustDI_int1 ~~ trustGovt_w4 0 0.0578540 0.0117084 4.9412282 0.0000008 0.0578540 0.1260498
trustDI_int1 ~~ trustDR_int4 0 0.0049071 0.0076704 0.6397438 0.5223392 0.0049071 0.0164632
trustDI_int1 ~~ trustDI_int4 0 0.0809312 0.0053475 15.1344744 0.0000000 0.0809312 0.3961604
trustDI_int1 ~~ Pos_Emo_w1 0 0.0833328 0.0095751 8.7030558 0.0000000 0.0833328 0.1735636
trustDI_int1 ~~ posemoDR_int1 0 0.0869382 0.0125414 6.9321011 0.0000000 0.0869382 0.1376060
trustDI_int1 ~~ posemoDI_int1 0 -0.1253225 0.0078304 -16.0046233 0.0000000 -0.1253225 -0.3312989
trustDI_int1 ~~ Pos_Emo_w2 0 0.0409546 0.0122337 3.3476973 0.0008149 0.0409546 0.0687482
trustDI_int1 ~~ posemoDR_int2 0 0.0695152 0.0163323 4.2563035 0.0000208 0.0695152 0.0854574
trustDI_int1 ~~ posemoDI_int2 0 -0.1063444 0.0072494 -14.6693617 0.0000000 -0.1063444 -0.3122268
trustDI_int1 ~~ Pos_Emo_w3 0 0.0564140 0.0124404 4.5347569 0.0000058 0.0564140 0.0993748
trustDI_int1 ~~ posemoDR_int3 0 0.0906001 0.0160532 5.6437496 0.0000000 0.0906001 0.1166952
trustDI_int1 ~~ posemoDI_int3 0 -0.1058806 0.0073272 -14.4503287 0.0000000 -0.1058806 -0.3224614
trustDI_int1 ~~ Pos_Emo_w4 0 0.0500612 0.0135065 3.7064541 0.0002102 0.0500612 0.0885937
trustDI_int1 ~~ posemoDR_int4 0 0.0597341 0.0164913 3.6221633 0.0002921 0.0597341 0.0781231
trustDI_int1 ~~ posemoDI_int4 0 -0.0801802 0.0076610 -10.4660283 0.0000000 -0.0801802 -0.2559428
trustDI_int1 ~~ Neg_Emo_w1 0 -0.0192259 0.0093090 -2.0652903 0.0388955 -0.0192259 -0.0406267
trustDI_int1 ~~ negemoDR_int1 0 0.0717987 0.0109359 6.5654003 0.0000000 0.0717987 0.1302021
trustDI_int1 ~~ negemoDI_int1 0 -0.1854422 0.0077712 -23.8626210 0.0000000 -0.1854422 -0.5309019
trustDI_int1 ~~ Neg_Emo_w2 0 0.0283373 0.0122651 2.3103937 0.0208664 0.0283373 0.0474182
trustDI_int1 ~~ negemoDR_int2 0 0.0254205 0.0079644 3.1917595 0.0014141 0.0254205 0.0650361
trustDI_int1 ~~ negemoDI_int2 0 -0.1095432 0.0072019 -15.2103513 0.0000000 -0.1095432 -0.3241653
trustDI_int1 ~~ Neg_Emo_w3 0 0.0120252 0.0118826 1.0119972 0.3115394 0.0120252 0.0218364
trustDI_int1 ~~ negemoDR_int3 0 0.0338201 0.0082839 4.0826238 0.0000445 0.0338201 0.0866994
trustDI_int1 ~~ negemoDI_int3 0 -0.1249368 0.0074642 -16.7382016 0.0000000 -0.1249368 -0.3772719
trustDI_int1 ~~ Neg_Emo_w4 0 0.0216998 0.0138917 1.5620664 0.1182723 0.0216998 0.0364333
trustDI_int1 ~~ negemoDR_int4 0 0.0244746 0.0094226 2.5974334 0.0093923 0.0244746 0.0605206
trustDI_int1 ~~ negemoDI_int4 0 -0.1033828 0.0094084 -10.9884038 0.0000000 -0.1033828 -0.2692744
trustGovt_w3 ~~ trustGovt_w3 0 1.0001655 0.0314726 31.7789161 0.0000000 1.0001655 1.0000000
trustGovt_w3 ~~ trustDR_int3 0 0.4056812 0.0182057 22.2832327 0.0000000 0.4056812 0.5606932
trustGovt_w3 ~~ trustDI_int3 0 0.1203080 0.0100157 12.0119814 0.0000000 0.1203080 0.2782938
trustGovt_w3 ~~ trustGovt_w4 0 0.5921531 0.0311925 18.9838179 0.0000000 0.5921531 0.5402504
trustGovt_w3 ~~ trustDR_int4 0 0.2627405 0.0194147 13.5330893 0.0000000 0.2627405 0.3691214
trustGovt_w3 ~~ trustDI_int4 0 0.0870400 0.0127267 6.8391475 0.0000000 0.0870400 0.1784132
trustGovt_w3 ~~ Pos_Emo_w1 0 0.3770745 0.0259158 14.5500063 0.0000000 0.3770745 0.3288684
trustGovt_w3 ~~ posemoDR_int1 0 0.0990946 0.0327063 3.0298341 0.0024469 0.0990946 0.0656794
trustGovt_w3 ~~ posemoDI_int1 0 -0.0268907 0.0202675 -1.3267866 0.1845793 -0.0268907 -0.0297677
trustGovt_w3 ~~ Pos_Emo_w2 0 0.2698747 0.0315454 8.5551344 0.0000000 0.2698747 0.1897026
trustGovt_w3 ~~ posemoDR_int2 0 0.0471241 0.0419325 1.1238101 0.2610936 0.0471241 0.0242586
trustGovt_w3 ~~ posemoDI_int2 0 -0.0461822 0.0182600 -2.5291427 0.0114342 -0.0461822 -0.0567784
trustGovt_w3 ~~ Pos_Emo_w3 0 0.3390989 0.0309028 10.9730692 0.0000000 0.3390989 0.2501315
trustGovt_w3 ~~ posemoDR_int3 0 0.0758261 0.0402876 1.8821176 0.0598201 0.0758261 0.0408974
trustGovt_w3 ~~ posemoDI_int3 0 -0.0381499 0.0176070 -2.1667519 0.0302538 -0.0381499 -0.0486527
trustGovt_w3 ~~ Pos_Emo_w4 0 0.2967686 0.0338318 8.7718744 0.0000000 0.2967686 0.2199240
trustGovt_w3 ~~ posemoDR_int4 0 0.0593372 0.0416960 1.4230905 0.1547099 0.0593372 0.0324965
trustGovt_w3 ~~ posemoDI_int4 0 -0.0273547 0.0188374 -1.4521480 0.1464605 -0.0273547 -0.0365646
trustGovt_w3 ~~ Neg_Emo_w1 0 -0.1704925 0.0247780 -6.8808017 0.0000000 -0.1704925 -0.1508633
trustGovt_w3 ~~ negemoDR_int1 0 -0.0685725 0.0285158 -2.4047188 0.0161849 -0.0685725 -0.0520719
trustGovt_w3 ~~ negemoDI_int1 0 -0.0806578 0.0188220 -4.2852950 0.0000182 -0.0806578 -0.0966951
trustGovt_w3 ~~ Neg_Emo_w2 0 -0.0844876 0.0310858 -2.7178829 0.0065701 -0.0844876 -0.0592014
trustGovt_w3 ~~ negemoDR_int2 0 0.0534438 0.0204579 2.6123785 0.0089915 0.0534438 0.0572559
trustGovt_w3 ~~ negemoDI_int2 0 -0.0746610 0.0182257 -4.0964628 0.0000420 -0.0746610 -0.0925182
trustGovt_w3 ~~ Neg_Emo_w3 0 -0.1693962 0.0291631 -5.8085804 0.0000000 -0.1693962 -0.1288088
trustGovt_w3 ~~ negemoDR_int3 0 0.0329773 0.0204747 1.6106365 0.1072590 0.0329773 0.0354005
trustGovt_w3 ~~ negemoDI_int3 0 -0.0866052 0.0178829 -4.8429072 0.0000013 -0.0866052 -0.1095117
trustGovt_w3 ~~ Neg_Emo_w4 0 -0.1627953 0.0345208 -4.7158541 0.0000024 -0.1627953 -0.1144553
trustGovt_w3 ~~ negemoDR_int4 0 0.0218053 0.0234104 0.9314363 0.3516279 0.0218053 0.0225789
trustGovt_w3 ~~ negemoDI_int4 0 -0.0757309 0.0232399 -3.2586603 0.0011194 -0.0757309 -0.0825986
trustDR_int3 ~~ trustDR_int3 0 0.5234165 0.0160345 32.6431775 0.0000000 0.5234165 1.0000000
trustDR_int3 ~~ trustDI_int3 0 -0.0307548 0.0068997 -4.4574082 0.0000083 -0.0307548 -0.0983410
trustDR_int3 ~~ trustGovt_w4 0 0.1422366 0.0205028 6.9374339 0.0000000 0.1422366 0.1793844
trustDR_int3 ~~ trustDR_int4 0 0.3162166 0.0149231 21.1896753 0.0000000 0.3162166 0.6141000
trustDR_int3 ~~ trustDI_int4 0 -0.0288056 0.0090052 -3.1987567 0.0013802 -0.0288056 -0.0816201
trustDR_int3 ~~ Pos_Emo_w1 0 0.1406226 0.0178187 7.8918464 0.0000000 0.1406226 0.1695361
trustDR_int3 ~~ posemoDR_int1 0 -0.3270182 0.0240084 -13.6210033 0.0000000 -0.3270182 -0.2996148
trustDR_int3 ~~ posemoDI_int1 0 0.0606174 0.0143169 4.2339850 0.0000230 0.0606174 0.0927583
trustDR_int3 ~~ Pos_Emo_w2 0 -0.2163450 0.0224697 -9.6282952 0.0000000 -0.2163450 -0.2102181
trustDR_int3 ~~ posemoDR_int2 0 -0.5572249 0.0317282 -17.5624505 0.0000000 -0.5572249 -0.3965202
trustDR_int3 ~~ posemoDI_int2 0 0.0605281 0.0129594 4.6705885 0.0000030 0.0605281 0.1028672
trustDR_int3 ~~ Pos_Emo_w3 0 -0.1703663 0.0215962 -7.8887347 0.0000000 -0.1703663 -0.1737153
trustDR_int3 ~~ posemoDR_int3 0 -0.5125471 0.0303152 -16.9072481 0.0000000 -0.5125471 -0.3821403
trustDR_int3 ~~ posemoDI_int3 0 0.0680656 0.0125612 5.4187053 0.0000001 0.0680656 0.1199924
trustDR_int3 ~~ Pos_Emo_w4 0 -0.1796821 0.0239266 -7.5097069 0.0000000 -0.1796821 -0.1840652
trustDR_int3 ~~ posemoDR_int4 0 -0.5061644 0.0312619 -16.1910709 0.0000000 -0.5061644 -0.3831893
trustDR_int3 ~~ posemoDI_int4 0 0.0546032 0.0134491 4.0599814 0.0000491 0.0546032 0.1008924
trustDR_int3 ~~ Neg_Emo_w1 0 -0.0645361 0.0174384 -3.7008099 0.0002149 -0.0645361 -0.0789393
trustDR_int3 ~~ negemoDR_int1 0 -0.4241533 0.0218334 -19.4268311 0.0000000 -0.4241533 -0.4452345
trustDR_int3 ~~ negemoDI_int1 0 0.0499602 0.0132476 3.7712517 0.0001624 0.0499602 0.0827931
trustDR_int3 ~~ Neg_Emo_w2 0 0.2935814 0.0228443 12.8514310 0.0000000 0.2935814 0.2843674
trustDR_int3 ~~ negemoDR_int2 0 -0.1977977 0.0150150 -13.1733620 0.0000000 -0.1977977 -0.2929249
trustDR_int3 ~~ negemoDI_int2 0 0.0613871 0.0129080 4.7557322 0.0000020 0.0613871 0.1051533
trustDR_int3 ~~ Neg_Emo_w3 0 0.2488600 0.0211889 11.7448514 0.0000000 0.2488600 0.2615829
trustDR_int3 ~~ negemoDR_int3 0 -0.2335837 0.0152973 -15.2696143 0.0000000 -0.2335837 -0.3466162
trustDR_int3 ~~ negemoDI_int3 0 0.0685954 0.0127024 5.4001954 0.0000001 0.0685954 0.1199012
trustDR_int3 ~~ Neg_Emo_w4 0 0.2636937 0.0250198 10.5394087 0.0000000 0.2636937 0.2562750
trustDR_int3 ~~ negemoDR_int4 0 -0.2493706 0.0174420 -14.2971130 0.0000000 -0.2493706 -0.3569420
trustDR_int3 ~~ negemoDI_int4 0 0.0693194 0.0165650 4.1846949 0.0000286 0.0693194 0.1045120
trustDI_int3 ~~ trustDI_int3 0 0.1868572 0.0058775 31.7921062 0.0000000 0.1868572 1.0000000
trustDI_int3 ~~ trustGovt_w4 0 0.0782479 0.0115796 6.7573691 0.0000000 0.0782479 0.1651638
trustDI_int3 ~~ trustDR_int4 0 -0.0115996 0.0074891 -1.5488558 0.1214164 -0.0115996 -0.0377021
trustDI_int3 ~~ trustDI_int4 0 0.1345176 0.0058574 22.9653888 0.0000000 0.1345176 0.6379229
trustDI_int3 ~~ Pos_Emo_w1 0 0.0871488 0.0106642 8.1721043 0.0000000 0.0871488 0.1758480
trustDI_int3 ~~ posemoDR_int1 0 0.1016702 0.0139789 7.2730980 0.0000000 0.1016702 0.1559028
trustDI_int3 ~~ posemoDI_int1 0 -0.1656274 0.0091284 -18.1442426 0.0000000 -0.1656274 -0.4241863
trustDI_int3 ~~ Pos_Emo_w2 0 0.0682055 0.0133096 5.1245494 0.0000003 0.0682055 0.1109205
trustDI_int3 ~~ posemoDR_int2 0 0.1496100 0.0180952 8.2679200 0.0000000 0.1496100 0.1781821
trustDI_int3 ~~ posemoDI_int2 0 -0.1758842 0.0085081 -20.6725489 0.0000000 -0.1758842 -0.5002831
trustDI_int3 ~~ Pos_Emo_w3 0 0.0830241 0.0130424 6.3657074 0.0000000 0.0830241 0.1416862
trustDI_int3 ~~ posemoDR_int3 0 0.1559705 0.0175009 8.9121281 0.0000000 0.1559705 0.1946257
trustDI_int3 ~~ posemoDI_int3 0 -0.1862673 0.0084992 -21.9158689 0.0000000 -0.1862673 -0.5495807
trustDI_int3 ~~ Pos_Emo_w4 0 0.0836723 0.0137071 6.1042915 0.0000000 0.0836723 0.1434556
trustDI_int3 ~~ posemoDR_int4 0 0.1368675 0.0176226 7.7666026 0.0000000 0.1368675 0.1734167
trustDI_int3 ~~ posemoDI_int4 0 -0.1457806 0.0082331 -17.7066942 0.0000000 -0.1457806 -0.4508261
trustDI_int3 ~~ Neg_Emo_w1 0 0.0029983 0.0103981 0.2883507 0.7730783 0.0029983 0.0061381
trustDI_int3 ~~ negemoDR_int1 0 0.0883389 0.0121944 7.2442417 0.0000000 0.0883389 0.1551983
trustDI_int3 ~~ negemoDI_int1 0 -0.1949427 0.0087669 -22.2361346 0.0000000 -0.1949427 -0.5406874
trustDI_int3 ~~ Neg_Emo_w2 0 0.0267368 0.0132565 2.0168827 0.0437078 0.0267368 0.0433440
trustDI_int3 ~~ negemoDR_int2 0 0.0643614 0.0087896 7.3224518 0.0000000 0.0643614 0.1595253
trustDI_int3 ~~ negemoDI_int2 0 -0.1954759 0.0086600 -22.5723329 0.0000000 -0.1954759 -0.5604125
trustDI_int3 ~~ Neg_Emo_w3 0 0.0081557 0.0124614 0.6544789 0.5128033 0.0081557 0.0143478
trustDI_int3 ~~ negemoDR_int3 0 0.0702627 0.0089059 7.8894088 0.0000000 0.0702627 0.1745017
trustDI_int3 ~~ negemoDI_int3 0 -0.2349080 0.0091238 -25.7468170 0.0000000 -0.2349080 -0.6872195
trustDI_int3 ~~ Neg_Emo_w4 0 0.0162543 0.0141440 1.1492071 0.2504706 0.0162543 0.0264390
trustDI_int3 ~~ negemoDR_int4 0 0.0624319 0.0096964 6.4386803 0.0000000 0.0624319 0.1495644
trustDI_int3 ~~ negemoDI_int4 0 -0.1977924 0.0102836 -19.2337799 0.0000000 -0.1977924 -0.4991028
trustGovt_w4 ~~ trustGovt_w4 0 1.2011740 0.0461627 26.0204694 0.0000000 1.2011740 1.0000000
trustGovt_w4 ~~ trustDR_int4 0 0.3979469 0.0241244 16.4956139 0.0000000 0.3979469 0.5101529
trustGovt_w4 ~~ trustDI_int4 0 0.1397070 0.0147016 9.5028361 0.0000000 0.1397070 0.2613118
trustGovt_w4 ~~ Pos_Emo_w1 0 0.3473941 0.0323263 10.7464738 0.0000000 0.3473941 0.2764715
trustGovt_w4 ~~ posemoDR_int1 0 0.5895782 0.0432570 13.6296739 0.0000000 0.5895782 0.3565772
trustGovt_w4 ~~ posemoDI_int1 0 -0.0359404 0.0254521 -1.4120785 0.1579268 -0.0359404 -0.0363044
trustGovt_w4 ~~ Pos_Emo_w2 0 0.6409056 0.0416330 15.3941761 0.0000000 0.6409056 0.4110912
trustGovt_w4 ~~ posemoDR_int2 0 0.7682492 0.0553776 13.8729290 0.0000000 0.7682492 0.3608757
trustGovt_w4 ~~ posemoDI_int2 0 -0.0435688 0.0223510 -1.9492973 0.0512599 -0.0435688 -0.0488784
trustGovt_w4 ~~ Pos_Emo_w3 0 0.6786151 0.0405031 16.7546308 0.0000000 0.6786151 0.4567710
trustGovt_w4 ~~ posemoDR_int3 0 0.7205601 0.0530725 13.5769034 0.0000000 0.7205601 0.3546337
trustGovt_w4 ~~ posemoDI_int3 0 -0.0298562 0.0220091 -1.3565368 0.1749284 -0.0298562 -0.0347441
trustGovt_w4 ~~ Pos_Emo_w4 0 0.7360404 0.0428977 17.1580531 0.0000000 0.7360404 0.4977248
trustGovt_w4 ~~ posemoDR_int4 0 0.7501105 0.0536626 13.9782705 0.0000000 0.7501105 0.3748589
trustGovt_w4 ~~ posemoDI_int4 0 -0.0346125 0.0219559 -1.5764564 0.1149207 -0.0346125 -0.0422176
trustGovt_w4 ~~ Neg_Emo_w1 0 -0.1251606 0.0317597 -3.9408608 0.0000812 -0.1251606 -0.1010599
trustGovt_w4 ~~ negemoDR_int1 0 0.3664686 0.0372543 9.8369577 0.0000000 0.3664686 0.2539356
trustGovt_w4 ~~ negemoDI_int1 0 -0.0997073 0.0238586 -4.1790948 0.0000293 -0.0997073 -0.1090732
trustGovt_w4 ~~ Neg_Emo_w2 0 -0.4468037 0.0402416 -11.1030293 0.0000000 -0.4468037 -0.2856859
trustGovt_w4 ~~ negemoDR_int2 0 0.2921377 0.0263977 11.0667880 0.0000000 0.2921377 0.2855902
trustGovt_w4 ~~ negemoDI_int2 0 -0.0850063 0.0221678 -3.8346763 0.0001257 -0.0850063 -0.0961208
trustGovt_w4 ~~ Neg_Emo_w3 0 -0.4825837 0.0378272 -12.7575926 0.0000000 -0.4825837 -0.3348479
trustGovt_w4 ~~ negemoDR_int3 0 0.2794016 0.0262455 10.6456842 0.0000000 0.2794016 0.2736881
trustGovt_w4 ~~ negemoDI_int3 0 -0.0905779 0.0214229 -4.2280939 0.0000236 -0.0905779 -0.1045133
trustGovt_w4 ~~ Neg_Emo_w4 0 -0.6243459 0.0433495 -14.4025984 0.0000000 -0.6243459 -0.4005460
trustGovt_w4 ~~ negemoDR_int4 0 0.2436288 0.0279944 8.7027746 0.0000000 0.2436288 0.2301981
trustGovt_w4 ~~ negemoDI_int4 0 -0.1229685 0.0269370 -4.5650488 0.0000050 -0.1229685 -0.1223845
trustDR_int4 ~~ trustDR_int4 0 0.5065749 0.0195830 25.8680708 0.0000000 0.5065749 1.0000000
trustDR_int4 ~~ trustDI_int4 0 -0.0214794 0.0092924 -2.3115007 0.0208052 -0.0214794 -0.0618650
trustDR_int4 ~~ Pos_Emo_w1 0 0.1772701 0.0210962 8.4029450 0.0000000 0.1772701 0.2172424
trustDR_int4 ~~ posemoDR_int1 0 -0.0962185 0.0275182 -3.4965337 0.0004713 -0.0962185 -0.0896090
trustDR_int4 ~~ posemoDI_int1 0 0.0253221 0.0167660 1.5103264 0.1309602 0.0253221 0.0393875
trustDR_int4 ~~ Pos_Emo_w2 0 -0.0095807 0.0259451 -0.3692663 0.7119293 -0.0095807 -0.0094628
trustDR_int4 ~~ posemoDR_int2 0 -0.1963326 0.0351375 -5.5875599 0.0000000 -0.1963326 -0.1420133
trustDR_int4 ~~ posemoDI_int2 0 0.0230794 0.0146807 1.5720961 0.1159283 0.0230794 0.0398701
trustDR_int4 ~~ Pos_Emo_w3 0 0.0126844 0.0247946 0.5115805 0.6089446 0.0126844 0.0131470
trustDR_int4 ~~ posemoDR_int3 0 -0.1874494 0.0336959 -5.5629689 0.0000000 -0.1874494 -0.1420610
trustDR_int4 ~~ posemoDI_int3 0 0.0308526 0.0144568 2.1341182 0.0328331 0.0308526 0.0552866
trustDR_int4 ~~ Pos_Emo_w4 0 0.0273356 0.0255887 1.0682701 0.2853987 0.0273356 0.0284641
trustDR_int4 ~~ posemoDR_int4 0 -0.1715174 0.0336230 -5.1011860 0.0000003 -0.1715174 -0.1319872
trustDR_int4 ~~ posemoDI_int4 0 0.0391230 0.0143746 2.7216702 0.0064953 0.0391230 0.0734809
trustDR_int4 ~~ Neg_Emo_w1 0 -0.0131409 0.0208708 -0.6296323 0.5289352 -0.0131409 -0.0163387
trustDR_int4 ~~ negemoDR_int1 0 -0.2021644 0.0244089 -8.2823912 0.0000000 -0.2021644 -0.2157112
trustDR_int4 ~~ negemoDI_int1 0 0.0100447 0.0156858 0.6403711 0.5219314 0.0100447 0.0169204
trustDR_int4 ~~ Neg_Emo_w2 0 0.1687773 0.0259463 6.5048708 0.0000000 0.1687773 0.1661755
trustDR_int4 ~~ negemoDR_int2 0 -0.1023109 0.0170411 -6.0037621 0.0000000 -0.1023109 -0.1540135
trustDR_int4 ~~ negemoDI_int2 0 0.0270302 0.0145302 1.8602772 0.0628463 0.0270302 0.0470648
trustDR_int4 ~~ Neg_Emo_w3 0 0.1387037 0.0240261 5.7730357 0.0000000 0.1387037 0.1481986
trustDR_int4 ~~ negemoDR_int3 0 -0.1203035 0.0170052 -7.0745284 0.0000000 -0.1203035 -0.1814624
trustDR_int4 ~~ negemoDI_int3 0 0.0200637 0.0139856 1.4345964 0.1514021 0.0200637 0.0356485
trustDR_int4 ~~ Neg_Emo_w4 0 0.1140076 0.0267040 4.2693111 0.0000196 0.1140076 0.1126269
trustDR_int4 ~~ negemoDR_int4 0 -0.1986661 0.0186948 -10.6268231 0.0000000 -0.1986661 -0.2890533
trustDR_int4 ~~ negemoDI_int4 0 0.0477444 0.0175326 2.7231759 0.0064658 0.0477444 0.0731705
trustDI_int4 ~~ trustDI_int4 0 0.2379646 0.0087758 27.1159862 0.0000000 0.2379646 1.0000000
trustDI_int4 ~~ Pos_Emo_w1 0 0.0851277 0.0139754 6.0912716 0.0000000 0.0851277 0.1522108
trustDI_int4 ~~ posemoDR_int1 0 0.1252560 0.0184690 6.7819709 0.0000000 0.1252560 0.1701991
trustDI_int4 ~~ posemoDI_int1 0 -0.1996353 0.0118031 -16.9137339 0.0000000 -0.1996353 -0.4530649
trustDI_int4 ~~ Pos_Emo_w2 0 0.0796637 0.0174907 4.5546427 0.0000052 0.0796637 0.1148026
trustDI_int4 ~~ posemoDR_int2 0 0.1725001 0.0236567 7.2917910 0.0000000 0.1725001 0.1820503
trustDI_int4 ~~ posemoDI_int2 0 -0.1909045 0.0105494 -18.0961623 0.0000000 -0.1909045 -0.4811759
trustDI_int4 ~~ Pos_Emo_w3 0 0.0905399 0.0168776 5.3645027 0.0000001 0.0905399 0.1369184
trustDI_int4 ~~ posemoDR_int3 0 0.1696897 0.0227699 7.4523582 0.0000000 0.1696897 0.1876343
trustDI_int4 ~~ posemoDI_int3 0 -0.1795809 0.0103944 -17.2767512 0.0000000 -0.1795809 -0.4695195
trustDI_int4 ~~ Pos_Emo_w4 0 0.1108024 0.0173138 6.3996424 0.0000000 0.1108024 0.1683385
trustDI_int4 ~~ posemoDR_int4 0 0.1823057 0.0227973 7.9967958 0.0000000 0.1823057 0.2046867
trustDI_int4 ~~ posemoDI_int4 0 -0.2086797 0.0108074 -19.3089991 0.0000000 -0.2086797 -0.5718580
trustDI_int4 ~~ Neg_Emo_w1 0 0.0079326 0.0139001 0.5706829 0.5682146 0.0079326 0.0143904
trustDI_int4 ~~ negemoDR_int1 0 0.1028449 0.0161789 6.3567377 0.0000000 0.1028449 0.1601091
trustDI_int4 ~~ negemoDI_int1 0 -0.2132823 0.0112157 -19.0163577 0.0000000 -0.2132823 -0.5241949
trustDI_int4 ~~ Neg_Emo_w2 0 0.0296705 0.0172959 1.7154629 0.0862604 0.0296705 0.0426229
trustDI_int4 ~~ negemoDR_int2 0 0.0705967 0.0114279 6.1775886 0.0000000 0.0705967 0.1550554
trustDI_int4 ~~ negemoDI_int2 0 -0.2106912 0.0106225 -19.8343489 0.0000000 -0.2106912 -0.5352538
trustDI_int4 ~~ Neg_Emo_w3 0 -0.0045603 0.0161366 -0.2826093 0.7774763 -0.0045603 -0.0071092
trustDI_int4 ~~ negemoDR_int3 0 0.0725726 0.0114454 6.3407817 0.0000000 0.0725726 0.1597153
trustDI_int4 ~~ negemoDI_int3 0 -0.2124916 0.0104151 -20.4022976 0.0000000 -0.2124916 -0.5508560
trustDI_int4 ~~ Neg_Emo_w4 0 -0.0203277 0.0178658 -1.1378020 0.2552032 -0.0203277 -0.0292996
trustDI_int4 ~~ negemoDR_int4 0 0.0872641 0.0122775 7.1076723 0.0000000 0.0872641 0.1852488
trustDI_int4 ~~ negemoDI_int4 0 -0.3388348 0.0144805 -23.3993724 0.0000000 -0.3388348 -0.7576472
Pos_Emo_w1 ~~ Pos_Emo_w1 0 1.3144319 0.0363511 36.1593807 0.0000000 1.3144319 1.0000000
Pos_Emo_w1 ~~ posemoDR_int1 0 0.4306758 0.0348562 12.3557787 0.0000000 0.4306758 0.2489984
Pos_Emo_w1 ~~ posemoDI_int1 0 0.0402275 0.0202666 1.9849136 0.0471541 0.0402275 0.0388448
Pos_Emo_w1 ~~ Pos_Emo_w2 0 0.4579726 0.0346384 13.2215255 0.0000000 0.4579726 0.2808132
Pos_Emo_w1 ~~ posemoDR_int2 0 0.0887532 0.0445027 1.9943317 0.0461158 0.0887532 0.0398541
Pos_Emo_w1 ~~ posemoDI_int2 0 -0.0384446 0.0189359 -2.0302523 0.0423309 -0.0384446 -0.0412297
Pos_Emo_w1 ~~ Pos_Emo_w3 0 0.5330507 0.0346476 15.3849043 0.0000000 0.5330507 0.3429868
Pos_Emo_w1 ~~ posemoDR_int3 0 0.1555462 0.0431636 3.6036457 0.0003138 0.1555462 0.0731818
Pos_Emo_w1 ~~ posemoDI_int3 0 -0.0242095 0.0187641 -1.2902019 0.1969806 -0.0242095 -0.0269319
Pos_Emo_w1 ~~ Pos_Emo_w4 0 0.5086040 0.0379345 13.4074218 0.0000000 0.5086040 0.3287769
Pos_Emo_w1 ~~ posemoDR_int4 0 0.1218768 0.0448649 2.7165252 0.0065971 0.1218768 0.0582234
Pos_Emo_w1 ~~ posemoDI_int4 0 -0.0384911 0.0203776 -1.8888895 0.0589066 -0.0384911 -0.0448802
Pos_Emo_w1 ~~ Neg_Emo_w1 0 -0.1153393 0.0254351 -4.5346527 0.0000058 -0.1153393 -0.0890271
Pos_Emo_w1 ~~ negemoDR_int1 0 -0.0729913 0.0295564 -2.4695640 0.0135278 -0.0729913 -0.0483495
Pos_Emo_w1 ~~ negemoDI_int1 0 -0.1169936 0.0188393 -6.2100766 0.0000000 -0.1169936 -0.1223453
Pos_Emo_w1 ~~ Neg_Emo_w2 0 0.0793478 0.0335547 2.3647318 0.0180431 0.0793478 0.0484999
Pos_Emo_w1 ~~ negemoDR_int2 0 -0.0032973 0.0216934 -0.1519956 0.8791904 -0.0032973 -0.0030814
Pos_Emo_w1 ~~ negemoDI_int2 0 -0.1027611 0.0189498 -5.4228127 0.0000001 -0.1027611 -0.1110783
Pos_Emo_w1 ~~ Neg_Emo_w3 0 0.0139302 0.0317826 0.4382973 0.6611708 0.0139302 0.0092399
Pos_Emo_w1 ~~ negemoDR_int3 0 -0.0146978 0.0221575 -0.6633322 0.5071178 -0.0146978 -0.0137630
Pos_Emo_w1 ~~ negemoDI_int3 0 -0.1067340 0.0190381 -5.6063316 0.0000000 -0.1067340 -0.1177297
Pos_Emo_w1 ~~ Neg_Emo_w4 0 -0.0026945 0.0377331 -0.0714108 0.9430708 -0.0026945 -0.0016525
Pos_Emo_w1 ~~ negemoDR_int4 0 -0.0493969 0.0255992 -1.9296244 0.0536534 -0.0493969 -0.0446176
Pos_Emo_w1 ~~ negemoDI_int4 0 -0.1068545 0.0251473 -4.2491511 0.0000215 -0.1068545 -0.1016621
posemoDR_int1 ~~ posemoDR_int1 0 2.2759872 0.0629433 36.1593496 0.0000000 2.2759872 1.0000000
posemoDR_int1 ~~ posemoDI_int1 0 -0.3223058 0.0273835 -11.7700628 0.0000000 -0.3223058 -0.2365171
posemoDR_int1 ~~ Pos_Emo_w2 0 1.1428989 0.0493936 23.1386193 0.0000000 1.1428989 0.5325618
posemoDR_int1 ~~ posemoDR_int2 0 2.3484919 0.0743940 31.5682867 0.0000000 2.3484919 0.8014245
posemoDR_int1 ~~ posemoDI_int2 0 -0.2264455 0.0252961 -8.9517828 0.0000000 -0.2264455 -0.1845536
posemoDR_int1 ~~ Pos_Emo_w3 0 1.0497285 0.0480425 21.8499809 0.0000000 1.0497285 0.5132985
posemoDR_int1 ~~ posemoDR_int3 0 2.2631910 0.0718772 31.4868987 0.0000000 2.2631910 0.8091873
posemoDR_int1 ~~ posemoDI_int3 0 -0.2267321 0.0250596 -9.0477077 0.0000000 -0.2267321 -0.1916805
posemoDR_int1 ~~ Pos_Emo_w4 0 1.0393629 0.0523715 19.8459570 0.0000000 1.0393629 0.5105907
posemoDR_int1 ~~ posemoDR_int4 0 2.1617218 0.0725959 29.7774517 0.0000000 2.1617218 0.7848026
posemoDR_int1 ~~ posemoDI_int4 0 -0.2224621 0.0272066 -8.1767815 0.0000000 -0.2224621 -0.1971221
posemoDR_int1 ~~ Neg_Emo_w1 0 -0.0224546 0.0333405 -0.6734936 0.5006333 -0.0224546 -0.0131715
posemoDR_int1 ~~ negemoDR_int1 0 1.4512059 0.0481089 30.1650486 0.0000000 1.4512059 0.7305230
posemoDR_int1 ~~ negemoDI_int1 0 -0.2904728 0.0252539 -11.5020968 0.0000000 -0.2904728 -0.2308419
posemoDR_int1 ~~ Neg_Emo_w2 0 -0.8837697 0.0473879 -18.6497091 0.0000000 -0.8837697 -0.4105151
posemoDR_int1 ~~ negemoDR_int2 0 0.9212757 0.0337629 27.2866199 0.0000000 0.9212757 0.6542796
posemoDR_int1 ~~ negemoDI_int2 0 -0.2302455 0.0252090 -9.1334791 0.0000000 -0.2302455 -0.1891367
posemoDR_int1 ~~ Neg_Emo_w3 0 -0.8331291 0.0448468 -18.5772085 0.0000000 -0.8331291 -0.4199575
posemoDR_int1 ~~ negemoDR_int3 0 0.9205269 0.0342458 26.8800205 0.0000000 0.9205269 0.6550607
posemoDR_int1 ~~ negemoDI_int3 0 -0.2191691 0.0252497 -8.6800709 0.0000000 -0.2191691 -0.1837159
posemoDR_int1 ~~ Neg_Emo_w4 0 -1.0125805 0.0535345 -18.9145542 0.0000000 -1.0125805 -0.4719269
posemoDR_int1 ~~ negemoDR_int4 0 0.8858058 0.0379135 23.3638814 0.0000000 0.8858058 0.6080366
posemoDR_int1 ~~ negemoDI_int4 0 -0.2676467 0.0334645 -7.9979189 0.0000000 -0.2676467 -0.1935139
posemoDI_int1 ~~ posemoDI_int1 0 0.8159083 0.0225642 36.1593873 0.0000000 0.8159083 1.0000000
posemoDI_int1 ~~ Pos_Emo_w2 0 -0.0098800 0.0268407 -0.3680979 0.7128002 -0.0098800 -0.0076892
posemoDI_int1 ~~ posemoDR_int2 0 -0.2911928 0.0357770 -8.1391179 0.0000000 -0.2911928 -0.1659657
posemoDI_int1 ~~ posemoDI_int2 0 0.5217878 0.0182393 28.6079219 0.0000000 0.5217878 0.7102595
posemoDI_int1 ~~ Pos_Emo_w3 0 -0.0035392 0.0267968 -0.1320757 0.8949244 -0.0035392 -0.0028904
posemoDI_int1 ~~ posemoDR_int3 0 -0.2702852 0.0347717 -7.7731342 0.0000000 -0.2702852 -0.1614040
posemoDI_int1 ~~ posemoDI_int3 0 0.5073976 0.0180877 28.0520709 0.0000000 0.5073976 0.7164362
posemoDI_int1 ~~ Pos_Emo_w4 0 -0.0460323 0.0294060 -1.5654030 0.1174885 -0.0460323 -0.0377687
posemoDI_int1 ~~ posemoDR_int4 0 -0.2336652 0.0359509 -6.4995737 0.0000000 -0.2336652 -0.1416834
posemoDI_int1 ~~ posemoDI_int4 0 0.4392869 0.0184315 23.8334690 0.0000000 0.4392869 0.6501172
posemoDI_int1 ~~ Neg_Emo_w1 0 -0.0363598 0.0199731 -1.8204354 0.0686927 -0.0363598 -0.0356217
posemoDI_int1 ~~ negemoDR_int1 0 -0.2662193 0.0238347 -11.1693885 0.0000000 -0.2662193 -0.2238250
posemoDI_int1 ~~ negemoDI_int1 0 0.5820766 0.0186179 31.2643774 0.0000000 0.5820766 0.7725980
posemoDI_int1 ~~ Neg_Emo_w2 0 -0.0984223 0.0269422 -3.6530877 0.0002591 -0.0984223 -0.0763568
posemoDI_int1 ~~ negemoDR_int2 0 -0.1141548 0.0174703 -6.5342129 0.0000000 -0.1141548 -0.1354042
posemoDI_int1 ~~ negemoDI_int2 0 0.4294742 0.0172573 24.8865195 0.0000000 0.4294742 0.5892315
posemoDI_int1 ~~ Neg_Emo_w3 0 -0.0797842 0.0257531 -3.0980424 0.0019480 -0.0797842 -0.0671698
posemoDI_int1 ~~ negemoDR_int3 0 -0.1186465 0.0179783 -6.5994216 0.0000000 -0.1186465 -0.1410146
posemoDI_int1 ~~ negemoDI_int3 0 0.4232901 0.0173589 24.3845875 0.0000000 0.4232901 0.5926113
posemoDI_int1 ~~ Neg_Emo_w4 0 -0.0650186 0.0302870 -2.1467514 0.0318131 -0.0650186 -0.0506112
posemoDI_int1 ~~ negemoDR_int4 0 -0.1161419 0.0205928 -5.6399229 0.0000000 -0.1161419 -0.1331510
posemoDI_int1 ~~ negemoDI_int4 0 0.4808184 0.0221657 21.6919857 0.0000000 0.4808184 0.5806249
Pos_Emo_w2 ~~ Pos_Emo_w2 0 2.0235123 0.0596433 33.9269096 0.0000000 2.0235123 1.0000000
Pos_Emo_w2 ~~ posemoDR_int2 0 1.9435617 0.0693338 28.0319415 0.0000000 1.9435617 0.7034024
Pos_Emo_w2 ~~ posemoDI_int2 0 0.0397045 0.0242320 1.6385121 0.1013149 0.0397045 0.0343187
Pos_Emo_w2 ~~ Pos_Emo_w3 0 1.3350200 0.0497906 26.8126779 0.0000000 1.3350200 0.6923294
Pos_Emo_w2 ~~ posemoDR_int3 0 1.6404024 0.0641838 25.5578751 0.0000000 1.6404024 0.6220284
Pos_Emo_w2 ~~ posemoDI_int3 0 -0.0046162 0.0239050 -0.1931079 0.8468744 -0.0046162 -0.0041389
Pos_Emo_w2 ~~ Pos_Emo_w4 0 1.3269558 0.0534998 24.8029874 0.0000000 1.3269558 0.6913439
Pos_Emo_w2 ~~ posemoDR_int4 0 1.6220915 0.0658184 24.6449720 0.0000000 1.6220915 0.6245511
Pos_Emo_w2 ~~ posemoDI_int4 0 -0.0007530 0.0257923 -0.0291952 0.9767089 -0.0007530 -0.0007076
Pos_Emo_w2 ~~ Neg_Emo_w1 0 0.0161660 0.0329305 0.4909127 0.6234882 0.0161660 0.0100569
Pos_Emo_w2 ~~ negemoDR_int1 0 0.8857119 0.0419994 21.0886926 0.0000000 0.8857119 0.4728564
Pos_Emo_w2 ~~ negemoDI_int1 0 -0.0930778 0.0245502 -3.7913260 0.0001498 -0.0930778 -0.0784490
Pos_Emo_w2 ~~ Neg_Emo_w2 0 -1.0428392 0.0473623 -22.0183626 0.0000000 -1.0428392 -0.5137353
Pos_Emo_w2 ~~ negemoDR_int2 0 0.4464850 0.0287979 15.5040903 0.0000000 0.4464850 0.3362890
Pos_Emo_w2 ~~ negemoDI_int2 0 -0.1493133 0.0241806 -6.1749170 0.0000000 -0.1493133 -0.1300814
Pos_Emo_w2 ~~ Neg_Emo_w3 0 -0.8201247 0.0433431 -18.9216703 0.0000000 -0.8201247 -0.4384347
Pos_Emo_w2 ~~ negemoDR_int3 0 0.5220652 0.0298426 17.4939330 0.0000000 0.5220652 0.3940050
Pos_Emo_w2 ~~ negemoDI_int3 0 -0.1259323 0.0241404 -5.2166686 0.0000002 -0.1259323 -0.1119533
Pos_Emo_w2 ~~ Neg_Emo_w4 0 -0.9490224 0.0512586 -18.5143965 0.0000000 -0.9490224 -0.4690873
Pos_Emo_w2 ~~ negemoDR_int4 0 0.5050641 0.0337341 14.9719377 0.0000000 0.5050641 0.3676798
Pos_Emo_w2 ~~ negemoDI_int4 0 -0.1167368 0.0317679 -3.6746786 0.0002381 -0.1167368 -0.0895139
posemoDR_int2 ~~ posemoDR_int2 0 3.7729679 0.1078739 34.9757193 0.0000000 3.7729679 1.0000000
posemoDR_int2 ~~ posemoDI_int2 0 -0.3648215 0.0332910 -10.9585540 0.0000000 -0.3648215 -0.2309313
posemoDR_int2 ~~ Pos_Emo_w3 0 1.5448984 0.0640728 24.1116005 0.0000000 1.5448984 0.5867274
posemoDR_int2 ~~ posemoDR_int3 0 3.2384834 0.0981920 32.9811338 0.0000000 3.2384834 0.8993172
posemoDR_int2 ~~ posemoDI_int3 0 -0.3091364 0.0326260 -9.4751427 0.0000000 -0.3091364 -0.2029824
posemoDR_int2 ~~ Pos_Emo_w4 0 1.5511611 0.0693210 22.3765041 0.0000000 1.5511611 0.5918423
posemoDR_int2 ~~ posemoDR_int4 0 3.1759791 0.0995314 31.9093203 0.0000000 3.1759791 0.8955331
posemoDR_int2 ~~ posemoDI_int4 0 -0.2862341 0.0350106 -8.1756467 0.0000000 -0.2862341 -0.1969899
posemoDR_int2 ~~ Neg_Emo_w1 0 0.1040913 0.0438471 2.3739643 0.0175983 0.1040913 0.0474228
posemoDR_int2 ~~ negemoDR_int1 0 1.9029593 0.0631119 30.1521684 0.0000000 1.9029593 0.7440081
posemoDR_int2 ~~ negemoDI_int1 0 -0.2809091 0.0328966 -8.5391553 0.0000000 -0.2809091 -0.1733877
posemoDR_int2 ~~ Neg_Emo_w2 0 -1.4148868 0.0636677 -22.2229952 0.0000000 -1.4148868 -0.5104522
posemoDR_int2 ~~ negemoDR_int2 0 1.2145858 0.0441294 27.5233092 0.0000000 1.2145858 0.6699546
posemoDR_int2 ~~ negemoDI_int2 0 -0.3519350 0.0330064 -10.6626255 0.0000000 -0.3519350 -0.2245383
posemoDR_int2 ~~ Neg_Emo_w3 0 -1.2308101 0.0592113 -20.7867544 0.0000000 -1.2308101 -0.4818672
posemoDR_int2 ~~ negemoDR_int3 0 1.2388110 0.0449614 27.5527560 0.0000000 1.2388110 0.6846893
posemoDR_int2 ~~ negemoDI_int3 0 -0.3220309 0.0328899 -9.7911673 0.0000000 -0.3220309 -0.2096566
posemoDR_int2 ~~ Neg_Emo_w4 0 -1.4708581 0.0702411 -20.9401249 0.0000000 -1.4708581 -0.5324261
posemoDR_int2 ~~ negemoDR_int4 0 1.2325546 0.0497195 24.7901779 0.0000000 1.2325546 0.6571140
posemoDR_int2 ~~ negemoDI_int4 0 -0.3661016 0.0430955 -8.4951227 0.0000000 -0.3661016 -0.2055869
posemoDI_int2 ~~ posemoDI_int2 0 0.6614733 0.0195589 33.8195115 0.0000000 0.6614733 1.0000000
posemoDI_int2 ~~ Pos_Emo_w3 0 -0.0137593 0.0242133 -0.5682539 0.5698626 -0.0137593 -0.0124801
posemoDI_int2 ~~ posemoDR_int3 0 -0.2838112 0.0320659 -8.8508653 0.0000000 -0.2838112 -0.1882289
posemoDI_int2 ~~ posemoDI_int3 0 0.4945874 0.0171747 28.7974379 0.0000000 0.4945874 0.7755980
posemoDI_int2 ~~ Pos_Emo_w4 0 -0.0466084 0.0260654 -1.7881311 0.0737549 -0.0466084 -0.0424716
posemoDI_int2 ~~ posemoDR_int4 0 -0.2495214 0.0327264 -7.6244586 0.0000000 -0.2495214 -0.1680340
posemoDI_int2 ~~ posemoDI_int4 0 0.4334698 0.0170632 25.4037533 0.0000000 0.4334698 0.7124704
posemoDI_int2 ~~ Neg_Emo_w1 0 -0.0397527 0.0186429 -2.1323168 0.0329808 -0.0397527 -0.0432538
posemoDI_int2 ~~ negemoDR_int1 0 -0.1905911 0.0219754 -8.6729391 0.0000000 -0.1905911 -0.1779657
posemoDI_int2 ~~ negemoDI_int1 0 0.4104152 0.0159874 25.6711431 0.0000000 0.4104152 0.6050084
posemoDI_int2 ~~ Neg_Emo_w2 0 -0.1040887 0.0243427 -4.2759769 0.0000190 -0.1040887 -0.0896855
posemoDI_int2 ~~ negemoDR_int2 0 -0.1530853 0.0160646 -9.5293295 0.0000000 -0.1530853 -0.2016676
posemoDI_int2 ~~ negemoDI_int2 0 0.4501944 0.0165592 27.1869090 0.0000000 0.4501944 0.6859830
posemoDI_int2 ~~ Neg_Emo_w3 0 -0.0817705 0.0233342 -3.5043154 0.0004578 -0.0817705 -0.0764572
posemoDI_int2 ~~ negemoDR_int3 0 -0.1300554 0.0164488 -7.9066858 0.0000000 -0.1300554 -0.1716730
posemoDI_int2 ~~ negemoDI_int3 0 0.3981528 0.0160862 24.7511621 0.0000000 0.3981528 0.6190791
posemoDI_int2 ~~ Neg_Emo_w4 0 -0.0629789 0.0269669 -2.3354173 0.0195216 -0.0629789 -0.0544464
posemoDI_int2 ~~ negemoDR_int4 0 -0.1234595 0.0184176 -6.7033559 0.0000000 -0.1234595 -0.1571971
posemoDI_int2 ~~ negemoDI_int4 0 0.4363660 0.0199428 21.8808422 0.0000000 0.4363660 0.5852347
Pos_Emo_w3 ~~ Pos_Emo_w3 0 1.8375707 0.0569307 32.2773126 0.0000000 1.8375707 1.0000000
Pos_Emo_w3 ~~ posemoDR_int3 0 1.7508130 0.0651939 26.8554720 0.0000000 1.7508130 0.6966754
Pos_Emo_w3 ~~ posemoDI_int3 0 0.0337132 0.0235068 1.4341879 0.1515186 0.0337132 0.0317196
Pos_Emo_w3 ~~ Pos_Emo_w4 0 1.3566368 0.0529596 25.6164405 0.0000000 1.3566368 0.7417066
Pos_Emo_w3 ~~ posemoDR_int4 0 1.4926983 0.0635052 23.5051374 0.0000000 1.4926983 0.6031086
Pos_Emo_w3 ~~ posemoDI_int4 0 -0.0051872 0.0250459 -0.2071092 0.8359246 -0.0051872 -0.0051154
Pos_Emo_w3 ~~ Neg_Emo_w1 0 -0.0603581 0.0326442 -1.8489687 0.0644623 -0.0603581 -0.0394029
Pos_Emo_w3 ~~ negemoDR_int1 0 0.7683103 0.0407382 18.8597077 0.0000000 0.7683103 0.4304318
Pos_Emo_w3 ~~ negemoDI_int1 0 -0.1136883 0.0248381 -4.5771677 0.0000047 -0.1136883 -0.1005513
Pos_Emo_w3 ~~ Neg_Emo_w2 0 -0.8063042 0.0446594 -18.0545369 0.0000000 -0.8063042 -0.4168232
Pos_Emo_w3 ~~ negemoDR_int2 0 0.4455909 0.0285841 15.5887754 0.0000000 0.4455909 0.3521867
Pos_Emo_w3 ~~ negemoDI_int2 0 -0.1276219 0.0242308 -5.2669240 0.0000001 -0.1276219 -0.1166736
Pos_Emo_w3 ~~ Neg_Emo_w3 0 -0.8732933 0.0429836 -20.3168881 0.0000000 -0.8732933 -0.4899097
Pos_Emo_w3 ~~ negemoDR_int3 0 0.4332523 0.0286046 15.1462242 0.0000000 0.4332523 0.3431223
Pos_Emo_w3 ~~ negemoDI_int3 0 -0.1295291 0.0238678 -5.4269481 0.0000001 -0.1295291 -0.1208364
Pos_Emo_w3 ~~ Neg_Emo_w4 0 -0.9554620 0.0500217 -19.1009644 0.0000000 -0.9554620 -0.4955888
Pos_Emo_w3 ~~ negemoDR_int4 0 0.4418673 0.0323789 13.6467844 0.0000000 0.4418673 0.3375561
Pos_Emo_w3 ~~ negemoDI_int4 0 -0.1242686 0.0309243 -4.0184719 0.0000586 -0.1242686 -0.0999941
posemoDR_int3 ~~ posemoDR_int3 0 3.4369600 0.1005241 34.1903949 0.0000000 3.4369600 1.0000000
posemoDR_int3 ~~ posemoDI_int3 0 -0.3343179 0.0317501 -10.5296687 0.0000000 -0.3343179 -0.2299970
posemoDR_int3 ~~ Pos_Emo_w4 0 1.4963016 0.0668633 22.3785184 0.0000000 1.4963016 0.5981671
posemoDR_int3 ~~ posemoDR_int4 0 3.0023384 0.0955313 31.4277940 0.0000000 3.0023384 0.8869884
posemoDR_int3 ~~ posemoDI_int4 0 -0.2649275 0.0337350 -7.8531997 0.0000000 -0.2649275 -0.1910311
posemoDR_int3 ~~ Neg_Emo_w1 0 0.0846732 0.0424941 1.9925871 0.0463067 0.0846732 0.0404178
posemoDR_int3 ~~ negemoDR_int1 0 1.7928451 0.0605705 29.5993231 0.0000000 1.7928451 0.7344213
posemoDR_int3 ~~ negemoDI_int1 0 -0.2782737 0.0321678 -8.6506923 0.0000000 -0.2782737 -0.1799613
posemoDR_int3 ~~ Neg_Emo_w2 0 -1.2611510 0.0605347 -20.8335381 0.0000000 -1.2611510 -0.4767106
posemoDR_int3 ~~ negemoDR_int2 0 1.1413871 0.0423612 26.9441440 0.0000000 1.1413871 0.6596361
posemoDR_int3 ~~ negemoDI_int2 0 -0.3028233 0.0319785 -9.4695836 0.0000000 -0.3028233 -0.2024285
posemoDR_int3 ~~ Neg_Emo_w3 0 -1.1899981 0.0571132 -20.8357624 0.0000000 -1.1899981 -0.4881316
posemoDR_int3 ~~ negemoDR_int3 0 1.1992365 0.0435247 27.5530119 0.0000000 1.1992365 0.6944605
posemoDR_int3 ~~ negemoDI_int3 0 -0.3336159 0.0319938 -10.4275302 0.0000000 -0.3336159 -0.2275685
posemoDR_int3 ~~ Neg_Emo_w4 0 -1.3901721 0.0674169 -20.6205348 0.0000000 -1.3901721 -0.5272438
posemoDR_int3 ~~ negemoDR_int4 0 1.1386121 0.0473803 24.0313228 0.0000000 1.1386121 0.6360111
posemoDR_int3 ~~ negemoDI_int4 0 -0.3566820 0.0416266 -8.5686095 0.0000000 -0.3566820 -0.2098598
posemoDI_int3 ~~ posemoDI_int3 0 0.6147527 0.0191891 32.0365718 0.0000000 0.6147527 1.0000000
posemoDI_int3 ~~ Pos_Emo_w4 0 -0.0406627 0.0256905 -1.5827891 0.1134696 -0.0406627 -0.0384358
posemoDI_int3 ~~ posemoDR_int4 0 -0.2354029 0.0322782 -7.2929350 0.0000000 -0.2354029 -0.1644399
posemoDI_int3 ~~ posemoDI_int4 0 0.4184853 0.0169619 24.6720672 0.0000000 0.4184853 0.7135003
posemoDI_int3 ~~ Neg_Emo_w1 0 -0.0358745 0.0185261 -1.9364288 0.0528152 -0.0358745 -0.0404902
posemoDI_int3 ~~ negemoDR_int1 0 -0.1914514 0.0218293 -8.7703740 0.0000000 -0.1914514 -0.1854377
posemoDI_int3 ~~ negemoDI_int1 0 0.3862948 0.0158729 24.3367734 0.0000000 0.3862948 0.5906943
posemoDI_int3 ~~ Neg_Emo_w2 0 -0.0824186 0.0239813 -3.4367873 0.0005887 -0.0824186 -0.0736631
posemoDI_int3 ~~ negemoDR_int2 0 -0.1197451 0.0158083 -7.5748495 0.0000000 -0.1197451 -0.1636313
posemoDI_int3 ~~ negemoDI_int2 0 0.3818696 0.0158196 24.1390599 0.0000000 0.3818696 0.6035794
posemoDI_int3 ~~ Neg_Emo_w3 0 -0.0808505 0.0226755 -3.5655488 0.0003631 -0.0808505 -0.0784170
posemoDI_int3 ~~ negemoDR_int3 0 -0.1513710 0.0161927 -9.3480765 0.0000000 -0.1513710 -0.2072633
posemoDI_int3 ~~ negemoDI_int3 0 0.4496011 0.0167950 26.7698962 0.0000000 0.4496011 0.7251531
posemoDI_int3 ~~ Neg_Emo_w4 0 -0.0554235 0.0265663 -2.0862320 0.0369576 -0.0554235 -0.0497020
posemoDI_int3 ~~ negemoDR_int4 0 -0.1081650 0.0181611 -5.9558534 0.0000000 -0.1081650 -0.1428607
posemoDI_int3 ~~ negemoDI_int4 0 0.4205961 0.0198176 21.2234031 0.0000000 0.4205961 0.5851272
Pos_Emo_w4 ~~ Pos_Emo_w4 0 1.8206178 0.0658343 27.6545373 0.0000000 1.8206178 1.0000000
Pos_Emo_w4 ~~ posemoDR_int4 0 1.7131965 0.0720030 23.7934198 0.0000000 1.7131965 0.6954139
Pos_Emo_w4 ~~ posemoDI_int4 0 -0.0063057 0.0260606 -0.2419634 0.8088085 -0.0063057 -0.0062472
Pos_Emo_w4 ~~ Neg_Emo_w1 0 -0.0111437 0.0365354 -0.3050116 0.7603573 -0.0111437 -0.0073086
Pos_Emo_w4 ~~ negemoDR_int1 0 0.7933630 0.0450097 17.6264808 0.0000000 0.7933630 0.4465317
Pos_Emo_w4 ~~ negemoDI_int1 0 -0.1198277 0.0274518 -4.3650259 0.0000127 -0.1198277 -0.1064736
Pos_Emo_w4 ~~ Neg_Emo_w2 0 -0.7649694 0.0483051 -15.8362185 0.0000000 -0.7649694 -0.3972918
Pos_Emo_w4 ~~ negemoDR_int2 0 0.4481607 0.0312021 14.3631556 0.0000000 0.4481607 0.3558632
Pos_Emo_w4 ~~ negemoDI_int2 0 -0.1386745 0.0259509 -5.3437191 0.0000001 -0.1386745 -0.1273670
Pos_Emo_w4 ~~ Neg_Emo_w3 0 -0.7822059 0.0457045 -17.1144105 0.0000000 -0.7822059 -0.4408487
Pos_Emo_w4 ~~ negemoDR_int3 0 0.4560768 0.0312754 14.5826127 0.0000000 0.4560768 0.3628763
Pos_Emo_w4 ~~ negemoDI_int3 0 -0.1482771 0.0253200 -5.8561355 0.0000000 -0.1482771 -0.1389688
Pos_Emo_w4 ~~ Neg_Emo_w4 0 -1.0087537 0.0536287 -18.8099534 0.0000000 -1.0087537 -0.5256612
Pos_Emo_w4 ~~ negemoDR_int4 0 0.3955396 0.0334389 11.8287335 0.0000000 0.3955396 0.3035685
Pos_Emo_w4 ~~ negemoDI_int4 0 -0.1731137 0.0321274 -5.3883485 0.0000001 -0.1731137 -0.1399450
posemoDR_int4 ~~ posemoDR_int4 0 3.3335647 0.1067304 31.2334994 0.0000000 3.3335647 1.0000000
posemoDR_int4 ~~ posemoDI_int4 0 -0.3287587 0.0344868 -9.5328923 0.0000000 -0.3287587 -0.2407060
posemoDR_int4 ~~ Neg_Emo_w1 0 0.1160791 0.0444951 2.6088061 0.0090859 0.1160791 0.0562618
posemoDR_int4 ~~ negemoDR_int1 0 1.7422933 0.0618113 28.1873121 0.0000000 1.7422933 0.7246972
posemoDR_int4 ~~ negemoDI_int1 0 -0.2581014 0.0334140 -7.7243470 0.0000000 -0.2581014 -0.1694845
posemoDR_int4 ~~ Neg_Emo_w2 0 -1.2168717 0.0619126 -19.6546630 0.0000000 -1.2168717 -0.4670521
posemoDR_int4 ~~ negemoDR_int2 0 1.1204890 0.0432352 25.9161473 0.0000000 1.1204890 0.6575244
posemoDR_int4 ~~ negemoDI_int2 0 -0.2806044 0.0325883 -8.6105952 0.0000000 -0.2806044 -0.1904625
posemoDR_int4 ~~ Neg_Emo_w3 0 -1.1335168 0.0581681 -19.4869102 0.0000000 -1.1335168 -0.4721189
posemoDR_int4 ~~ negemoDR_int3 0 1.1233617 0.0435793 25.7774301 0.0000000 1.1233617 0.6605340
posemoDR_int4 ~~ negemoDI_int3 0 -0.2771739 0.0322186 -8.6029063 0.0000000 -0.2771739 -0.1919776
posemoDR_int4 ~~ Neg_Emo_w4 0 -1.4254879 0.0690855 -20.6336678 0.0000000 -1.4254879 -0.5489581
posemoDR_int4 ~~ negemoDR_int4 0 1.1741511 0.0487103 24.1047899 0.0000000 1.1741511 0.6659562
posemoDR_int4 ~~ negemoDI_int4 0 -0.3982529 0.0421527 -9.4478689 0.0000000 -0.3982529 -0.2379248
posemoDI_int4 ~~ posemoDI_int4 0 0.5595923 0.0205936 27.1731046 0.0000000 0.5595923 1.0000000
posemoDI_int4 ~~ Neg_Emo_w1 0 -0.0179667 0.0203454 -0.8830843 0.3771907 -0.0179667 -0.0212543
posemoDI_int4 ~~ negemoDR_int1 0 -0.1776073 0.0237792 -7.4690179 0.0000000 -0.1776073 -0.1803079
posemoDI_int4 ~~ negemoDI_int1 0 0.3662208 0.0167986 21.8006965 0.0000000 0.3662208 0.5869502
posemoDI_int4 ~~ Neg_Emo_w2 0 -0.0828675 0.0256997 -3.2244510 0.0012621 -0.0828675 -0.0776289
posemoDI_int4 ~~ negemoDR_int2 0 -0.1176209 0.0169310 -6.9470810 0.0000000 -0.1176209 -0.1684641
posemoDI_int4 ~~ negemoDI_int2 0 0.3494493 0.0160634 21.7543685 0.0000000 0.3494493 0.5789190
posemoDI_int4 ~~ Neg_Emo_w3 0 -0.0621405 0.0241186 -2.5764588 0.0099818 -0.0621405 -0.0631709
posemoDI_int4 ~~ negemoDR_int3 0 -0.1262285 0.0170872 -7.3873235 0.0000000 -0.1262285 -0.1811554
posemoDI_int4 ~~ negemoDI_int3 0 0.3451669 0.0158197 21.8188713 0.0000000 0.3451669 0.5835067
posemoDI_int4 ~~ Neg_Emo_w4 0 -0.0395578 0.0271286 -1.4581548 0.1447979 -0.0395578 -0.0371814
posemoDI_int4 ~~ negemoDR_int4 0 -0.1582304 0.0187860 -8.4227805 0.0000000 -0.1582304 -0.2190434
posemoDI_int4 ~~ negemoDI_int4 0 0.5208341 0.0220839 23.5842938 0.0000000 0.5208341 0.7594494
Neg_Emo_w1 ~~ Neg_Emo_w1 0 1.2769433 0.0353143 36.1593832 0.0000000 1.2769433 1.0000000
Neg_Emo_w1 ~~ negemoDR_int1 0 0.5166659 0.0308020 16.7737520 0.0000000 0.5166659 0.3472272
Neg_Emo_w1 ~~ negemoDI_int1 0 0.1383274 0.0186287 7.4254861 0.0000000 0.1383274 0.1467629
Neg_Emo_w1 ~~ Neg_Emo_w2 0 0.5017060 0.0344156 14.5778486 0.0000000 0.5017060 0.3111275
Neg_Emo_w1 ~~ negemoDR_int2 0 0.1345810 0.0215181 6.2543229 0.0000000 0.1345810 0.1276017
Neg_Emo_w1 ~~ negemoDI_int2 0 0.0446301 0.0185682 2.4035737 0.0162357 0.0446301 0.0489453
Neg_Emo_w1 ~~ Neg_Emo_w3 0 0.5725720 0.0333106 17.1888776 0.0000000 0.5725720 0.3853206
Neg_Emo_w1 ~~ negemoDR_int3 0 0.1518810 0.0220651 6.8833173 0.0000000 0.1518810 0.1442938
Neg_Emo_w1 ~~ negemoDI_int3 0 0.0448781 0.0186929 2.4008122 0.0163587 0.0448781 0.0502228
Neg_Emo_w1 ~~ Neg_Emo_w4 0 0.4968761 0.0388422 12.7921637 0.0000000 0.4968761 0.3091665
Neg_Emo_w1 ~~ negemoDR_int4 0 0.1272962 0.0256296 4.9667582 0.0000007 0.1272962 0.1166556
Neg_Emo_w1 ~~ negemoDI_int4 0 0.0243633 0.0250439 0.9728213 0.3306421 0.0243633 0.0235172
negemoDR_int1 ~~ negemoDR_int1 0 1.7338859 0.0479513 36.1593023 0.0000000 1.7338859 1.0000000
negemoDR_int1 ~~ negemoDI_int1 0 -0.2399258 0.0219838 -10.9137336 0.0000000 -0.2399258 -0.2184544
negemoDR_int1 ~~ Neg_Emo_w2 0 -0.6663580 0.0404873 -16.4584444 0.0000000 -0.6663580 -0.3546274
negemoDR_int1 ~~ negemoDR_int2 0 0.8435508 0.0298121 28.2956183 0.0000000 0.8435508 0.6863722
negemoDR_int1 ~~ negemoDI_int2 0 -0.1888236 0.0218744 -8.6321773 0.0000000 -0.1888236 -0.1777115
negemoDR_int1 ~~ Neg_Emo_w3 0 -0.5850273 0.0381826 -15.3218278 0.0000000 -0.5850273 -0.3378654
negemoDR_int1 ~~ negemoDR_int3 0 0.8773405 0.0306565 28.6184616 0.0000000 0.8773405 0.7152995
negemoDR_int1 ~~ negemoDI_int3 0 -0.1854391 0.0219909 -8.4325222 0.0000000 -0.1854391 -0.1780916
negemoDR_int1 ~~ Neg_Emo_w4 0 -0.7437332 0.0458892 -16.2071625 0.0000000 -0.7437332 -0.3971340
negemoDR_int1 ~~ negemoDR_int4 0 0.8388851 0.0337756 24.8370238 0.0000000 0.8388851 0.6597332
negemoDR_int1 ~~ negemoDI_int4 0 -0.2148227 0.0292551 -7.3430864 0.0000000 -0.2148227 -0.1779530
negemoDI_int1 ~~ negemoDI_int1 0 0.6956837 0.0192394 36.1593936 0.0000000 0.6956837 1.0000000
negemoDI_int1 ~~ Neg_Emo_w2 0 -0.0063384 0.0245217 -0.2584793 0.7960370 -0.0063384 -0.0053253
negemoDI_int1 ~~ negemoDR_int2 0 -0.1063572 0.0159868 -6.6527961 0.0000000 -0.1063572 -0.1366217
negemoDI_int1 ~~ negemoDI_int2 0 0.4511201 0.0163583 27.5774442 0.0000000 0.4511201 0.6702792
negemoDI_int1 ~~ Neg_Emo_w3 0 0.0204551 0.0237336 0.8618655 0.3887616 0.0204551 0.0186498
negemoDI_int1 ~~ negemoDR_int3 0 -0.1053202 0.0165884 -6.3490096 0.0000000 -0.1053202 -0.1355613
negemoDI_int1 ~~ negemoDI_int3 0 0.4568916 0.0166686 27.4103937 0.0000000 0.4568916 0.6927233
negemoDI_int1 ~~ Neg_Emo_w4 0 0.0220564 0.0281389 0.7838405 0.4331337 0.0220564 0.0185934
negemoDI_int1 ~~ negemoDR_int4 0 -0.1134055 0.0191765 -5.9137620 0.0000000 -0.1134055 -0.1408005
negemoDI_int1 ~~ negemoDI_int4 0 0.4770226 0.0209012 22.8227827 0.0000000 0.4770226 0.6238329
Neg_Emo_w2 ~~ Neg_Emo_w2 0 2.0363390 0.0598215 34.0402673 0.0000000 2.0363390 1.0000000
Neg_Emo_w2 ~~ negemoDR_int2 0 -0.2329734 0.0278128 -8.3764910 0.0000000 -0.2329734 -0.1749202
Neg_Emo_w2 ~~ negemoDI_int2 0 0.1169017 0.0241329 4.8440833 0.0000013 0.1169017 0.1015232
Neg_Emo_w2 ~~ Neg_Emo_w3 0 1.3511352 0.0486735 27.7591784 0.0000000 1.3511352 0.7200318
Neg_Emo_w2 ~~ negemoDR_int3 0 -0.3858559 0.0290333 -13.2901326 0.0000000 -0.3858559 -0.2902887
Neg_Emo_w2 ~~ negemoDI_int3 0 0.0506185 0.0240412 2.1054927 0.0352484 0.0506185 0.0448577
Neg_Emo_w2 ~~ Neg_Emo_w4 0 1.4423611 0.0557463 25.8736546 0.0000000 1.4423611 0.7106882
Neg_Emo_w2 ~~ negemoDR_int4 0 -0.4233700 0.0331373 -12.7762466 0.0000000 -0.4233700 -0.3072354
Neg_Emo_w2 ~~ negemoDI_int4 0 0.0248065 0.0314889 0.7877877 0.4308209 0.0248065 0.0189617
negemoDR_int2 ~~ negemoDR_int2 0 0.8711293 0.0253657 34.3428217 0.0000000 0.8711293 1.0000000
negemoDR_int2 ~~ negemoDI_int2 0 -0.1477454 0.0159119 -9.2852397 0.0000000 -0.1477454 -0.1961743
negemoDR_int2 ~~ Neg_Emo_w3 0 -0.3280601 0.0269538 -12.1711786 0.0000000 -0.3280601 -0.2672945
negemoDR_int2 ~~ negemoDR_int3 0 0.6809424 0.0229636 29.6531448 0.0000000 0.6809424 0.7832476
negemoDR_int2 ~~ negemoDI_int3 0 -0.1194601 0.0158853 -7.5201514 0.0000000 -0.1194601 -0.1618579
negemoDR_int2 ~~ Neg_Emo_w4 0 -0.4462677 0.0321234 -13.8922862 0.0000000 -0.4462677 -0.3361896
negemoDR_int2 ~~ negemoDR_int4 0 0.6627706 0.0249249 26.5906638 0.0000000 0.6627706 0.7353567
negemoDR_int2 ~~ negemoDI_int4 0 -0.1471157 0.0208111 -7.0691098 0.0000000 -0.1471157 -0.1719306
negemoDI_int2 ~~ negemoDI_int2 0 0.6511200 0.0192505 33.8235036 0.0000000 0.6511200 1.0000000
negemoDI_int2 ~~ Neg_Emo_w3 0 0.0621653 0.0231896 2.6807352 0.0073461 0.0621653 0.0585862
negemoDI_int2 ~~ negemoDR_int3 0 -0.1278617 0.0163633 -7.8139137 0.0000000 -0.1278617 -0.1701140
negemoDI_int2 ~~ negemoDI_int3 0 0.5053190 0.0173217 29.1726119 0.0000000 0.5053190 0.7919316
negemoDI_int2 ~~ Neg_Emo_w4 0 0.0914218 0.0267562 3.4168462 0.0006335 0.0914218 0.0796617
negemoDI_int2 ~~ negemoDR_int4 0 -0.1328231 0.0182797 -7.2661478 0.0000000 -0.1328231 -0.1704587
negemoDI_int2 ~~ negemoDI_int4 0 0.5247262 0.0207397 25.3006058 0.0000000 0.5247262 0.7093123
Neg_Emo_w3 ~~ Neg_Emo_w3 0 1.7291959 0.0529838 32.6363342 0.0000000 1.7291959 1.0000000
Neg_Emo_w3 ~~ negemoDR_int3 0 -0.2171607 0.0265246 -8.1871304 0.0000000 -0.2171607 -0.1772920
Neg_Emo_w3 ~~ negemoDI_int3 0 0.0988266 0.0229444 4.3072179 0.0000165 0.0988266 0.0950395
Neg_Emo_w3 ~~ Neg_Emo_w4 0 1.4602089 0.0539170 27.0825410 0.0000000 1.4602089 0.7807698
Neg_Emo_w3 ~~ negemoDR_int4 0 -0.3493865 0.0307475 -11.3630958 0.0000000 -0.3493865 -0.2751441
Neg_Emo_w3 ~~ negemoDI_int4 0 0.0587634 0.0296667 1.9807871 0.0476152 0.0587634 0.0487439
negemoDR_int3 ~~ negemoDR_int3 0 0.8676409 0.0262563 33.0450155 0.0000000 0.8676409 1.0000000
negemoDR_int3 ~~ negemoDI_int3 0 -0.1503365 0.0163377 -9.2018064 0.0000000 -0.1503365 -0.2041018
negemoDR_int3 ~~ Neg_Emo_w4 0 -0.4128946 0.0319508 -12.9228055 0.0000000 -0.4128946 -0.3116731
negemoDR_int3 ~~ negemoDR_int4 0 0.6955182 0.0255776 27.1924835 0.0000000 0.6955182 0.7732405
negemoDR_int3 ~~ negemoDI_int4 0 -0.1583422 0.0210373 -7.5267423 0.0000000 -0.1583422 -0.1854223
negemoDI_int3 ~~ negemoDI_int3 0 0.6253094 0.0195420 31.9982972 0.0000000 0.6253094 1.0000000
negemoDI_int3 ~~ Neg_Emo_w4 0 0.0664035 0.0261142 2.5428163 0.0109963 0.0664035 0.0590437
negemoDI_int3 ~~ negemoDR_int4 0 -0.1133214 0.0178334 -6.3544355 0.0000000 -0.1133214 -0.1484022
negemoDI_int3 ~~ negemoDI_int4 0 0.5084626 0.0204234 24.8961341 0.0000000 0.5084626 0.7013694
Neg_Emo_w4 ~~ Neg_Emo_w4 0 2.0227386 0.0711698 28.4212906 0.0000000 2.0227386 1.0000000
Neg_Emo_w4 ~~ negemoDR_int4 0 -0.3199654 0.0339100 -9.4357223 0.0000000 -0.3199654 -0.2329750
Neg_Emo_w4 ~~ negemoDI_int4 0 0.1451263 0.0333899 4.3464151 0.0000138 0.1451263 0.1113042
negemoDR_int4 ~~ negemoDR_int4 0 0.9324977 0.0327333 28.4877656 0.0000000 0.9324977 1.0000000
negemoDR_int4 ~~ negemoDI_int4 0 -0.1931312 0.0229519 -8.4146035 0.0000000 -0.1931312 -0.2181543
negemoDI_int4 ~~ negemoDI_int4 0 0.8404841 0.0307432 27.3388307 0.0000000 0.8404841 1.0000000
voteconfidence_w1 ~1 0 3.2330680 0.0742540 43.5406651 0.0000000 3.2330680 2.5196427
voteconfidence_w2 ~1 0 3.2909378 0.0749187 43.9268101 0.0000000 3.2909378 2.9550001
voteconfidence_w3 ~1 0 3.5252360 0.0763066 46.1983208 0.0000000 3.5252360 3.2903787
voteconfidence_w4 ~1 0 3.7378208 0.1112874 33.5870871 0.0000000 3.7378208 3.1063623
pollAcc ~1 0 -0.1170885 0.0310127 -3.7755052 0.0001597 -0.1170885 -0.0791983
dem_rep_w1 ~1 0 0.3751434 0.0094679 39.6227020 0.0000000 0.3751434 0.7748332
dem_ind_w1 ~1 0 0.1273423 0.0065189 19.5344111 0.0000000 0.1273423 0.3820010
GCB ~1 0 0.1049518 0.0188130 5.5786968 0.0000000 0.1049518 0.1091283
trustGovt_w1 ~1 0 -0.3440654 0.0219044 -15.7075940 0.0000000 -0.3440654 -0.3089693
trustDR_int1 ~1 0 -0.3126445 0.0144622 -21.6179747 0.0000000 -0.3126445 -0.4247894
trustDI_int1 ~1 0 -0.0829354 0.0082384 -10.0669649 0.0000000 -0.0829354 -0.1980393
trustGovt_w3 ~1 0 -0.7092054 0.0216001 -32.8334238 0.0000000 -0.7092054 -0.7091468
trustDR_int3 ~1 0 -0.2732950 0.0153160 -17.8437881 0.0000000 -0.2732950 -0.3777531
trustDI_int3 ~1 0 -0.1152417 0.0091572 -12.5847712 0.0000000 -0.1152417 -0.2665968
trustGovt_w4 ~1 0 -0.8493110 0.0274298 -30.9630423 0.0000000 -0.8493110 -0.7749323
trustDR_int4 ~1 0 -0.1609186 0.0180573 -8.9115582 0.0000000 -0.1609186 -0.2260916
trustDI_int4 ~1 0 -0.1382826 0.0120462 -11.4793993 0.0000000 -0.1382826 -0.2834727
Pos_Emo_w1 ~1 0 2.8139579 0.0224199 125.5117539 0.0000000 2.8139579 2.4544181
posemoDR_int1 ~1 0 1.0405354 0.0295018 35.2701892 0.0000000 1.0405354 0.6897186
posemoDI_int1 ~1 0 0.3097514 0.0176638 17.5359179 0.0000000 0.3097514 0.3429199
Pos_Emo_w2 ~1 0 2.7155222 0.0291437 93.1768277 0.0000000 2.7155222 1.9089758
posemoDR_int2 ~1 0 1.4392800 0.0387623 37.1308849 0.0000000 1.4392800 0.7409753
posemoDI_int2 ~1 0 0.2550524 0.0164851 15.4716638 0.0000000 0.2550524 0.3135980
Pos_Emo_w3 ~1 0 2.6089859 0.0287415 90.7741583 0.0000000 2.6089859 1.9246409
posemoDR_int3 ~1 0 1.3533056 0.0375100 36.0785175 0.0000000 1.3533056 0.7299761
posemoDI_int3 ~1 0 0.2522115 0.0163260 15.4484390 0.0000000 0.2522115 0.3216730
Pos_Emo_w4 ~1 0 2.5618661 0.0318016 80.5578675 0.0000000 2.5618661 1.8986593
posemoDR_int4 ~1 0 1.3415517 0.0389959 34.4023553 0.0000000 1.3415517 0.7347726
posemoDI_int4 ~1 0 0.2443403 0.0176912 13.8114168 0.0000000 0.2443403 0.3266323
Neg_Emo_w1 ~1 0 2.2757171 0.0220978 102.9836553 0.0000000 2.2757171 2.0138747
negemoDR_int1 ~1 0 0.8594646 0.0257498 33.3774835 0.0000000 0.8594646 0.6527062
negemoDI_int1 ~1 0 0.2791587 0.0163106 17.1151651 0.0000000 0.2791587 0.3346919
Neg_Emo_w2 ~1 0 2.4336999 0.0291956 83.3584205 0.0000000 2.4336999 1.7054618
negemoDR_int2 ~1 0 0.6044607 0.0189011 31.9802361 0.0000000 0.6044607 0.6476298
negemoDI_int2 ~1 0 0.2455199 0.0164154 14.9567086 0.0000000 0.2455199 0.3042679
Neg_Emo_w3 ~1 0 2.3894052 0.0276520 86.4100008 0.0000000 2.3894052 1.8170534
negemoDR_int3 ~1 0 0.6164650 0.0192865 31.9636296 0.0000000 0.6164650 0.6618178
negemoDI_int3 ~1 0 0.2501977 0.0164699 15.1912320 0.0000000 0.2501977 0.3163996
Neg_Emo_w4 ~1 0 2.5923685 0.0327917 79.0557440 0.0000000 2.5923685 1.8227490
negemoDR_int4 ~1 0 0.6468494 0.0222333 29.0937653 0.0000000 0.6468494 0.6698526
negemoDI_int4 ~1 0 0.2969853 0.0217702 13.6418407 0.0000000 0.2969853 0.3239442

DV: Support for Democratic Norms

Support for Democratic Norms was measured only among partisans (Democrats or Republicans), with four questions (-3 = strongly disagree, +3 = strongly agree):

  • [Republicans/Democrats] should reduce the number of polling stations in areas that typically support [Democrats/Republicans].

  • [Republicans/Democrats] should not accept the results of elections if they lose.

  • [Republican/Democratic]-elected officials should consider ignoring court decisions made by [Democratic/Republican]-appointed judges.

  • The government should be able to censor media sources that spend more time attacking [Republicans/Democrats] than [Democrats/Republicans].

The scale reached acceptable reliability for both Republicans (\(\alpha\) = .81) and Democrats (\(\alpha\) = .86). The scale was reversed for analysis, such that higher scores indicate lower agreement with these items (and thus higher support for democratic norms).

ggplot(d, aes(x=demNorms)) +
  geom_density(fill="#69b3a2", color="#e9ecef", alpha=0.9) +
  theme_bw() +
  labs(x = "Support for Democratic Norms") +
  scale_x_continuous(breaks = seq(-3,3,1))

ggplot(d[!is.na(d$party_factor),], aes(x=demNorms, fill = party_factor)) +
  geom_density(color="black", alpha=0.5, position = 'identity') +
  theme_bw() +
  facet_grid(wave~., labeller = as_labeller(wave_label)) +
  scale_fill_manual("Participant Party ID",
                    values = c("#1696d2","#db2b27")) +
  labs(x = "Support for Democratic Norms") +
  scale_x_continuous(breaks = seq(-3,3,1))

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",], 
       aes(x = party_factor, 
           y = demNorms,
           fill = party_factor,
           color = party_factor)) +
  geom_jitter(height = .3, width =.3, alpha=0.4, size = .5, show.legend = F ) +
  stat_summary(geom = "errorbar", color = "black", width = .025, show.legend = F) +
  stat_summary( geom = "point", fun = "mean", color = "black",  size = 1 , show.legend = F) +
  theme_bw() +
  scale_fill_manual(values = c("#1696d2","#db2b27")) +
  scale_color_manual(values = c("#1696d2","#db2b27")) +
  labs(x = "Participant Party ID",
       y = "Support for Democratic Norms") +
  scale_y_continuous(breaks = seq(-3,3,1))

1. Norms over time: Outcome bias

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",], 
       aes(x = wave, 
           y = demNorms,
           color = party_factor,
           group = party_factor)) +
   stat_summary(geom = "path", fun = "mean", linetype = "dashed") +
   stat_summary(geom = "errorbar", color = "black", width = .1, show.legend = F) +
   stat_summary(geom = "point", fun = "mean") +
#   facet_wrap(~party_factor) +
  scale_color_manual("Participant Party ID",
                     values = c("#1696d2","#db2b27")) +
   labs(x = "Wave",
        y = "Support for Democratic Norms") +
   coord_cartesian(ylim = c(0,3)) +
   scale_y_continuous(breaks = seq(-3,3,.5)) + 
  scale_x_discrete(labels = c("Wave 1","Wave 2", "Wave 3", "Wave 4")) +
  theme_bw()

Summary

Effect of time appears to be positive, but only for Republicans; Democrats’ support for democratic norms are not affected by election outcome.

Models

DN.m1 <- lmer(demNorms ~ (pDem_Rep) * ( wave.lin + wave.quad + wave.cub) + (1 | pid), 
              data = d[d$party_factor != "Independent",])

summary(DN.m1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: demNorms ~ (pDem_Rep) * (wave.lin + wave.quad + wave.cub) + (1 |  
##     pid)
##    Data: d[d$party_factor != "Independent", ]
## 
## REML criterion at convergence: 22340.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3956 -0.4457  0.1165  0.4819  4.3734 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.3847   1.1767  
##  Residual             0.7083   0.8416  
## Number of obs: 7172, groups:  pid, 2367
## 
## Fixed effects:
##                      Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)           1.37215    0.02695 2430.12021  50.921  < 2e-16 ***
## pDem_Rep             -0.15084    0.04994 3431.24505  -3.020 0.002545 ** 
## wave.lin              0.10375    0.02884 5116.03786   3.598 0.000324 ***
## wave.quad             0.24901    0.04281 4976.07564   5.816 6.39e-09 ***
## wave.cub             -0.04354    0.02579 4908.08917  -1.688 0.091385 .  
## pDem_Rep:wave.lin     0.26467    0.05789 5127.84809   4.572 4.95e-06 ***
## pDem_Rep:wave.quad    0.25141    0.08592 4988.72133   2.926 0.003446 ** 
## pDem_Rep:wave.cub    -0.17967    0.05181 4923.81176  -3.468 0.000529 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pDm_Rp wav.ln wav.qd wav.cb pDm_Rp:wv.l pDm_Rp:wv.q
## pDem_Rep     0.103                                                    
## wave.lin     0.143  0.001                                             
## wave.quad   -0.037 -0.016 -0.215                                      
## wave.cub    -0.047  0.007 -0.114  0.168                               
## pDm_Rp:wv.l  0.006  0.148  0.108 -0.014 -0.016                        
## pDm_Rp:wv.q -0.009 -0.035 -0.013  0.103  0.014 -0.212                 
## pDm_Rp:wv.c  0.002 -0.049 -0.016  0.014  0.099 -0.117       0.166

Simple-effects models

DN.m1.d <- lmer(demNorms ~ (pDem_R) * ( wave.lin + wave.quad + wave.cub) + (1 | pid), 
              data = d[d$party_factor != "Independent",])

summary(DN.m1.d)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: demNorms ~ (pDem_R) * (wave.lin + wave.quad + wave.cub) + (1 |  
##     pid)
##    Data: d[d$party_factor != "Independent", ]
## 
## REML criterion at convergence: 22340.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3956 -0.4457  0.1165  0.4819  4.3734 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.3847   1.1767  
##  Residual             0.7083   0.8416  
## Number of obs: 7172, groups:  pid, 2367
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         1.44757    0.03479 2808.99466  41.604  < 2e-16 ***
## pDem_R             -0.15084    0.04994 3431.24505  -3.020 0.002545 ** 
## wave.lin           -0.02858    0.03859 5117.85367  -0.741 0.458872    
## wave.quad           0.12330    0.05743 4984.83490   2.147 0.031856 *  
## wave.cub            0.04629    0.03470 4917.15046   1.334 0.182228    
## pDem_R:wave.lin     0.26467    0.05789 5127.84809   4.572 4.95e-06 ***
## pDem_R:wave.quad    0.25141    0.08592 4988.72133   2.926 0.003446 ** 
## pDem_R:wave.cub    -0.17967    0.05181 4923.81176  -3.468 0.000529 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pDem_R wav.ln wav.qd wav.cb pDm_R:wv.l pDm_R:wv.q
## pDem_R      -0.638                                                  
## wave.lin     0.159 -0.111                                           
## wave.quad   -0.027  0.014 -0.223                                    
## wave.cub    -0.058  0.042 -0.111  0.170                             
## pDm_R:wv.ln -0.102  0.148 -0.669  0.148  0.075                      
## pDm_R:wv.qd  0.019 -0.035  0.149 -0.671 -0.113 -0.212               
## pDm_R:wv.cb  0.037 -0.049  0.076 -0.114 -0.673 -0.117      0.166
DN.m1.r <- lmer(demNorms ~ (pRep_D) * ( wave.lin + wave.quad + wave.cub) + (1 | pid), 
              data = d[d$party_factor != "Independent",])

summary(DN.m1.r)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: demNorms ~ (pRep_D) * (wave.lin + wave.quad + wave.cub) + (1 |  
##     pid)
##    Data: d[d$party_factor != "Independent", ]
## 
## REML criterion at convergence: 22340.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3956 -0.4457  0.1165  0.4819  4.3734 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.3847   1.1767  
##  Residual             0.7083   0.8416  
## Number of obs: 7172, groups:  pid, 2367
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         1.29673    0.03859 2871.40388  33.607  < 2e-16 ***
## pRep_D              0.15084    0.04994 3431.24505   3.020 0.002545 ** 
## wave.lin            0.23608    0.04301 5125.27378   5.489 4.23e-08 ***
## wave.quad           0.37471    0.06370 4980.45472   5.882 4.31e-09 ***
## wave.cub           -0.13338    0.03832 4915.02633  -3.481 0.000504 ***
## pRep_D:wave.lin    -0.26467    0.05789 5127.84809  -4.572 4.95e-06 ***
## pRep_D:wave.quad   -0.25141    0.08592 4988.72133  -2.926 0.003446 ** 
## pRep_D:wave.cub     0.17967    0.05181 4923.81176   3.468 0.000529 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pRep_D wav.ln wav.qd wav.cb pRp_D:wv.l pRp_D:wv.q
## pRep_D      -0.719                                                  
## wave.lin     0.135 -0.100                                           
## wave.quad   -0.044  0.035 -0.206                                    
## wave.cub    -0.039  0.028 -0.119  0.164                             
## pRp_D:wv.ln -0.100  0.148 -0.745  0.152  0.090                      
## pRp_D:wv.qd  0.029 -0.035  0.152 -0.744 -0.122 -0.212               
## pRp_D:wv.cb  0.030 -0.049  0.089 -0.121 -0.743 -0.117      0.166
DN.m1.r.w <- lmer(demNorms ~ (pRep_D) * wave + (1 | pid), 
              data = d[d$party_factor != "Independent",])

summary(DN.m1.r.w)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: demNorms ~ (pRep_D) * wave + (1 | pid)
##    Data: d[d$party_factor != "Independent", ]
## 
## REML criterion at convergence: 22342.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3956 -0.4457  0.1165  0.4819  4.3734 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.3847   1.1767  
##  Residual             0.7083   0.8416  
## Number of obs: 7172, groups:  pid, 2367
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     1.05167    0.04423 4492.55545  23.777  < 2e-16 ***
## pRep_D          0.39094    0.05725 5142.82000   6.829 9.54e-12 ***
## wave2           0.34641    0.03985 5017.19448   8.694  < 2e-16 ***
## wave3           0.33107    0.04185 5056.89171   7.911 3.10e-15 ***
## wave4           0.30277    0.04912 5125.26659   6.164 7.62e-10 ***
## pRep_D:wave2   -0.32663    0.05366 5045.56354  -6.087 1.23e-09 ***
## pRep_D:wave3   -0.27929    0.05622 5081.88610  -4.968 7.00e-07 ***
## pRep_D:wave4   -0.35450    0.06612 5132.52893  -5.361 8.63e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pRep_D wave2  wave3  wave4  pR_D:2 pR_D:3
## pRep_D      -0.735                                          
## wave2       -0.427  0.335                                   
## wave3       -0.406  0.318  0.481                            
## wave4       -0.351  0.277  0.410  0.412                     
## pRep_D:wav2  0.316 -0.427 -0.747 -0.360 -0.307              
## pRep_D:wav3  0.302 -0.408 -0.360 -0.748 -0.309  0.475       
## pRep_D:wav4  0.263 -0.354 -0.307 -0.308 -0.746  0.406  0.406
DN.m1.r.w2 <- lmer(demNorms ~ (pRep_D) * (wave2_1 + wave2_3 + wave2_4) + (1 | pid), 
              data = d[d$party_factor != "Independent",])

summary(DN.m1.r.w2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: demNorms ~ (pRep_D) * (wave2_1 + wave2_3 + wave2_4) + (1 | pid)
##    Data: d[d$party_factor != "Independent", ]
## 
## REML criterion at convergence: 22342.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3956 -0.4457  0.1165  0.4819  4.3734 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.3847   1.1767  
##  Residual             0.7083   0.8416  
## Number of obs: 7172, groups:  pid, 2367
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       1.39808    0.04515 4760.10095  30.966  < 2e-16 ***
## pRep_D            0.06432    0.05943 5508.28674   1.082    0.279    
## wave2_1          -0.34641    0.03985 5017.19447  -8.694  < 2e-16 ***
## wave2_3          -0.01534    0.04165 4902.96969  -0.368    0.713    
## wave2_4          -0.04364    0.04894 5012.02041  -0.892    0.373    
## pRep_D:wave2_1    0.32663    0.05366 5045.56353   6.087 1.23e-09 ***
## pRep_D:wave2_3    0.04733    0.05632 4905.75561   0.840    0.401    
## pRep_D:wave2_4   -0.02788    0.06613 5000.79093  -0.422    0.673    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pRep_D wav2_1 wav2_3 wav2_4 pR_D:2_1 pR_D:2_3
## pRep_D      -0.724                                              
## wave2_1     -0.464  0.351                                       
## wave2_3     -0.417  0.317  0.473                                
## wave2_4     -0.360  0.276  0.403  0.407                         
## pRp_D:wv2_1  0.349 -0.491 -0.747 -0.353 -0.300                  
## pRp_D:wv2_3  0.310 -0.432 -0.352 -0.742 -0.302  0.478           
## pRp_D:wv2_4  0.269 -0.373 -0.299 -0.301 -0.741  0.406    0.407

2. Moderator: Gov’t Trust

ggplot(d) +
   geom_smooth(aes(x = trustGovt, 
                   y = demNorms),
               color = "#69b3a2",
               method = "lm") +
   facet_wrap(~wave, labeller = as_labeller(wave_label)) +
   labs(x = "Trust in Government",
        y = "Support for Democratic Norms") +
  theme_bw() +
  coord_cartesian(ylim = c(-3,3)) +
  scale_y_continuous(breaks = seq(-3,3,1))

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",],
       aes(x = trustGovt, 
           y = demNorms, 
           fill = party_factor,
           color = party_factor)) +
   geom_jitter(height = .2, width = .4, size = .2, alpha = .4) +
   geom_smooth(method = "lm", se = F) +
   facet_wrap(~wave, labeller = as_labeller(wave_label)) +
   labs(x = "Trust in Government",
        y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(-3,3)) +
  scale_y_continuous(breaks = seq(-3,3,.5))

ggplot(d[!is.na(d$party_factor) & !is.na(d$trustGovt_bins),]) +
   geom_smooth(aes(x = trustGovt, 
                   y = demNorms, 
                   fill = party_factor,
                   color = party_factor),
               method = "loess") +
   facet_wrap(~wave, labeller = as_labeller(wave_label)) +
   labs(x = "Trust in Government",
        y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() 

ggplot(d[!is.na(d$party_factor) & !is.na(d$trustGovt_bins) & d$party_factor != "Independent",], 
       aes(x = wave, 
           y = demNorms, 
           color = party_factor,
           group = party_factor)) +
   stat_summary(geom = "path", fun = "mean", linetype = "dashed", show.legend = F) +
   stat_summary(geom = "errorbar", color = "black", width = .1, show.legend = F) +
   stat_summary(geom = "point", fun = "mean") +
   facet_wrap(~trustGovt_bins) +
   labs(x = "Wave",
        y = "Support for Democratic Norms") +
  scale_color_manual("Participant Party ID",
                     values = c("#1696d2","#db2b27")) +
  coord_cartesian(ylim = c(0,3)) +
  scale_y_continuous(breaks = seq(-3,3,.5)) +
  scale_x_discrete(labels = c("Wave 1","Wave 2", "Wave 3", "Wave 4")) +
  theme_bw()

Summary

Trust in the federal government negatively predicts support for democratic norms. True for both Dems and Reps, but stronger for Reps than for Dems.

Gov’t trust also moderates the party x linear time interaction effect on support for democratic norms. Low trust, party x time interaction strong; attenuated (but still significant) for those high in gov’t trust.

Models

DN.m2 <- lmer(demNorms ~ pDem_Rep * (wave.lin + wave.quad + wave.cub) * trustGovt.c + (1 | pid),
               data = d)
summary(DN.m2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## demNorms ~ pDem_Rep * (wave.lin + wave.quad + wave.cub) * trustGovt.c +  
##     (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22068.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3339 -0.4451  0.1075  0.4807  4.4625 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.3696   1.1703  
##  Residual             0.7065   0.8406  
## Number of obs: 7082, groups:  pid, 2352
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     1.379e+00  2.741e-02  2.548e+03  50.323
## pDem_Rep                       -1.827e-01  5.079e-02  3.601e+03  -3.597
## wave.lin                        7.949e-02  3.310e-02  5.450e+03   2.401
## wave.quad                       2.009e-01  4.658e-02  4.922e+03   4.314
## wave.cub                       -4.363e-02  2.775e-02  4.852e+03  -1.572
## trustGovt.c                    -6.462e-02  1.624e-02  7.020e+03  -3.978
## pDem_Rep:wave.lin               3.659e-01  6.661e-02  5.498e+03   5.493
## pDem_Rep:wave.quad              2.857e-01  9.351e-02  4.936e+03   3.055
## pDem_Rep:wave.cub              -2.039e-01  5.576e-02  4.868e+03  -3.656
## pDem_Rep:trustGovt.c           -3.276e-02  3.177e-02  6.956e+03  -1.031
## wave.lin:trustGovt.c            4.796e-02  3.086e-02  5.536e+03   1.554
## wave.quad:trustGovt.c           1.348e-03  4.315e-02  4.984e+03   0.031
## wave.cub:trustGovt.c           -4.283e-02  2.623e-02  4.924e+03  -1.633
## pDem_Rep:wave.lin:trustGovt.c  -1.363e-01  6.169e-02  5.516e+03  -2.210
## pDem_Rep:wave.quad:trustGovt.c -1.199e-01  8.666e-02  4.999e+03  -1.383
## pDem_Rep:wave.cub:trustGovt.c   4.132e-03  5.267e-02  4.939e+03   0.078
##                                Pr(>|t|)    
## (Intercept)                     < 2e-16 ***
## pDem_Rep                       0.000326 ***
## wave.lin                       0.016362 *  
## wave.quad                      1.64e-05 ***
## wave.cub                       0.115999    
## trustGovt.c                    7.02e-05 ***
## pDem_Rep:wave.lin              4.13e-08 ***
## pDem_Rep:wave.quad             0.002261 ** 
## pDem_Rep:wave.cub              0.000259 ***
## pDem_Rep:trustGovt.c           0.302548    
## wave.lin:trustGovt.c           0.120173    
## wave.quad:trustGovt.c          0.975080    
## wave.cub:trustGovt.c           0.102522    
## pDem_Rep:wave.lin:trustGovt.c  0.027170 *  
## pDem_Rep:wave.quad:trustGovt.c 0.166704    
## pDem_Rep:wave.cub:trustGovt.c  0.937479    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Simple-effects models

DN.m2.d <- lmer(demNorms ~ pDem_R * (wave.lin + wave.quad + wave.cub) * trustGovt.c + (1 | pid),
               data = d)
summary(DN.m2.d)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: demNorms ~ pDem_R * (wave.lin + wave.quad + wave.cub) * trustGovt.c +  
##     (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22068.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3339 -0.4451  0.1075  0.4807  4.4625 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.3696   1.1703  
##  Residual             0.7065   0.8406  
## Number of obs: 7082, groups:  pid, 2352
## 
## Fixed effects:
##                                Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   1.471e+00  3.590e-02  3.082e+03  40.963  < 2e-16
## pDem_R                       -1.827e-01  5.079e-02  3.601e+03  -3.597 0.000326
## wave.lin                     -1.035e-01  4.886e-02  5.670e+03  -2.118 0.034245
## wave.quad                     5.810e-02  6.619e-02  4.935e+03   0.878 0.380143
## wave.cub                      5.829e-02  3.902e-02  4.883e+03   1.494 0.135278
## trustGovt.c                  -4.825e-02  2.078e-02  6.850e+03  -2.322 0.020251
## pDem_R:wave.lin               3.659e-01  6.661e-02  5.498e+03   5.493 4.13e-08
## pDem_R:wave.quad              2.857e-01  9.351e-02  4.936e+03   3.055 0.002261
## pDem_R:wave.cub              -2.039e-01  5.576e-02  4.868e+03  -3.656 0.000259
## pDem_R:trustGovt.c           -3.276e-02  3.177e-02  6.956e+03  -1.031 0.302548
## wave.lin:trustGovt.c          1.161e-01  4.191e-02  5.536e+03   2.771 0.005611
## wave.quad:trustGovt.c         6.128e-02  5.837e-02  4.985e+03   1.050 0.293822
## wave.cub:trustGovt.c         -4.490e-02  3.561e-02  4.952e+03  -1.261 0.207350
## pDem_R:wave.lin:trustGovt.c  -1.363e-01  6.169e-02  5.516e+03  -2.210 0.027170
## pDem_R:wave.quad:trustGovt.c -1.199e-01  8.666e-02  4.999e+03  -1.383 0.166704
## pDem_R:wave.cub:trustGovt.c   4.132e-03  5.267e-02  4.939e+03   0.078 0.937479
##                                 
## (Intercept)                  ***
## pDem_R                       ***
## wave.lin                     *  
## wave.quad                       
## wave.cub                        
## trustGovt.c                  *  
## pDem_R:wave.lin              ***
## pDem_R:wave.quad             ** 
## pDem_R:wave.cub              ***
## pDem_R:trustGovt.c              
## wave.lin:trustGovt.c         ** 
## wave.quad:trustGovt.c           
## wave.cub:trustGovt.c            
## pDem_R:wave.lin:trustGovt.c  *  
## pDem_R:wave.quad:trustGovt.c    
## pDem_R:wave.cub:trustGovt.c     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
DN.m2.r <- lmer(demNorms ~ pRep_D * (wave.lin + wave.quad + wave.cub) * trustGovt.c + (1 | pid),
               data = d)
summary(DN.m2.r)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: demNorms ~ pRep_D * (wave.lin + wave.quad + wave.cub) * trustGovt.c +  
##     (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22068.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3339 -0.4451  0.1075  0.4807  4.4625 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.3696   1.1703  
##  Residual             0.7065   0.8406  
## Number of obs: 7082, groups:  pid, 2352
## 
## Fixed effects:
##                                Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   1.288e+00  3.877e-02  2.903e+03  33.219  < 2e-16
## pRep_D                        1.827e-01  5.079e-02  3.601e+03   3.597 0.000326
## wave.lin                      2.624e-01  4.498e-02  5.240e+03   5.835 5.69e-09
## wave.quad                     3.438e-01  6.580e-02  4.923e+03   5.225 1.82e-07
## wave.cub                     -1.456e-01  3.966e-02  4.838e+03  -3.670 0.000245
## trustGovt.c                  -8.100e-02  2.451e-02  7.049e+03  -3.305 0.000955
## pRep_D:wave.lin              -3.659e-01  6.661e-02  5.498e+03  -5.493 4.13e-08
## pRep_D:wave.quad             -2.857e-01  9.351e-02  4.936e+03  -3.055 0.002261
## pRep_D:wave.cub               2.039e-01  5.576e-02  4.868e+03   3.656 0.000259
## pRep_D:trustGovt.c            3.276e-02  3.177e-02  6.956e+03   1.031 0.302548
## wave.lin:trustGovt.c         -2.020e-02  4.529e-02  5.517e+03  -0.446 0.655610
## wave.quad:trustGovt.c        -5.858e-02  6.382e-02  4.997e+03  -0.918 0.358681
## wave.cub:trustGovt.c         -4.077e-02  3.867e-02  4.914e+03  -1.054 0.291838
## pRep_D:wave.lin:trustGovt.c   1.363e-01  6.169e-02  5.516e+03   2.210 0.027170
## pRep_D:wave.quad:trustGovt.c  1.199e-01  8.666e-02  4.999e+03   1.383 0.166704
## pRep_D:wave.cub:trustGovt.c  -4.132e-03  5.267e-02  4.939e+03  -0.078 0.937479
##                                 
## (Intercept)                  ***
## pRep_D                       ***
## wave.lin                     ***
## wave.quad                    ***
## wave.cub                     ***
## trustGovt.c                  ***
## pRep_D:wave.lin              ***
## pRep_D:wave.quad             ** 
## pRep_D:wave.cub              ***
## pRep_D:trustGovt.c              
## wave.lin:trustGovt.c            
## wave.quad:trustGovt.c           
## wave.cub:trustGovt.c            
## pRep_D:wave.lin:trustGovt.c  *  
## pRep_D:wave.quad:trustGovt.c    
## pRep_D:wave.cub:trustGovt.c     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
DN.m2.lo <- lmer(demNorms ~ pDem_Rep * (wave.lin + wave.quad + wave.cub) * trustGovt.lo + (1 | pid),
               data = d)
summary(DN.m2.lo)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## demNorms ~ pDem_Rep * (wave.lin + wave.quad + wave.cub) * trustGovt.lo +  
##     (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22068.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3339 -0.4451  0.1075  0.4807  4.4625 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.3696   1.1703  
##  Residual             0.7065   0.8406  
## Number of obs: 7082, groups:  pid, 2352
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                      1.451e+00  3.224e-02  3.690e+03  44.991
## pDem_Rep                        -1.465e-01  6.142e-02  4.741e+03  -2.385
## wave.lin                         2.651e-02  4.547e-02  5.647e+03   0.583
## wave.quad                        1.994e-01  6.350e-02  4.946e+03   3.141
## wave.cub                         3.686e-03  3.892e-02  4.888e+03   0.095
## trustGovt.lo                    -6.462e-02  1.624e-02  7.020e+03  -3.978
## pDem_Rep:wave.lin                5.165e-01  9.090e-02  5.635e+03   5.682
## pDem_Rep:wave.quad               4.181e-01  1.274e-01  4.957e+03   3.282
## pDem_Rep:wave.cub               -2.084e-01  7.813e-02  4.902e+03  -2.668
## pDem_Rep:trustGovt.lo           -3.276e-02  3.177e-02  6.956e+03  -1.031
## wave.lin:trustGovt.lo            4.796e-02  3.086e-02  5.536e+03   1.554
## wave.quad:trustGovt.lo           1.348e-03  4.315e-02  4.984e+03   0.031
## wave.cub:trustGovt.lo           -4.283e-02  2.623e-02  4.924e+03  -1.633
## pDem_Rep:wave.lin:trustGovt.lo  -1.363e-01  6.169e-02  5.516e+03  -2.210
## pDem_Rep:wave.quad:trustGovt.lo -1.199e-01  8.666e-02  4.999e+03  -1.383
## pDem_Rep:wave.cub:trustGovt.lo   4.132e-03  5.267e-02  4.939e+03   0.078
##                                 Pr(>|t|)    
## (Intercept)                      < 2e-16 ***
## pDem_Rep                         0.01712 *  
## wave.lin                         0.55993    
## wave.quad                        0.00169 ** 
## wave.cub                         0.92455    
## trustGovt.lo                    7.02e-05 ***
## pDem_Rep:wave.lin               1.40e-08 ***
## pDem_Rep:wave.quad               0.00104 ** 
## pDem_Rep:wave.cub                0.00767 ** 
## pDem_Rep:trustGovt.lo            0.30255    
## wave.lin:trustGovt.lo            0.12017    
## wave.quad:trustGovt.lo           0.97508    
## wave.cub:trustGovt.lo            0.10252    
## pDem_Rep:wave.lin:trustGovt.lo   0.02717 *  
## pDem_Rep:wave.quad:trustGovt.lo  0.16670    
## pDem_Rep:wave.cub:trustGovt.lo   0.93748    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
DN.m2.lo.d <- lmer(demNorms ~ pDem_R * (wave.lin + wave.quad + wave.cub) * trustGovt.lo + (1 | pid),
               data = d)
summary(DN.m2.lo.d)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## demNorms ~ pDem_R * (wave.lin + wave.quad + wave.cub) * trustGovt.lo +  
##     (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22068.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3339 -0.4451  0.1075  0.4807  4.4625 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.3696   1.1703  
##  Residual             0.7065   0.8406  
## Number of obs: 7082, groups:  pid, 2352
## 
## Fixed effects:
##                                 Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    1.524e+00  4.356e-02  4.500e+03  34.980  < 2e-16
## pDem_R                        -1.465e-01  6.142e-02  4.741e+03  -2.385 0.017121
## wave.lin                      -2.317e-01  6.557e-02  6.064e+03  -3.535 0.000412
## wave.quad                     -9.594e-03  9.045e-02  4.965e+03  -0.106 0.915527
## wave.cub                       1.079e-01  5.788e-02  4.914e+03   1.864 0.062383
## trustGovt.lo                  -4.825e-02  2.078e-02  6.850e+03  -2.322 0.020251
## pDem_R:wave.lin                5.165e-01  9.090e-02  5.635e+03   5.682  1.4e-08
## pDem_R:wave.quad               4.181e-01  1.274e-01  4.957e+03   3.282 0.001037
## pDem_R:wave.cub               -2.084e-01  7.813e-02  4.902e+03  -2.668 0.007666
## pDem_R:trustGovt.lo           -3.276e-02  3.177e-02  6.956e+03  -1.031 0.302548
## wave.lin:trustGovt.lo          1.161e-01  4.191e-02  5.536e+03   2.771 0.005611
## wave.quad:trustGovt.lo         6.128e-02  5.837e-02  4.985e+03   1.050 0.293822
## wave.cub:trustGovt.lo         -4.490e-02  3.561e-02  4.952e+03  -1.261 0.207350
## pDem_R:wave.lin:trustGovt.lo  -1.363e-01  6.169e-02  5.516e+03  -2.210 0.027170
## pDem_R:wave.quad:trustGovt.lo -1.199e-01  8.666e-02  4.999e+03  -1.383 0.166704
## pDem_R:wave.cub:trustGovt.lo   4.132e-03  5.267e-02  4.939e+03   0.078 0.937479
##                                  
## (Intercept)                   ***
## pDem_R                        *  
## wave.lin                      ***
## wave.quad                        
## wave.cub                      .  
## trustGovt.lo                  *  
## pDem_R:wave.lin               ***
## pDem_R:wave.quad              ** 
## pDem_R:wave.cub               ** 
## pDem_R:trustGovt.lo              
## wave.lin:trustGovt.lo         ** 
## wave.quad:trustGovt.lo           
## wave.cub:trustGovt.lo            
## pDem_R:wave.lin:trustGovt.lo  *  
## pDem_R:wave.quad:trustGovt.lo    
## pDem_R:wave.cub:trustGovt.lo     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
DN.m2.lo.r <- lmer(demNorms ~ pRep_D * (wave.lin + wave.quad + wave.cub) * trustGovt.lo + (1 | pid),
               data = d)
summary(DN.m2.lo.r)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## demNorms ~ pRep_D * (wave.lin + wave.quad + wave.cub) * trustGovt.lo +  
##     (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22068.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3339 -0.4451  0.1075  0.4807  4.4625 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.3696   1.1703  
##  Residual             0.7065   0.8406  
## Number of obs: 7082, groups:  pid, 2352
## 
## Fixed effects:
##                                 Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    1.377e+00  4.547e-02  3.874e+03  30.293  < 2e-16
## pRep_D                         1.465e-01  6.142e-02  4.741e+03   2.385 0.017121
## wave.lin                       2.848e-01  6.299e-02  5.164e+03   4.521 6.30e-06
## wave.quad                      4.085e-01  8.942e-02  4.938e+03   4.568 5.04e-06
## wave.cub                      -1.005e-01  5.226e-02  4.871e+03  -1.924 0.054474
## trustGovt.lo                  -8.100e-02  2.451e-02  7.049e+03  -3.305 0.000955
## pRep_D:wave.lin               -5.165e-01  9.090e-02  5.635e+03  -5.682 1.40e-08
## pRep_D:wave.quad              -4.181e-01  1.274e-01  4.957e+03  -3.282 0.001037
## pRep_D:wave.cub                2.084e-01  7.813e-02  4.902e+03   2.668 0.007666
## pRep_D:trustGovt.lo            3.276e-02  3.177e-02  6.956e+03   1.031 0.302548
## wave.lin:trustGovt.lo         -2.020e-02  4.529e-02  5.517e+03  -0.446 0.655610
## wave.quad:trustGovt.lo        -5.858e-02  6.382e-02  4.997e+03  -0.918 0.358681
## wave.cub:trustGovt.lo         -4.077e-02  3.867e-02  4.914e+03  -1.054 0.291838
## pRep_D:wave.lin:trustGovt.lo   1.363e-01  6.169e-02  5.516e+03   2.210 0.027170
## pRep_D:wave.quad:trustGovt.lo  1.199e-01  8.666e-02  4.999e+03   1.383 0.166704
## pRep_D:wave.cub:trustGovt.lo  -4.132e-03  5.267e-02  4.939e+03  -0.078 0.937479
##                                  
## (Intercept)                   ***
## pRep_D                        *  
## wave.lin                      ***
## wave.quad                     ***
## wave.cub                      .  
## trustGovt.lo                  ***
## pRep_D:wave.lin               ***
## pRep_D:wave.quad              ** 
## pRep_D:wave.cub               ** 
## pRep_D:trustGovt.lo              
## wave.lin:trustGovt.lo            
## wave.quad:trustGovt.lo           
## wave.cub:trustGovt.lo            
## pRep_D:wave.lin:trustGovt.lo  *  
## pRep_D:wave.quad:trustGovt.lo    
## pRep_D:wave.cub:trustGovt.lo     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
DN.m2.hi <- lmer(demNorms ~ pDem_Rep * (wave.lin + wave.quad + wave.cub) * trustGovt.hi + (1 | pid),
               data = d)
summary(DN.m2.hi)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## demNorms ~ pDem_Rep * (wave.lin + wave.quad + wave.cub) * trustGovt.hi +  
##     (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22068.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3339 -0.4451  0.1075  0.4807  4.4625 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.3696   1.1703  
##  Residual             0.7065   0.8406  
## Number of obs: 7082, groups:  pid, 2352
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                      1.308e+00  3.327e-02  4.054e+03  39.311
## pDem_Rep                        -2.189e-01  6.204e-02  5.436e+03  -3.527
## wave.lin                         1.325e-01  4.947e-02  5.365e+03   2.678
## wave.quad                        2.024e-01  6.966e-02  4.960e+03   2.906
## wave.cub                        -9.095e-02  4.129e-02  4.891e+03  -2.203
## trustGovt.hi                    -6.462e-02  1.624e-02  7.020e+03  -3.978
## pDem_Rep:wave.lin                2.153e-01  9.950e-02  5.400e+03   2.164
## pDem_Rep:wave.quad               1.533e-01  1.400e-01  4.978e+03   1.095
## pDem_Rep:wave.cub               -1.993e-01  8.298e-02  4.908e+03  -2.402
## pDem_Rep:trustGovt.hi           -3.276e-02  3.177e-02  6.956e+03  -1.031
## wave.lin:trustGovt.hi            4.796e-02  3.086e-02  5.536e+03   1.554
## wave.quad:trustGovt.hi           1.348e-03  4.315e-02  4.984e+03   0.031
## wave.cub:trustGovt.hi           -4.283e-02  2.623e-02  4.924e+03  -1.633
## pDem_Rep:wave.lin:trustGovt.hi  -1.363e-01  6.169e-02  5.516e+03  -2.210
## pDem_Rep:wave.quad:trustGovt.hi -1.199e-01  8.666e-02  4.999e+03  -1.383
## pDem_Rep:wave.cub:trustGovt.hi   4.132e-03  5.267e-02  4.939e+03   0.078
##                                 Pr(>|t|)    
## (Intercept)                      < 2e-16 ***
## pDem_Rep                        0.000423 ***
## wave.lin                        0.007437 ** 
## wave.quad                       0.003678 ** 
## wave.cub                        0.027674 *  
## trustGovt.hi                    7.02e-05 ***
## pDem_Rep:wave.lin               0.030501 *  
## pDem_Rep:wave.quad              0.273536    
## pDem_Rep:wave.cub               0.016363 *  
## pDem_Rep:trustGovt.hi           0.302548    
## wave.lin:trustGovt.hi           0.120173    
## wave.quad:trustGovt.hi          0.975080    
## wave.cub:trustGovt.hi           0.102522    
## pDem_Rep:wave.lin:trustGovt.hi  0.027170 *  
## pDem_Rep:wave.quad:trustGovt.hi 0.166704    
## pDem_Rep:wave.cub:trustGovt.hi  0.937479    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
DN.m2.hi.d <- lmer(demNorms ~ pDem_R * (wave.lin + wave.quad + wave.cub) * trustGovt.hi + (1 | pid),
               data = d)
summary(DN.m2.hi.d)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## demNorms ~ pDem_R * (wave.lin + wave.quad + wave.cub) * trustGovt.hi +  
##     (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22068.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3339 -0.4451  0.1075  0.4807  4.4625 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.3696   1.1703  
##  Residual             0.7065   0.8406  
## Number of obs: 7082, groups:  pid, 2352
## 
## Fixed effects:
##                                 Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    1.417e+00  4.163e-02  4.496e+03  34.042  < 2e-16
## pDem_R                        -2.189e-01  6.204e-02  5.436e+03  -3.527 0.000423
## wave.lin                       2.481e-02  6.901e-02  5.179e+03   0.359 0.719262
## wave.quad                      1.258e-01  9.432e-02  4.954e+03   1.334 0.182386
## wave.cub                       8.691e-03  5.281e-02  4.922e+03   0.165 0.869298
## trustGovt.hi                  -4.825e-02  2.078e-02  6.850e+03  -2.322 0.020251
## pDem_R:wave.lin                2.153e-01  9.950e-02  5.400e+03   2.164 0.030501
## pDem_R:wave.quad               1.533e-01  1.400e-01  4.978e+03   1.095 0.273536
## pDem_R:wave.cub               -1.993e-01  8.298e-02  4.908e+03  -2.402 0.016363
## pDem_R:trustGovt.hi           -3.276e-02  3.177e-02  6.956e+03  -1.031 0.302548
## wave.lin:trustGovt.hi          1.161e-01  4.191e-02  5.536e+03   2.771 0.005611
## wave.quad:trustGovt.hi         6.128e-02  5.837e-02  4.985e+03   1.050 0.293822
## wave.cub:trustGovt.hi         -4.490e-02  3.561e-02  4.952e+03  -1.261 0.207350
## pDem_R:wave.lin:trustGovt.hi  -1.363e-01  6.169e-02  5.516e+03  -2.210 0.027170
## pDem_R:wave.quad:trustGovt.hi -1.199e-01  8.666e-02  4.999e+03  -1.383 0.166704
## pDem_R:wave.cub:trustGovt.hi   4.132e-03  5.267e-02  4.939e+03   0.078 0.937479
##                                  
## (Intercept)                   ***
## pDem_R                        ***
## wave.lin                         
## wave.quad                        
## wave.cub                         
## trustGovt.hi                  *  
## pDem_R:wave.lin               *  
## pDem_R:wave.quad                 
## pDem_R:wave.cub               *  
## pDem_R:trustGovt.hi              
## wave.lin:trustGovt.hi         ** 
## wave.quad:trustGovt.hi           
## wave.cub:trustGovt.hi            
## pDem_R:wave.lin:trustGovt.hi  *  
## pDem_R:wave.quad:trustGovt.hi    
## pDem_R:wave.cub:trustGovt.hi     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
DN.m2.hi.r <- lmer(demNorms ~ pRep_D * (wave.lin + wave.quad + wave.cub) * trustGovt.hi + (1 | pid),
               data = d)
summary(DN.m2.hi.r)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## demNorms ~ pRep_D * (wave.lin + wave.quad + wave.cub) * trustGovt.hi +  
##     (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22068.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3339 -0.4451  0.1075  0.4807  4.4625 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.3696   1.1703  
##  Residual             0.7065   0.8406  
## Number of obs: 7082, groups:  pid, 2352
## 
## Fixed effects:
##                                 Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    1.198e+00  4.904e-02  4.802e+03  24.437  < 2e-16
## pRep_D                         2.189e-01  6.204e-02  5.436e+03   3.527 0.000423
## wave.lin                       2.401e-01  7.130e-02  5.572e+03   3.368 0.000762
## wave.quad                      2.791e-01  1.030e-01  4.981e+03   2.710 0.006750
## wave.cub                      -1.906e-01  6.375e-02  4.884e+03  -2.990 0.002807
## trustGovt.hi                  -8.100e-02  2.451e-02  7.049e+03  -3.305 0.000955
## pRep_D:wave.lin               -2.153e-01  9.950e-02  5.400e+03  -2.164 0.030501
## pRep_D:wave.quad              -1.533e-01  1.400e-01  4.978e+03  -1.095 0.273536
## pRep_D:wave.cub                1.993e-01  8.298e-02  4.908e+03   2.402 0.016363
## pRep_D:trustGovt.hi            3.276e-02  3.177e-02  6.956e+03   1.031 0.302548
## wave.lin:trustGovt.hi         -2.020e-02  4.529e-02  5.517e+03  -0.446 0.655610
## wave.quad:trustGovt.hi        -5.858e-02  6.382e-02  4.997e+03  -0.918 0.358681
## wave.cub:trustGovt.hi         -4.077e-02  3.867e-02  4.914e+03  -1.054 0.291838
## pRep_D:wave.lin:trustGovt.hi   1.363e-01  6.169e-02  5.516e+03   2.210 0.027170
## pRep_D:wave.quad:trustGovt.hi  1.199e-01  8.666e-02  4.999e+03   1.383 0.166704
## pRep_D:wave.cub:trustGovt.hi  -4.132e-03  5.267e-02  4.939e+03  -0.078 0.937479
##                                  
## (Intercept)                   ***
## pRep_D                        ***
## wave.lin                      ***
## wave.quad                     ** 
## wave.cub                      ** 
## trustGovt.hi                  ***
## pRep_D:wave.lin               *  
## pRep_D:wave.quad                 
## pRep_D:wave.cub               *  
## pRep_D:trustGovt.hi              
## wave.lin:trustGovt.hi            
## wave.quad:trustGovt.hi           
## wave.cub:trustGovt.hi            
## pRep_D:wave.lin:trustGovt.hi  *  
## pRep_D:wave.quad:trustGovt.hi    
## pRep_D:wave.cub:trustGovt.hi     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3. Moderator: GCB-5

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",]) +
   geom_smooth(aes(x = GCB, 
                   y = demNorms, 
                   fill = party_factor,
                   color = party_factor),
               method = "lm") +
   labs(x = "Generic Conspiracist Beliefs",
        y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(0,3))

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",]) +
   geom_smooth(aes(x = GCB, 
                   y = demNorms, 
                   fill = party_factor,
                   color = party_factor),
               method = "lm") +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
   labs(x = "Generic Conspiracist Beliefs",
        y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(0,3)) +
  scale_x_continuous(breaks = seq(-2,2,1))

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",],
       aes(x = GCB, 
           y = demNorms, 
           fill = party_factor,
           color = party_factor)) +
  geom_jitter(height = .2, width =.2, alpha=0.4, size = .2, show.legend = F ) +
  geom_smooth(method = "lm", se = F) +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Generic Conspiracist Beliefs",
       y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(-3,3)) +
  scale_x_continuous(breaks = seq(-2,2,1)) +
  scale_y_continuous(breaks = seq(-3,3,1))

Mean and SD of GCB by party ID

kable(round(tapply(d$GCB, d$party_factor, FUN = mean, na.rm = T),2))
x
Democrat -0.12
Independent 0.14
Republican 0.34
round(tapply(d$GCB, d$party_factor, FUN = sd, na.rm = T),2)
##    Democrat Independent  Republican 
##        0.99        0.88        0.89

Summary

GCB negatively predicts support for democratic norms; this relationship does not change over linear time (Wave 1 to Wave 4).

GCB has a stronger negative effect for Democrats than for Republicans, a relationship that is not sensitive to time/election outcome.

Models

DN.m3 <- lmer(demNorms ~ pDem_Rep * (wave.lin + wave.quad + wave.cub) * GCB.c + (1|pid),
              data = d)
summary(DN.m3) 
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: demNorms ~ pDem_Rep * (wave.lin + wave.quad + wave.cub) * GCB.c +  
##     (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22064.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3234 -0.4507  0.0840  0.4845  4.3357 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.2011   1.0959  
##  Residual             0.7057   0.8401  
## Number of obs: 7170, groups:  pid, 2365
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               1.359e+00  2.619e-02  2.463e+03  51.896  < 2e-16 ***
## pDem_Rep                 -9.385e-03  4.921e-02  3.279e+03  -0.191  0.84875    
## wave.lin                  8.593e-02  2.965e-02  5.151e+03   2.898  0.00377 ** 
## wave.quad                 2.445e-01  4.407e-02  4.998e+03   5.548 3.03e-08 ***
## wave.cub                 -4.189e-02  2.656e-02  4.923e+03  -1.577  0.11481    
## GCB.c                    -4.203e-01  2.736e-02  2.468e+03 -15.360  < 2e-16 ***
## pDem_Rep:wave.lin         2.468e-01  5.951e-02  5.162e+03   4.147 3.42e-05 ***
## pDem_Rep:wave.quad        2.151e-01  8.843e-02  5.012e+03   2.432  0.01504 *  
## pDem_Rep:wave.cub        -1.526e-01  5.334e-02  4.940e+03  -2.861  0.00424 ** 
## pDem_Rep:GCB.c            2.143e-01  5.142e-02  3.283e+03   4.168 3.16e-05 ***
## wave.lin:GCB.c            4.376e-02  3.104e-02  5.148e+03   1.410  0.15861    
## wave.quad:GCB.c           7.724e-02  4.608e-02  4.995e+03   1.676  0.09373 .  
## wave.cub:GCB.c           -5.941e-02  2.771e-02  4.916e+03  -2.144  0.03206 *  
## pDem_Rep:wave.lin:GCB.c   1.018e-01  6.230e-02  5.162e+03   1.634  0.10223    
## pDem_Rep:wave.quad:GCB.c  1.905e-03  9.242e-02  5.008e+03   0.021  0.98356    
## pDem_Rep:wave.cub:GCB.c   9.164e-03  5.566e-02  4.934e+03   0.165  0.86924    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Simple effect models

DN.m3.w <- lmer(demNorms ~ pDem_Rep * wave * GCB.c + (1|pid),
              data = d)
summary(DN.m3.w)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: demNorms ~ pDem_Rep * wave * GCB.c + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 22068.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3234 -0.4507  0.0840  0.4845  4.3357 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.2011   1.0959  
##  Residual             0.7057   0.8401  
## Number of obs: 7170, groups:  pid, 2365
## 
## Fixed effects:
##                        Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             1.24478    0.02975 3987.93319  41.840  < 2e-16 ***
## pDem_Rep               -0.22472    0.05693 5138.23804  -3.947 8.01e-05 ***
## wave2                   0.17516    0.02743 5042.60970   6.387 1.84e-10 ***
## wave3                   0.17624    0.02877 5089.96643   6.125 9.73e-10 ***
## wave4                   0.10687    0.03382 5149.48089   3.160 0.001586 ** 
## GCB.c                  -0.47631    0.03105 3987.46557 -15.341  < 2e-16 ***
## pDem_Rep:wave2          0.28371    0.05517 5066.94484   5.142 2.81e-07 ***
## pDem_Rep:wave3          0.25451    0.05780 5107.15131   4.403 1.09e-05 ***
## pDem_Rep:wave4          0.32312    0.06794 5165.45966   4.756 2.03e-06 ***
## pDem_Rep:GCB.c          0.16521    0.05937 5146.09177   2.783 0.005407 ** 
## wave2:GCB.c             0.09412    0.02858 5029.34251   3.293 0.000996 ***
## wave3:GCB.c             0.05659    0.02998 5082.92372   1.888 0.059099 .  
## wave4:GCB.c             0.07347    0.03543 5147.43975   2.074 0.038165 *  
## pDem_Rep:wave2:GCB.c    0.01953    0.05756 5059.72341   0.339 0.734360    
## pDem_Rep:wave3:GCB.c    0.07961    0.06019 5100.84089   1.323 0.186038    
## pDem_Rep:wave4:GCB.c    0.09724    0.07121 5166.92263   1.366 0.172154    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4. Expanded model: trust, GCB, emotions

ggplot(d[d$party_factor != "Independent" & !is.na(d$party_factor),],
       aes( x = trustGovt,
            y = demNorms,
            fill = party_factor,
            color = party_factor))  +
  geom_smooth(method = "lm") +
  facet_grid(negemo_bins~wave) +
  labs( x = "Trust in Government",
        y = "Support for Democratic Norms" ) +
  scale_fill_manual("Party ID",
                    values = c("#1696d2","#db2b27")) +
  scale_color_manual("Party ID",
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(-3,3)) +
  scale_y_continuous(breaks = seq(-3,3,1)) 

ggplot(d[d$party_factor != "Independent" & !is.na(d$party_factor),],
       aes( x = trustGovt,
            y = demNorms,
            fill = party_factor,
            color = party_factor))  +
  geom_jitter(height = .2, width = .2, size = .2, alpha = .4) +
  geom_smooth(method = "lm", se = F, fullrange = T) +
  facet_grid(posemo_bins~wave) +
  labs( x = "Trust in Government",
        y = "Support for Democratic Norms" ) +
  scale_fill_manual("Party ID",
                    values = c("#1696d2","#db2b27")) +
  scale_color_manual("Party ID",
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(-3,3)) +
  scale_y_continuous(breaks = seq(-3,3,1)) 

ggplot(d[!is.na(d$party_factor),],
       aes( x = trustGovt,
            y = voteconfidence,
            fill = party_factor,
            color = party_factor))  +
  geom_jitter(height = .2, width = .2, size = .2, alpha = .4) +
  geom_smooth(method = "lm", se = F, fullrange = T) +
  facet_grid(posemo_bins~wave) +
  labs( x = "Trust in Government",
        y = "Perceived Election Legitimacy" ) +
  scale_fill_manual("Party ID",
                    values = c("#1696d2", "black","#db2b27")) +
  scale_color_manual("Party ID",
                     values = c("#1696d2", "black","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(1,5)) +
  scale_y_continuous(breaks = seq(1,5,1)) 

Models

DN.m4 <- lmer(demNorms ~ pDem_Rep * wave * GCB.c * (Pos_Emo.c + Neg_Emo.c) * trustGovt.c + (1|pid),
              data = d[d$party_factor != "Independent",])

summary(DN.m4)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: demNorms ~ pDem_Rep * wave * GCB.c * (Pos_Emo.c + Neg_Emo.c) *  
##     trustGovt.c + (1 | pid)
##    Data: d[d$party_factor != "Independent", ]
## 
## REML criterion at convergence: 21848
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3569 -0.4548  0.0813  0.4928  4.4156 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.069    1.0341  
##  Residual             0.697    0.8349  
## Number of obs: 7080, groups:  pid, 2350
## 
## Fixed effects:
##                                              Estimate Std. Error         df
## (Intercept)                                 1.267e+00  3.264e-02  5.118e+03
## pDem_Rep                                   -3.641e-01  6.332e-02  6.021e+03
## wave2                                       1.520e-01  4.136e-02  5.180e+03
## wave3                                       1.156e-01  4.219e-02  5.344e+03
## wave4                                       1.178e-01  4.702e-02  5.317e+03
## GCB.c                                      -4.614e-01  3.576e-02  5.499e+03
## Pos_Emo.c                                  -4.774e-02  2.325e-02  6.107e+03
## Neg_Emo.c                                  -9.579e-02  2.348e-02  6.165e+03
## trustGovt.c                                -1.373e-01  2.744e-02  6.655e+03
## pDem_Rep:wave2                              1.829e-01  8.326e-02  5.221e+03
## pDem_Rep:wave3                              2.120e-01  8.470e-02  5.364e+03
## pDem_Rep:wave4                              4.153e-01  9.450e-02  5.342e+03
## pDem_Rep:GCB.c                              3.465e-02  6.930e-02  6.362e+03
## wave2:GCB.c                                 1.614e-01  4.582e-02  5.170e+03
## wave3:GCB.c                                 6.416e-02  4.699e-02  5.361e+03
## wave4:GCB.c                                 8.699e-02  5.299e-02  5.345e+03
## pDem_Rep:Pos_Emo.c                         -1.509e-02  4.635e-02  6.065e+03
## pDem_Rep:Neg_Emo.c                         -9.823e-02  4.680e-02  6.120e+03
## wave2:Pos_Emo.c                            -7.418e-02  3.142e-02  5.313e+03
## wave3:Pos_Emo.c                             1.012e-02  3.130e-02  5.370e+03
## wave4:Pos_Emo.c                            -9.471e-03  3.674e-02  5.350e+03
## wave2:Neg_Emo.c                            -1.294e-01  3.287e-02  5.319e+03
## wave3:Neg_Emo.c                            -5.553e-02  3.441e-02  5.337e+03
## wave4:Neg_Emo.c                            -3.642e-02  3.908e-02  5.277e+03
## GCB.c:Pos_Emo.c                            -4.810e-03  2.371e-02  6.191e+03
## GCB.c:Neg_Emo.c                            -5.229e-02  2.351e-02  6.322e+03
## pDem_Rep:trustGovt.c                        7.780e-02  5.455e-02  6.586e+03
## wave2:trustGovt.c                           7.212e-02  3.874e-02  5.095e+03
## wave3:trustGovt.c                          -1.092e-04  4.280e-02  5.336e+03
## wave4:trustGovt.c                           5.994e-02  4.706e-02  5.348e+03
## GCB.c:trustGovt.c                          -1.290e-01  2.703e-02  6.663e+03
## Pos_Emo.c:trustGovt.c                      -1.815e-02  1.989e-02  5.933e+03
## Neg_Emo.c:trustGovt.c                      -1.772e-02  2.070e-02  5.936e+03
## pDem_Rep:wave2:GCB.c                        9.547e-02  9.238e-02  5.228e+03
## pDem_Rep:wave3:GCB.c                        2.035e-01  9.450e-02  5.417e+03
## pDem_Rep:wave4:GCB.c                        2.032e-01  1.071e-01  5.429e+03
## pDem_Rep:wave2:Pos_Emo.c                    9.438e-02  6.309e-02  5.334e+03
## pDem_Rep:wave3:Pos_Emo.c                    2.926e-02  6.272e-02  5.379e+03
## pDem_Rep:wave4:Pos_Emo.c                   -7.556e-03  7.371e-02  5.364e+03
## pDem_Rep:wave2:Neg_Emo.c                    9.621e-02  6.597e-02  5.340e+03
## pDem_Rep:wave3:Neg_Emo.c                    3.923e-02  6.903e-02  5.350e+03
## pDem_Rep:wave4:Neg_Emo.c                    1.983e-01  7.840e-02  5.291e+03
## pDem_Rep:GCB.c:Pos_Emo.c                    4.523e-02  4.719e-02  6.125e+03
## pDem_Rep:GCB.c:Neg_Emo.c                   -5.954e-02  4.697e-02  6.303e+03
## wave2:GCB.c:Pos_Emo.c                      -2.414e-02  3.225e-02  5.281e+03
## wave3:GCB.c:Pos_Emo.c                      -1.579e-02  3.095e-02  5.305e+03
## wave4:GCB.c:Pos_Emo.c                       8.123e-02  3.670e-02  5.348e+03
## wave2:GCB.c:Neg_Emo.c                       1.619e-02  3.404e-02  5.427e+03
## wave3:GCB.c:Neg_Emo.c                       2.047e-03  3.496e-02  5.395e+03
## wave4:GCB.c:Neg_Emo.c                       4.455e-02  4.307e-02  5.357e+03
## pDem_Rep:wave2:trustGovt.c                  2.201e-02  7.786e-02  5.123e+03
## pDem_Rep:wave3:trustGovt.c                 -1.566e-01  8.552e-02  5.323e+03
## pDem_Rep:wave4:trustGovt.c                 -2.086e-01  9.399e-02  5.331e+03
## pDem_Rep:GCB.c:trustGovt.c                 -3.569e-03  5.357e-02  6.546e+03
## wave2:GCB.c:trustGovt.c                    -5.324e-03  3.879e-02  5.096e+03
## wave3:GCB.c:trustGovt.c                     4.916e-02  4.137e-02  5.268e+03
## wave4:GCB.c:trustGovt.c                     5.567e-02  4.796e-02  5.263e+03
## pDem_Rep:Pos_Emo.c:trustGovt.c              3.942e-03  3.975e-02  5.923e+03
## pDem_Rep:Neg_Emo.c:trustGovt.c              3.138e-03  4.138e-02  5.929e+03
## wave2:Pos_Emo.c:trustGovt.c                 6.576e-03  2.691e-02  5.266e+03
## wave3:Pos_Emo.c:trustGovt.c                 1.855e-02  2.807e-02  5.356e+03
## wave4:Pos_Emo.c:trustGovt.c                 8.590e-03  3.041e-02  5.330e+03
## wave2:Neg_Emo.c:trustGovt.c                 5.222e-02  3.089e-02  5.207e+03
## wave3:Neg_Emo.c:trustGovt.c                 1.373e-03  3.193e-02  5.298e+03
## wave4:Neg_Emo.c:trustGovt.c                -4.603e-02  3.591e-02  5.336e+03
## GCB.c:Pos_Emo.c:trustGovt.c                -1.341e-02  1.799e-02  6.095e+03
## GCB.c:Neg_Emo.c:trustGovt.c                -5.369e-02  1.792e-02  6.359e+03
## pDem_Rep:wave2:GCB.c:Pos_Emo.c             -5.921e-03  6.499e-02  5.316e+03
## pDem_Rep:wave3:GCB.c:Pos_Emo.c             -4.860e-02  6.204e-02  5.321e+03
## pDem_Rep:wave4:GCB.c:Pos_Emo.c             -7.433e-02  7.392e-02  5.384e+03
## pDem_Rep:wave2:GCB.c:Neg_Emo.c              1.044e-01  6.817e-02  5.434e+03
## pDem_Rep:wave3:GCB.c:Neg_Emo.c              7.369e-02  6.987e-02  5.385e+03
## pDem_Rep:wave4:GCB.c:Neg_Emo.c              2.482e-01  8.605e-02  5.348e+03
## pDem_Rep:wave2:GCB.c:trustGovt.c           -4.359e-02  7.820e-02  5.139e+03
## pDem_Rep:wave3:GCB.c:trustGovt.c            4.311e-02  8.289e-02  5.276e+03
## pDem_Rep:wave4:GCB.c:trustGovt.c            4.167e-02  9.638e-02  5.293e+03
## pDem_Rep:wave2:Pos_Emo.c:trustGovt.c       -1.416e-02  5.401e-02  5.288e+03
## pDem_Rep:wave3:Pos_Emo.c:trustGovt.c        4.551e-02  5.622e-02  5.365e+03
## pDem_Rep:wave4:Pos_Emo.c:trustGovt.c       -1.995e-02  6.064e-02  5.310e+03
## pDem_Rep:wave2:Neg_Emo.c:trustGovt.c       -1.837e-02  6.189e-02  5.217e+03
## pDem_Rep:wave3:Neg_Emo.c:trustGovt.c       -3.120e-02  6.383e-02  5.296e+03
## pDem_Rep:wave4:Neg_Emo.c:trustGovt.c       -3.100e-03  7.151e-02  5.314e+03
## pDem_Rep:GCB.c:Pos_Emo.c:trustGovt.c        1.027e-02  3.590e-02  6.064e+03
## pDem_Rep:GCB.c:Neg_Emo.c:trustGovt.c       -5.586e-02  3.578e-02  6.342e+03
## wave2:GCB.c:Pos_Emo.c:trustGovt.c           4.681e-03  2.386e-02  5.255e+03
## wave3:GCB.c:Pos_Emo.c:trustGovt.c          -7.010e-03  2.495e-02  5.352e+03
## wave4:GCB.c:Pos_Emo.c:trustGovt.c           2.228e-02  2.796e-02  5.372e+03
## wave2:GCB.c:Neg_Emo.c:trustGovt.c          -3.567e-02  2.601e-02  5.243e+03
## wave3:GCB.c:Neg_Emo.c:trustGovt.c          -2.569e-02  2.704e-02  5.286e+03
## wave4:GCB.c:Neg_Emo.c:trustGovt.c          -8.920e-03  3.682e-02  5.360e+03
## pDem_Rep:wave2:GCB.c:Pos_Emo.c:trustGovt.c -2.167e-02  4.810e-02  5.297e+03
## pDem_Rep:wave3:GCB.c:Pos_Emo.c:trustGovt.c -7.119e-02  4.998e-02  5.362e+03
## pDem_Rep:wave4:GCB.c:Pos_Emo.c:trustGovt.c  4.572e-02  5.597e-02  5.374e+03
## pDem_Rep:wave2:GCB.c:Neg_Emo.c:trustGovt.c -1.293e-01  5.214e-02  5.256e+03
## pDem_Rep:wave3:GCB.c:Neg_Emo.c:trustGovt.c -7.861e-02  5.404e-02  5.281e+03
## pDem_Rep:wave4:GCB.c:Neg_Emo.c:trustGovt.c  8.586e-02  7.340e-02  5.339e+03
##                                            t value Pr(>|t|)    
## (Intercept)                                 38.821  < 2e-16 ***
## pDem_Rep                                    -5.750 9.35e-09 ***
## wave2                                        3.674 0.000241 ***
## wave3                                        2.739 0.006182 ** 
## wave4                                        2.505 0.012272 *  
## GCB.c                                      -12.902  < 2e-16 ***
## Pos_Emo.c                                   -2.054 0.040042 *  
## Neg_Emo.c                                   -4.080 4.56e-05 ***
## trustGovt.c                                 -5.005 5.74e-07 ***
## pDem_Rep:wave2                               2.196 0.028115 *  
## pDem_Rep:wave3                               2.503 0.012328 *  
## pDem_Rep:wave4                               4.394 1.13e-05 ***
## pDem_Rep:GCB.c                               0.500 0.617047    
## wave2:GCB.c                                  3.523 0.000431 ***
## wave3:GCB.c                                  1.365 0.172168    
## wave4:GCB.c                                  1.642 0.100711    
## pDem_Rep:Pos_Emo.c                          -0.326 0.744807    
## pDem_Rep:Neg_Emo.c                          -2.099 0.035844 *  
## wave2:Pos_Emo.c                             -2.361 0.018255 *  
## wave3:Pos_Emo.c                              0.323 0.746503    
## wave4:Pos_Emo.c                             -0.258 0.796595    
## wave2:Neg_Emo.c                             -3.935 8.43e-05 ***
## wave3:Neg_Emo.c                             -1.614 0.106607    
## wave4:Neg_Emo.c                             -0.932 0.351405    
## GCB.c:Pos_Emo.c                             -0.203 0.839255    
## GCB.c:Neg_Emo.c                             -2.224 0.026210 *  
## pDem_Rep:trustGovt.c                         1.426 0.153850    
## wave2:trustGovt.c                            1.862 0.062707 .  
## wave3:trustGovt.c                           -0.003 0.997964    
## wave4:trustGovt.c                            1.274 0.202887    
## GCB.c:trustGovt.c                           -4.771 1.87e-06 ***
## Pos_Emo.c:trustGovt.c                       -0.913 0.361502    
## Neg_Emo.c:trustGovt.c                       -0.856 0.391831    
## pDem_Rep:wave2:GCB.c                         1.033 0.301469    
## pDem_Rep:wave3:GCB.c                         2.154 0.031312 *  
## pDem_Rep:wave4:GCB.c                         1.898 0.057773 .  
## pDem_Rep:wave2:Pos_Emo.c                     1.496 0.134734    
## pDem_Rep:wave3:Pos_Emo.c                     0.467 0.640870    
## pDem_Rep:wave4:Pos_Emo.c                    -0.103 0.918359    
## pDem_Rep:wave2:Neg_Emo.c                     1.458 0.144817    
## pDem_Rep:wave3:Neg_Emo.c                     0.568 0.569908    
## pDem_Rep:wave4:Neg_Emo.c                     2.529 0.011467 *  
## pDem_Rep:GCB.c:Pos_Emo.c                     0.958 0.337897    
## pDem_Rep:GCB.c:Neg_Emo.c                    -1.268 0.204947    
## wave2:GCB.c:Pos_Emo.c                       -0.749 0.454118    
## wave3:GCB.c:Pos_Emo.c                       -0.510 0.609862    
## wave4:GCB.c:Pos_Emo.c                        2.213 0.026912 *  
## wave2:GCB.c:Neg_Emo.c                        0.476 0.634268    
## wave3:GCB.c:Neg_Emo.c                        0.059 0.953311    
## wave4:GCB.c:Neg_Emo.c                        1.034 0.300996    
## pDem_Rep:wave2:trustGovt.c                   0.283 0.777395    
## pDem_Rep:wave3:trustGovt.c                  -1.831 0.067151 .  
## pDem_Rep:wave4:trustGovt.c                  -2.220 0.026490 *  
## pDem_Rep:GCB.c:trustGovt.c                  -0.067 0.946885    
## wave2:GCB.c:trustGovt.c                     -0.137 0.890842    
## wave3:GCB.c:trustGovt.c                      1.188 0.234777    
## wave4:GCB.c:trustGovt.c                      1.161 0.245780    
## pDem_Rep:Pos_Emo.c:trustGovt.c               0.099 0.921016    
## pDem_Rep:Neg_Emo.c:trustGovt.c               0.076 0.939539    
## wave2:Pos_Emo.c:trustGovt.c                  0.244 0.806938    
## wave3:Pos_Emo.c:trustGovt.c                  0.661 0.508742    
## wave4:Pos_Emo.c:trustGovt.c                  0.282 0.777613    
## wave2:Neg_Emo.c:trustGovt.c                  1.691 0.090981 .  
## wave3:Neg_Emo.c:trustGovt.c                  0.043 0.965692    
## wave4:Neg_Emo.c:trustGovt.c                 -1.282 0.199995    
## GCB.c:Pos_Emo.c:trustGovt.c                 -0.745 0.456117    
## GCB.c:Neg_Emo.c:trustGovt.c                 -2.997 0.002741 ** 
## pDem_Rep:wave2:GCB.c:Pos_Emo.c              -0.091 0.927415    
## pDem_Rep:wave3:GCB.c:Pos_Emo.c              -0.783 0.433500    
## pDem_Rep:wave4:GCB.c:Pos_Emo.c              -1.005 0.314713    
## pDem_Rep:wave2:GCB.c:Neg_Emo.c               1.531 0.125838    
## pDem_Rep:wave3:GCB.c:Neg_Emo.c               1.055 0.291637    
## pDem_Rep:wave4:GCB.c:Neg_Emo.c               2.885 0.003935 ** 
## pDem_Rep:wave2:GCB.c:trustGovt.c            -0.557 0.577265    
## pDem_Rep:wave3:GCB.c:trustGovt.c             0.520 0.603033    
## pDem_Rep:wave4:GCB.c:trustGovt.c             0.432 0.665507    
## pDem_Rep:wave2:Pos_Emo.c:trustGovt.c        -0.262 0.793159    
## pDem_Rep:wave3:Pos_Emo.c:trustGovt.c         0.809 0.418301    
## pDem_Rep:wave4:Pos_Emo.c:trustGovt.c        -0.329 0.742142    
## pDem_Rep:wave2:Neg_Emo.c:trustGovt.c        -0.297 0.766579    
## pDem_Rep:wave3:Neg_Emo.c:trustGovt.c        -0.489 0.624966    
## pDem_Rep:wave4:Neg_Emo.c:trustGovt.c        -0.043 0.965427    
## pDem_Rep:GCB.c:Pos_Emo.c:trustGovt.c         0.286 0.774763    
## pDem_Rep:GCB.c:Neg_Emo.c:trustGovt.c        -1.561 0.118536    
## wave2:GCB.c:Pos_Emo.c:trustGovt.c            0.196 0.844432    
## wave3:GCB.c:Pos_Emo.c:trustGovt.c           -0.281 0.778743    
## wave4:GCB.c:Pos_Emo.c:trustGovt.c            0.797 0.425513    
## wave2:GCB.c:Neg_Emo.c:trustGovt.c           -1.371 0.170419    
## wave3:GCB.c:Neg_Emo.c:trustGovt.c           -0.950 0.342231    
## wave4:GCB.c:Neg_Emo.c:trustGovt.c           -0.242 0.808604    
## pDem_Rep:wave2:GCB.c:Pos_Emo.c:trustGovt.c  -0.451 0.652344    
## pDem_Rep:wave3:GCB.c:Pos_Emo.c:trustGovt.c  -1.424 0.154372    
## pDem_Rep:wave4:GCB.c:Pos_Emo.c:trustGovt.c   0.817 0.414021    
## pDem_Rep:wave2:GCB.c:Neg_Emo.c:trustGovt.c  -2.480 0.013182 *  
## pDem_Rep:wave3:GCB.c:Neg_Emo.c:trustGovt.c  -1.455 0.145844    
## pDem_Rep:wave4:GCB.c:Neg_Emo.c:trustGovt.c   1.170 0.242142    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

5. Moderator: Affective Polarization

Outgroup Rating Version

ggplot(d, aes(x=FT_Outgroup)) +
  geom_density(fill="#69b3a2", color="#e9ecef", alpha=0.9) +
  theme_bw() +
  labs(x = "Perception of Outparty") 

ggplot(d[!is.na(d$party_factor),], aes(x=FT_Outgroup, fill = party_factor)) +
  geom_density(color="black", alpha=0.5, position = 'identity') +
  theme_bw() +
  scale_fill_manual("Participant Party ID",
                    values = c("#1696d2","#db2b27")) +
  labs(x = "Perception of Outparty") 

ggplot(d[!is.na(d$party_factor),]) +
  geom_smooth(aes(x = FT_Outgroup, 
                  y = demNorms, 
                  fill = party_factor,
                  color = party_factor),
              method = "lm") +
  labs(x = "Perception of Outparty",
       y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(0,3)) 

ggplot(d[!is.na(d$party_factor),]) +
  geom_smooth(aes(x = FT_Outgroup, 
                  y = demNorms, 
                  fill = party_factor,
                  color = party_factor),
              method = "lm") +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Perception of Outparty",
       y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(-3,3)) 

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",],
       aes(x = FT_Outgroup, 
           y = demNorms, 
           fill = party_factor,
           color = party_factor)) +
  geom_jitter(height = .2, width =.2, alpha=0.4, size = .2, show.legend = F ) +
  geom_smooth(method = "lm", se = F) +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Perception of Outparty",
       y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(-3,3))

#### Ingroup - Outgroup Version

ggplot(d, aes(x=affPol, y = demNorms)) +
  geom_jitter(height = .1, width = .2, alpha = .4, size = .2) +
  geom_smooth(method = "lm", color="#69b3a2", se = F) +
  theme_bw() +
  labs(x = "Affective Polarization",
       y = "Support for Democratic Norms")

ggplot(d[!is.na(d$party_factor),]) +
   geom_smooth(aes(x = affPol, 
                   y = demNorms, 
                   fill = party_factor,
                   color = party_factor),
               method = "lm") +
   labs(x = "Affective Polarization",
        y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(-3,3), xlim = c(0,100)) 

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",],
       aes(x = affPol, 
                   y = demNorms, 
                   fill = party_factor,
                   color = party_factor)) +
   geom_jitter(alpha = .4, size = .2) +
   geom_smooth(method = "lm", se = F, fullrange = T) +
   labs(x = "Affective Polarization",
        y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw()# +

#  coord_cartesian(ylim = c(1,5), xlim = c(0,100)) 

ggplot(d[!is.na(d$party_factor),]) +
   geom_smooth(aes(x = affPol, 
                   y = demNorms, 
                   fill = party_factor,
                   color = party_factor),
               method = "lm") +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
   labs(x = "Affective Polarization",
        y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(-3,3), xlim = c(0,100))

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",],
       aes(x = affPol, 
           y = demNorms, 
           fill = party_factor,
           color = party_factor)) +
  geom_jitter(height = .2, width =.2, alpha=0.4, size = .2, show.legend = F ) +
  geom_smooth(method = "lm", se = F) +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Affective Polarization",
       y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(-3,3), xlim = c(0,100)) 

Summary

Models

DN.m5 <- lmer(demNorms ~ (pDem_Rep) * affPol * (wave.lin + wave.quad + wave.cub) + (1|pid), 
               data = d[d$party_factor != "Independent",])
summary(DN.m5)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: demNorms ~ (pDem_Rep) * affPol * (wave.lin + wave.quad + wave.cub) +  
##     (1 | pid)
##    Data: d[d$party_factor != "Independent", ]
## 
## REML criterion at convergence: 22352.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3827 -0.4546  0.1012  0.4781  4.2776 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.3619   1.1670  
##  Residual             0.7062   0.8404  
## Number of obs: 7162, groups:  pid, 2367
## 
## Fixed effects:
##                             Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                1.475e+00  3.642e-02  4.631e+03  40.483  < 2e-16 ***
## pDem_Rep                  -2.065e-02  6.614e-02  6.339e+03  -0.312 0.754920    
## affPol                    -2.157e-03  4.814e-04  7.146e+03  -4.480 7.58e-06 ***
## wave.lin                   1.693e-01  5.233e-02  5.231e+03   3.236 0.001219 ** 
## wave.quad                  2.259e-01  7.759e-02  5.092e+03   2.911 0.003616 ** 
## wave.cub                  -1.770e-01  4.666e-02  5.017e+03  -3.794 0.000150 ***
## pDem_Rep:affPol           -3.511e-03  9.472e-04  7.145e+03  -3.707 0.000211 ***
## pDem_Rep:wave.lin          7.313e-02  1.055e-01  5.265e+03   0.693 0.488138    
## pDem_Rep:wave.quad        -5.099e-02  1.564e-01  5.126e+03  -0.326 0.744482    
## pDem_Rep:wave.cub         -9.821e-02  9.397e-02  5.046e+03  -1.045 0.295994    
## affPol:wave.lin           -9.996e-04  8.206e-04  5.236e+03  -1.218 0.223226    
## affPol:wave.quad           6.409e-04  1.220e-03  5.100e+03   0.525 0.599304    
## affPol:wave.cub            2.404e-03  7.365e-04  5.037e+03   3.265 0.001103 ** 
## pDem_Rep:affPol:wave.lin   3.740e-03  1.648e-03  5.255e+03   2.270 0.023249 *  
## pDem_Rep:affPol:wave.quad  6.006e-03  2.450e-03  5.120e+03   2.451 0.014278 *  
## pDem_Rep:affPol:wave.cub  -1.218e-03  1.475e-03  5.048e+03  -0.825 0.409148    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6. Moderator: Emotions

Positive Emotions

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",], aes(x=Pos_Emo, y = demNorms)) +
  geom_smooth(method="lm", color="#69b3a2") +
  theme_bw() +
  labs(x = "Positive Emotions",
       y = "Support for Democratic Norms") +
  coord_cartesian(ylim = c(-3,3)) +
  scale_y_continuous(breaks = seq(-3,3,1))

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",], 
       aes(x = Pos_Emo, 
           y = demNorms, 
           fill = party_factor,
           color = party_factor)) +
   geom_smooth(method = "lm") +
   facet_grid(~wave, labeller = as_labeller(wave_label)) +
   labs(x = "Positive Emotions",
        y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  coord_cartesian(ylim = c(-3,3)) +
  scale_y_continuous(breaks = seq(-3,3,1)) +
  theme_bw()

party.wave_label <- c("Democrat" = "Democrat", "Independent" = "Independent", "Republican" = "Republican",
                      `1` = "Wave 1", `2` = "Wave 2", `3` = "Wave 3", `4` = "Wave 4")

Negative Emotions

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",], 
       aes(x=Neg_Emo, y = demNorms)) +
  geom_smooth(method="lm", color="#69b3a2") +
  theme_bw() +
  labs(x = "Negative Emotions",
       y = "Support for Democratic Norms") +
  coord_cartesian(ylim = c(-3,3)) +
  scale_y_continuous(breaks = seq(-3,3,1))

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",], 
       aes(x = Neg_Emo, 
           y = demNorms, 
           fill = party_factor,
           color = party_factor)) +
   geom_smooth(method = "lm") +
   facet_grid(~wave, labeller = as_labeller(wave_label)) +
   labs(x = "Negative Emotions",
        y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Party ID", 
                     values = c("#1696d2" ,"#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2" ,"#db2b27")) +
   coord_cartesian(ylim = c(-3,3)) +
   scale_y_continuous(breaks = seq(-3,3,1)) +
  theme_bw()

Summary

Models

DN.m6 <- lmer(demNorms ~ (pDem_Rep) * (Neg_Emo) * (wave.lin + wave.quad + wave.cub) + (1|pid), 
               data = d[d$party_factor != "Independent",])
summary(DN.m6)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## demNorms ~ (pDem_Rep) * (Neg_Emo) * (wave.lin + wave.quad + wave.cub) +  
##     (1 | pid)
##    Data: d[d$party_factor != "Independent", ]
## 
## REML criterion at convergence: 22297.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.4121 -0.4472  0.0945  0.4794  4.2038 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.3723   1.171   
##  Residual             0.7006   0.837   
## Number of obs: 7172, groups:  pid, 2367
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   1.60768    0.04206 6085.55729  38.225  < 2e-16
## pDem_Rep                     -0.22362    0.08165 6743.04541  -2.739  0.00618
## Neg_Emo                      -0.09846    0.01452 6556.86977  -6.779 1.31e-11
## wave.lin                      0.09981    0.07049 5253.03495   1.416  0.15685
## wave.quad                     0.47005    0.10401 5123.01605   4.519 6.35e-06
## wave.cub                     -0.12257    0.06248 5068.20190  -1.962  0.04985
## pDem_Rep:Neg_Emo             -0.02293    0.02863 6467.47082  -0.801  0.42323
## pDem_Rep:wave.lin            -0.16640    0.14144 5259.49875  -1.176  0.23946
## pDem_Rep:wave.quad            0.21645    0.20821 5127.56079   1.040  0.29859
## pDem_Rep:wave.cub             0.17773    0.12508 5072.11361   1.421  0.15540
## Neg_Emo:wave.lin              0.02043    0.02923 5312.12214   0.699  0.48448
## Neg_Emo:wave.quad            -0.13471    0.04407 5186.26961  -3.056  0.00225
## Neg_Emo:wave.cub              0.01698    0.02696 5108.80402   0.630  0.52885
## pDem_Rep:Neg_Emo:wave.lin     0.15500    0.05874 5327.08427   2.639  0.00834
## pDem_Rep:Neg_Emo:wave.quad   -0.11438    0.08835 5199.12025  -1.295  0.19551
## pDem_Rep:Neg_Emo:wave.cub    -0.11035    0.05397 5115.45378  -2.045  0.04094
##                               
## (Intercept)                ***
## pDem_Rep                   ** 
## Neg_Emo                    ***
## wave.lin                      
## wave.quad                  ***
## wave.cub                   *  
## pDem_Rep:Neg_Emo              
## pDem_Rep:wave.lin             
## pDem_Rep:wave.quad            
## pDem_Rep:wave.cub             
## Neg_Emo:wave.lin              
## Neg_Emo:wave.quad          ** 
## Neg_Emo:wave.cub              
## pDem_Rep:Neg_Emo:wave.lin  ** 
## pDem_Rep:Neg_Emo:wave.quad    
## pDem_Rep:Neg_Emo:wave.cub  *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
DN.m7 <- lmer(demNorms ~ (pDem_Rep) * (Pos_Emo) * (wave.lin + wave.quad + wave.cub) + (1|pid), 
               data = d[d$party_factor != "Independent",])
summary(DN.m7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## demNorms ~ (pDem_Rep) * (Pos_Emo) * (wave.lin + wave.quad + wave.cub) +  
##     (1 | pid)
##    Data: d[d$party_factor != "Independent", ]
## 
## REML criterion at convergence: 22355.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3505 -0.4470  0.1088  0.4818  4.3112 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.3508   1.1622  
##  Residual             0.7126   0.8441  
## Number of obs: 7172, groups:  pid, 2367
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                   1.51831    0.04561 6553.53646  33.288  < 2e-16
## pDem_Rep                     -0.14707    0.08852 7010.07629  -1.662  0.09665
## Pos_Emo                      -0.05312    0.01298 6678.81135  -4.092 4.32e-05
## wave.lin                      0.03473    0.07924 5294.45785   0.438  0.66122
## wave.quad                     0.17701    0.11890 5181.02286   1.489  0.13663
## wave.cub                     -0.08305    0.07178 5078.97571  -1.157  0.24732
## pDem_Rep:Pos_Emo              0.01413    0.02558 6592.66389   0.553  0.58060
## pDem_Rep:wave.lin             0.50691    0.15879 5300.25539   3.192  0.00142
## pDem_Rep:wave.quad            0.12733    0.23841 5194.47675   0.534  0.59331
## pDem_Rep:wave.cub            -0.27676    0.14406 5093.56919  -1.921  0.05477
## Pos_Emo:wave.lin              0.02745    0.02600 5302.26399   1.056  0.29107
## Pos_Emo:wave.quad             0.01073    0.03854 5183.09405   0.279  0.78064
## Pos_Emo:wave.cub              0.01460    0.02301 5086.11798   0.634  0.52590
## pDem_Rep:Pos_Emo:wave.lin    -0.07274    0.05215 5312.72087  -1.395  0.16310
## pDem_Rep:Pos_Emo:wave.quad    0.08366    0.07724 5193.68824   1.083  0.27880
## pDem_Rep:Pos_Emo:wave.cub     0.01050    0.04620 5100.96100   0.227  0.82026
##                               
## (Intercept)                ***
## pDem_Rep                   .  
## Pos_Emo                    ***
## wave.lin                      
## wave.quad                     
## wave.cub                      
## pDem_Rep:Pos_Emo              
## pDem_Rep:wave.lin          ** 
## pDem_Rep:wave.quad            
## pDem_Rep:wave.cub          .  
## Pos_Emo:wave.lin              
## Pos_Emo:wave.quad             
## Pos_Emo:wave.cub              
## pDem_Rep:Pos_Emo:wave.lin     
## pDem_Rep:Pos_Emo:wave.quad    
## pDem_Rep:Pos_Emo:wave.cub     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Simple-effects models

DN.m6.full <- lmer(demNorms ~ (pDem_Rep) * (wave.lin + wave.quad + wave.cub) * (Neg_Emo * Pos_Emo)  + (1|pid), 
               data = d[d$party_factor != "Independent",])
summary(DN.m6.full)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## demNorms ~ (pDem_Rep) * (wave.lin + wave.quad + wave.cub) * (Neg_Emo *  
##     Pos_Emo) + (1 | pid)
##    Data: d[d$party_factor != "Independent", ]
## 
## REML criterion at convergence: 22274.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.2500 -0.4560  0.0901  0.4874  4.0801 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.2877   1.135   
##  Residual             0.7056   0.840   
## Number of obs: 7172, groups:  pid, 2367
## 
## Fixed effects:
##                                      Estimate Std. Error         df t value
## (Intercept)                         1.644e+00  8.766e-02  6.955e+03  18.752
## pDem_Rep                           -3.752e-01  1.738e-01  6.862e+03  -2.159
## wave.lin                            1.478e-01  1.793e-01  5.304e+03   0.825
## wave.quad                           6.753e-01  2.673e-01  5.162e+03   2.527
## wave.cub                           -3.586e-01  1.619e-01  5.092e+03  -2.215
## Neg_Emo                             2.444e-02  3.311e-02  6.153e+03   0.738
## Pos_Emo                             7.746e-03  2.597e-02  6.358e+03   0.298
## pDem_Rep:wave.lin                  -3.745e-01  3.586e-01  5.305e+03  -1.044
## pDem_Rep:wave.quad                 -9.135e-01  5.363e-01  5.177e+03  -1.703
## pDem_Rep:wave.cub                   6.341e-01  3.241e-01  5.096e+03   1.957
## Neg_Emo:Pos_Emo                    -5.527e-02  1.085e-02  6.109e+03  -5.096
## pDem_Rep:Neg_Emo                    9.274e-02  6.556e-02  6.095e+03   1.415
## pDem_Rep:Pos_Emo                    5.472e-02  5.149e-02  6.310e+03   1.063
## wave.lin:Neg_Emo                   -2.568e-02  7.288e-02  5.350e+03  -0.352
## wave.lin:Pos_Emo                   -5.652e-03  5.641e-02  5.319e+03  -0.100
## wave.quad:Neg_Emo                  -1.477e-01  1.115e-01  5.233e+03  -1.324
## wave.quad:Pos_Emo                  -7.104e-02  8.332e-02  5.176e+03  -0.853
## wave.cub:Neg_Emo                    5.014e-02  6.892e-02  5.131e+03   0.728
## wave.cub:Pos_Emo                    7.770e-02  4.989e-02  5.097e+03   1.557
## pDem_Rep:Neg_Emo:Pos_Emo           -3.390e-02  2.135e-02  6.019e+03  -1.588
## wave.lin:Neg_Emo:Pos_Emo            8.740e-03  2.450e-02  5.322e+03   0.357
## wave.quad:Neg_Emo:Pos_Emo           2.146e-03  3.666e-02  5.212e+03   0.059
## wave.cub:Neg_Emo:Pos_Emo           -8.519e-03  2.201e-02  5.112e+03  -0.387
## pDem_Rep:wave.lin:Neg_Emo           3.723e-01  1.460e-01  5.361e+03   2.551
## pDem_Rep:wave.lin:Pos_Emo           7.545e-02  1.133e-01  5.338e+03   0.666
## pDem_Rep:wave.quad:Neg_Emo          4.234e-01  2.242e-01  5.257e+03   1.888
## pDem_Rep:wave.quad:Pos_Emo          3.474e-01  1.670e-01  5.187e+03   2.080
## pDem_Rep:wave.cub:Neg_Emo          -3.501e-01  1.381e-01  5.141e+03  -2.535
## pDem_Rep:wave.cub:Pos_Emo          -1.765e-01  9.985e-02  5.100e+03  -1.768
## pDem_Rep:wave.lin:Neg_Emo:Pos_Emo  -7.492e-02  4.922e-02  5.348e+03  -1.522
## pDem_Rep:wave.quad:Neg_Emo:Pos_Emo -1.417e-01  7.368e-02  5.234e+03  -1.923
## pDem_Rep:wave.cub:Neg_Emo:Pos_Emo   8.214e-02  4.416e-02  5.126e+03   1.860
##                                    Pr(>|t|)    
## (Intercept)                         < 2e-16 ***
## pDem_Rep                             0.0309 *  
## wave.lin                             0.4096    
## wave.quad                            0.0115 *  
## wave.cub                             0.0268 *  
## Neg_Emo                              0.4605    
## Pos_Emo                              0.7655    
## pDem_Rep:wave.lin                    0.2964    
## pDem_Rep:wave.quad                   0.0886 .  
## pDem_Rep:wave.cub                    0.0504 .  
## Neg_Emo:Pos_Emo                    3.58e-07 ***
## pDem_Rep:Neg_Emo                     0.1572    
## pDem_Rep:Pos_Emo                     0.2880    
## wave.lin:Neg_Emo                     0.7246    
## wave.lin:Pos_Emo                     0.9202    
## wave.quad:Neg_Emo                    0.1854    
## wave.quad:Pos_Emo                    0.3939    
## wave.cub:Neg_Emo                     0.4669    
## wave.cub:Pos_Emo                     0.1194    
## pDem_Rep:Neg_Emo:Pos_Emo             0.1124    
## wave.lin:Neg_Emo:Pos_Emo             0.7213    
## wave.quad:Neg_Emo:Pos_Emo            0.9533    
## wave.cub:Neg_Emo:Pos_Emo             0.6988    
## pDem_Rep:wave.lin:Neg_Emo            0.0108 *  
## pDem_Rep:wave.lin:Pos_Emo            0.5054    
## pDem_Rep:wave.quad:Neg_Emo           0.0591 .  
## pDem_Rep:wave.quad:Pos_Emo           0.0376 *  
## pDem_Rep:wave.cub:Neg_Emo            0.0113 *  
## pDem_Rep:wave.cub:Pos_Emo            0.0771 .  
## pDem_Rep:wave.lin:Neg_Emo:Pos_Emo    0.1281    
## pDem_Rep:wave.quad:Neg_Emo:Pos_Emo   0.0545 .  
## pDem_Rep:wave.cub:Neg_Emo:Pos_Emo    0.0630 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
DN.m6.part <- lmer(demNorms ~ (pDem_Rep) * (wave.lin + wave.quad + wave.cub) + (Neg_Emo * Pos_Emo)  + (1|pid), 
               data = d[d$party_factor != "Independent",])
summary(DN.m6.part)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## demNorms ~ (pDem_Rep) * (wave.lin + wave.quad + wave.cub) + (Neg_Emo *  
##     Pos_Emo) + (1 | pid)
##    Data: d[d$party_factor != "Independent", ]
## 
## REML criterion at convergence: 22237.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.2904 -0.4559  0.1001  0.4872  4.2598 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.2954   1.1382  
##  Residual             0.7095   0.8423  
## Number of obs: 7172, groups:  pid, 2367
## 
## Fixed effects:
##                      Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         1.757e+00  7.916e-02  7.106e+03  22.196  < 2e-16 ***
## pDem_Rep           -2.107e-01  5.181e-02  3.954e+03  -4.067 4.86e-05 ***
## wave.lin            8.915e-02  2.951e-02  5.117e+03   3.021 0.002530 ** 
## wave.quad           2.114e-01  4.343e-02  4.953e+03   4.869 1.16e-06 ***
## wave.cub           -4.774e-02  2.619e-02  4.886e+03  -1.823 0.068430 .  
## Neg_Emo            -5.443e-02  2.405e-02  6.479e+03  -2.263 0.023643 *  
## Pos_Emo            -2.596e-02  2.225e-02  6.497e+03  -1.167 0.243351    
## pDem_Rep:wave.lin   2.054e-01  6.149e-02  5.283e+03   3.341 0.000841 ***
## pDem_Rep:wave.quad  2.249e-01  8.998e-02  5.107e+03   2.500 0.012459 *  
## pDem_Rep:wave.cub  -1.393e-01  5.348e-02  4.988e+03  -2.604 0.009230 ** 
## Neg_Emo:Pos_Emo    -3.160e-02  8.142e-03  6.282e+03  -3.882 0.000105 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) pDm_Rp wav.ln wav.qd wav.cb Neg_Em Pos_Em pDm_Rp:wv.l
## pDem_Rep     0.001                                                      
## wave.lin     0.169 -0.032                                               
## wave.quad    0.079 -0.007 -0.179                                        
## wave.cub    -0.160  0.021 -0.142  0.140                                 
## Neg_Emo     -0.828  0.144 -0.191 -0.116  0.168                          
## Pos_Emo     -0.852 -0.083 -0.125 -0.133  0.147  0.761                   
## pDm_Rp:wv.l -0.035  0.247  0.063 -0.007  0.002  0.156 -0.074            
## pDm_Rp:wv.q  0.049  0.062 -0.034  0.110  0.015  0.060 -0.142 -0.095     
## pDm_Rp:wv.c  0.002 -0.127  0.005  0.004  0.088 -0.084  0.085 -0.188     
## Ng_Em:Ps_Em  0.628 -0.014  0.192  0.162 -0.155 -0.822 -0.806 -0.030     
##             pDm_Rp:wv.q pDm_Rp:wv.c
## pDem_Rep                           
## wave.lin                           
## wave.quad                          
## wave.cub                           
## Neg_Emo                            
## Pos_Emo                            
## pDm_Rp:wv.l                        
## pDm_Rp:wv.q                        
## pDm_Rp:wv.c  0.082                 
## Ng_Em:Ps_Em  0.027      -0.011
interact_plot(DN.m6.part, pred = Neg_Emo, modx = Pos_Emo) +
  coord_cartesian(ylim = c(0,3)) +
  labs(x = "Negative Emotions",
       y = "Support for Democratic Norms") 

7. Moderator: Representation

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",],
       aes(x = representation_Dem, 
                  y = demNorms, 
                  fill = party_factor,
                  color = party_factor)) +
  geom_jitter(size = .2, alpha = .4) +
  geom_smooth(method = "lm", se = F) +
  labs(x = "Representation (Democratic elites)",
       y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(0,3), xlim = c(1,5)) +
  scale_x_continuous(breaks = seq(1,5,1)) 

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",]) +
  geom_smooth(aes(x = representation_Dem, 
                  y = demNorms, 
                  fill = party_factor,
                  color = party_factor),
              method = "lm") +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Representation (Democratic elites)",
       y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(0,3)) +
  scale_x_continuous(breaks = seq(1,7,1))

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",],
       aes(x = representation_Dem, 
           y = demNorms, 
           fill = party_factor,
           color = party_factor)) +
  geom_jitter(height = .2, width =.2, alpha=0.4, size = .2, show.legend = F ) +
  geom_smooth(method = "lm", se = F) +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Representation (Democratic elites)",
       y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(0,3)) +
  scale_x_continuous(breaks = seq(1,7,1))

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",],
       aes(x = representation_Rep, 
                  y = demNorms, 
                  fill = party_factor,
                  color = party_factor)) +
  geom_jitter(size = .2, alpha = .4) +
  geom_smooth(method = "lm", se = F) +
  labs(x = "Representation (Republican elites)",
       y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(0,3), xlim = c(1,5)) +
  scale_x_continuous(breaks = seq(1,5,1)) 

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",]) +
  geom_smooth(aes(x = representation_Rep, 
                  y = demNorms, 
                  fill = party_factor,
                  color = party_factor),
              method = "lm") +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Representation (Republican elites)",
       y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(0,3)) +
  scale_x_continuous(breaks = seq(1,7,1))

ggplot(d[!is.na(d$party_factor) & d$party_factor != "Independent",],
       aes(x = representation_Rep, 
           y = demNorms, 
           fill = party_factor,
           color = party_factor)) +
  geom_jitter(height = .2, width =.2, alpha=0.4, size = .2, show.legend = F ) +
  geom_smooth(method = "lm", se = F) +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Representation (Republican elites)",
       y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(0,3)) +
  scale_x_continuous(breaks = seq(1,7,1))

Summary

Models

DN.m8 <- lmer(demNorms ~ (pDem_Rep) * (representation_Dem + representation_Rep) * (wave.lin + wave.quad + wave.cub) + (wave.lin + pDem_Rep|pid), 
               data = d)
summary(DN.m8)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: demNorms ~ (pDem_Rep) * (representation_Dem + representation_Rep) *  
##     (wave.lin + wave.quad + wave.cub) + (wave.lin + pDem_Rep |      pid)
##    Data: d
## 
## REML criterion at convergence: 13726.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3938 -0.4634  0.0978  0.4856  4.1713 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr       
##  pid      (Intercept) 1.17841  1.0855              
##           wave.lin    0.04855  0.2204   -0.09      
##           pDem_Rep    0.56172  0.7495   -0.12 -0.98
##  Residual             0.70281  0.8383              
## Number of obs: 4485, groups:  pid, 1163
## 
## Fixed effects:
##                                         Estimate Std. Error         df t value
## (Intercept)                              1.92027    0.11579 1157.68784  16.584
## pDem_Rep                                 0.07449    0.21851  936.63572   0.341
## representation_Dem                      -0.07155    0.03099 1178.50331  -2.309
## representation_Rep                      -0.10963    0.02981 1135.77811  -3.677
## wave.lin                                 0.01696    0.10763 1939.43972   0.158
## wave.quad                                0.51842    0.16573 2908.06783   3.128
## wave.cub                                -0.13737    0.10429 2875.52650  -1.317
## pDem_Rep:representation_Dem             -0.01569    0.05960 1031.81050  -0.263
## pDem_Rep:representation_Rep             -0.07213    0.05668  919.13968  -1.273
## pDem_Rep:wave.lin                        0.66468    0.21590 1920.86353   3.079
## pDem_Rep:wave.quad                       0.03299    0.33218 2915.48427   0.099
## pDem_Rep:wave.cub                       -0.24828    0.20909 2902.33181  -1.187
## representation_Dem:wave.lin              0.01048    0.02837 1904.53099   0.369
## representation_Dem:wave.quad            -0.09059    0.04385 2880.32047  -2.066
## representation_Dem:wave.cub             -0.02271    0.02773 2870.39551  -0.819
## representation_Rep:wave.lin              0.01527    0.02755 1912.82142   0.554
## representation_Rep:wave.quad            -0.02386    0.04253 2883.50216  -0.561
## representation_Rep:wave.cub              0.05119    0.02684 2868.81628   1.907
## pDem_Rep:representation_Dem:wave.lin    -0.09318    0.05683 1903.30841  -1.640
## pDem_Rep:representation_Dem:wave.quad   -0.11622    0.08785 2894.08126  -1.323
## pDem_Rep:representation_Dem:wave.cub    -0.01102    0.05554 2880.44648  -0.198
## pDem_Rep:representation_Rep:wave.lin    -0.05515    0.05524 1905.72181  -0.998
## pDem_Rep:representation_Rep:wave.quad    0.14353    0.08521 2901.49847   1.684
## pDem_Rep:representation_Rep:wave.cub     0.03211    0.05376 2881.66063   0.597
##                                       Pr(>|t|)    
## (Intercept)                            < 2e-16 ***
## pDem_Rep                              0.733267    
## representation_Dem                    0.021127 *  
## representation_Rep                    0.000247 ***
## wave.lin                              0.874834    
## wave.quad                             0.001777 ** 
## wave.cub                              0.187889    
## pDem_Rep:representation_Dem           0.792440    
## pDem_Rep:representation_Rep           0.203472    
## pDem_Rep:wave.lin                     0.002109 ** 
## pDem_Rep:wave.quad                    0.920895    
## pDem_Rep:wave.cub                     0.235150    
## representation_Dem:wave.lin           0.711877    
## representation_Dem:wave.quad          0.038945 *  
## representation_Dem:wave.cub           0.412904    
## representation_Rep:wave.lin           0.579559    
## representation_Rep:wave.quad          0.574842    
## representation_Rep:wave.cub           0.056570 .  
## pDem_Rep:representation_Dem:wave.lin  0.101261    
## pDem_Rep:representation_Dem:wave.quad 0.185952    
## pDem_Rep:representation_Dem:wave.cub  0.842778    
## pDem_Rep:representation_Rep:wave.lin  0.318207    
## pDem_Rep:representation_Rep:wave.quad 0.092207 .  
## pDem_Rep:representation_Rep:wave.cub  0.550413    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Simple-effects models

DN.m8.w <- lmer(demNorms ~ (pDem_Rep) * (representation_Dem + representation_Rep) * wave + (pDem_Rep|pid), 
               data = d)
summary(DN.m8.w)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: demNorms ~ (pDem_Rep) * (representation_Dem + representation_Rep) *  
##     wave + (pDem_Rep | pid)
##    Data: d
## 
## REML criterion at convergence: 13738.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3984 -0.4678  0.0937  0.4904  4.1808 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  pid      (Intercept) 1.1682   1.0808        
##           pDem_Rep    0.5859   0.7655   -0.11
##  Residual             0.7128   0.8443        
## Number of obs: 4485, groups:  pid, 1163
## 
## Fixed effects:
##                                     Estimate Std. Error         df t value
## (Intercept)                        1.752e+00  1.372e-01  2.144e+03  12.773
## pDem_Rep                          -3.181e-01  2.642e-01  1.785e+03  -1.204
## representation_Dem                -5.983e-02  3.645e-02  2.136e+03  -1.641
## representation_Rep                -9.960e-02  3.513e-02  2.073e+03  -2.835
## wave2                              3.630e-01  1.182e-01  3.316e+03   3.071
## wave3                              2.348e-01  1.185e-01  3.329e+03   1.982
## wave4                              8.402e-02  1.192e-01  3.352e+03   0.705
## pDem_Rep:representation_Dem        5.905e-02  7.091e-02  1.832e+03   0.833
## pDem_Rep:representation_Rep       -7.665e-02  6.784e-02  1.650e+03  -1.130
## pDem_Rep:wave2                     3.560e-01  2.369e-01  3.299e+03   1.503
## pDem_Rep:wave3                     4.471e-01  2.375e-01  3.311e+03   1.882
## pDem_Rep:wave4                     7.793e-01  2.392e-01  3.333e+03   3.257
## representation_Dem:wave2          -2.621e-02  3.126e-02  3.316e+03  -0.838
## representation_Dem:wave3          -4.348e-02  3.134e-02  3.312e+03  -1.387
## representation_Dem:wave4           2.097e-02  3.136e-02  3.323e+03   0.669
## representation_Rep:wave2          -4.542e-02  3.031e-02  3.315e+03  -1.499
## representation_Rep:wave3           1.327e-02  3.033e-02  3.320e+03   0.437
## representation_Rep:wave4          -9.323e-03  3.045e-02  3.341e+03  -0.306
## pDem_Rep:representation_Dem:wave2 -7.401e-02  6.267e-02  3.300e+03  -1.181
## pDem_Rep:representation_Dem:wave3 -1.318e-01  6.279e-02  3.298e+03  -2.100
## pDem_Rep:representation_Dem:wave4 -8.856e-02  6.284e-02  3.311e+03  -1.409
## pDem_Rep:representation_Rep:wave2  3.791e-02  6.074e-02  3.298e+03   0.624
## pDem_Rep:representation_Rep:wave3  4.066e-02  6.080e-02  3.304e+03   0.669
## pDem_Rep:representation_Rep:wave4 -6.833e-02  6.110e-02  3.323e+03  -1.118
##                                   Pr(>|t|)    
## (Intercept)                        < 2e-16 ***
## pDem_Rep                           0.22867    
## representation_Dem                 0.10087    
## representation_Rep                 0.00462 ** 
## wave2                              0.00215 ** 
## wave3                              0.04761 *  
## wave4                              0.48097    
## pDem_Rep:representation_Dem        0.40517    
## pDem_Rep:representation_Rep        0.25868    
## pDem_Rep:wave2                     0.13296    
## pDem_Rep:wave3                     0.05987 .  
## pDem_Rep:wave4                     0.00114 ** 
## representation_Dem:wave2           0.40186    
## representation_Dem:wave3           0.16541    
## representation_Dem:wave4           0.50381    
## representation_Rep:wave2           0.13409    
## representation_Rep:wave3           0.66191    
## representation_Rep:wave4           0.75951    
## pDem_Rep:representation_Dem:wave2  0.23771    
## pDem_Rep:representation_Dem:wave3  0.03581 *  
## pDem_Rep:representation_Dem:wave4  0.15888    
## pDem_Rep:representation_Rep:wave2  0.53260    
## pDem_Rep:representation_Rep:wave3  0.50364    
## pDem_Rep:representation_Rep:wave4  0.26353    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

8. Moderator: Process variable

ggplot(d[!is.na(d$party_factor),]) +
  geom_smooth(aes(x = govt_process, 
                  y = demNorms, 
                  fill = party_factor,
                  color = party_factor),
              method = "lm") +
  labs(x = "Governmental Process Preference",
       y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(0,3)) +
  scale_x_continuous(breaks = seq(1,7,1)) 

ggplot(d[!is.na(d$party_factor),]) +
  geom_smooth(aes(x = govt_process, 
                  y = demNorms, 
                  fill = party_factor,
                  color = party_factor),
              method = "lm") +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Governmental Process Preference",
       y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(0,3)) +
  scale_x_continuous(breaks = seq(1,7,1))

ggplot(d[!is.na(d$party_factor),],
       aes(x = govt_process, 
           y = demNorms, 
           fill = party_factor,
           color = party_factor)) +
  geom_jitter(height = .2, width =.2, alpha=0.4, size = .2, show.legend = F ) +
  geom_smooth(method = "lm", se = F) +
  facet_wrap(~wave, labeller = as_labeller(wave_label)) +
  labs(x = "Governmental Process Preference",
       y = "Support for Democratic Norms") +
  scale_fill_manual("Participant Party ID", 
                    values = c("#1696d2","grey","#db2b27")) +
  scale_color_manual("Participant Party ID", 
                     values = c("#1696d2","grey","#db2b27")) +
  theme_bw() +
  coord_cartesian(ylim = c(-3,3)) +
  scale_x_continuous(breaks = seq(1,7,1)) +
  scale_y_continuous(breaks = seq(-3,3,1)) 

Summary

Models

DN.m9 <- lmer(demNorms ~ (pDem_Rep) * gov_proc.4 * (wave.lin + wave.quad + wave.cub) + (1|pid), 
               data = d)
summary(DN.m9)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: demNorms ~ (pDem_Rep) * gov_proc.4 * (wave.lin + wave.quad +  
##     wave.cub) + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 13750.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3564 -0.4540  0.1136  0.4884  4.4219 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.3397   1.1574  
##  Residual             0.7178   0.8472  
## Number of obs: 4493, groups:  pid, 1165
## 
## Fixed effects:
##                                 Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                      1.41444    0.03646 1163.27947  38.794  < 2e-16
## pDem_Rep                        -0.16075    0.06618 1786.43614  -2.429 0.015242
## gov_proc.4                      -0.10954    0.03142 1153.07045  -3.486 0.000508
## wave.lin                         0.10021    0.03244 3338.23528   3.089 0.002025
## wave.quad                        0.25796    0.05115 3333.62409   5.043 4.82e-07
## wave.cub                        -0.04663    0.03230 3330.40771  -1.444 0.148852
## pDem_Rep:gov_proc.4             -0.02411    0.05684 1793.10418  -0.424 0.671446
## pDem_Rep:wave.lin                0.26045    0.06522 3348.10021   3.993 6.66e-05
## pDem_Rep:wave.quad               0.19012    0.10267 3339.28444   1.852 0.064152
## pDem_Rep:wave.cub               -0.11522    0.06486 3338.65957  -1.776 0.075757
## gov_proc.4:wave.lin             -0.05563    0.02784 3337.43537  -1.998 0.045794
## gov_proc.4:wave.quad            -0.08562    0.04387 3326.23508  -1.952 0.051071
## gov_proc.4:wave.cub              0.02493    0.02774 3329.17301   0.899 0.368810
## pDem_Rep:gov_proc.4:wave.lin    -0.03524    0.05599 3341.02987  -0.629 0.529097
## pDem_Rep:gov_proc.4:wave.quad   -0.18919    0.08808 3331.64400  -2.148 0.031780
## pDem_Rep:gov_proc.4:wave.cub    -0.10003    0.05566 3334.38067  -1.797 0.072413
##                                  
## (Intercept)                   ***
## pDem_Rep                      *  
## gov_proc.4                    ***
## wave.lin                      ** 
## wave.quad                     ***
## wave.cub                         
## pDem_Rep:gov_proc.4              
## pDem_Rep:wave.lin             ***
## pDem_Rep:wave.quad            .  
## pDem_Rep:wave.cub             .  
## gov_proc.4:wave.lin           *  
## gov_proc.4:wave.quad          .  
## gov_proc.4:wave.cub              
## pDem_Rep:gov_proc.4:wave.lin     
## pDem_Rep:gov_proc.4:wave.quad *  
## pDem_Rep:gov_proc.4:wave.cub  .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Simple-effects models

DN.m9.w <- lmer(demNorms ~ (pDem_Rep) * gov_proc.4 * wave + (1|pid), 
               data = d)
summary(DN.m9.w)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: demNorms ~ (pDem_Rep) * gov_proc.4 * wave + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 13754
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3564 -0.4540  0.1136  0.4884  4.4219 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.3397   1.1574  
##  Residual             0.7178   0.8472  
## Number of obs: 4493, groups:  pid, 1165
## 
## Fixed effects:
##                             Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                  1.28819    0.04279 2091.89943  30.104  < 2e-16 ***
## pDem_Rep                    -0.36731    0.07961 3158.93816  -4.614 4.11e-06 ***
## gov_proc.4                  -0.05409    0.03676 2061.50939  -1.471 0.141315    
## wave2                        0.18901    0.03619 3332.00365   5.222 1.88e-07 ***
## wave3                        0.19248    0.03627 3335.05632   5.307 1.19e-07 ***
## wave4                        0.12353    0.03632 3340.53500   3.401 0.000678 ***
## pDem_Rep:gov_proc.4          0.01580    0.06839 3139.60739   0.231 0.817343    
## pDem_Rep:wave2               0.24659    0.07279 3341.68969   3.387 0.000714 ***
## pDem_Rep:wave3               0.26159    0.07289 3343.32279   3.589 0.000337 ***
## pDem_Rep:wave4               0.31806    0.07313 3353.18688   4.349 1.41e-05 ***
## gov_proc.4:wave2            -0.07542    0.03099 3326.11347  -2.434 0.015002 *  
## gov_proc.4:wave3            -0.07830    0.03105 3325.69207  -2.522 0.011713 *  
## gov_proc.4:wave4            -0.06809    0.03119 3342.30098  -2.183 0.029098 *  
## pDem_Rep:gov_proc.4:wave2   -0.02838    0.06225 3332.76962  -0.456 0.648429    
## pDem_Rep:gov_proc.4:wave3   -0.14604    0.06240 3333.71738  -2.340 0.019324 *  
## pDem_Rep:gov_proc.4:wave4    0.01477    0.06270 3343.40527   0.236 0.813740    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

9. Moderator: All process variables

Models

DN.m10 <- lmer(demNorms ~ (pDem_Rep) * gov_proc.4 * (representation_Dem * representation_Rep) * (wave.lin + wave.quad + wave.cub) + (1|pid), 
               data = d)
summary(DN.m10)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## demNorms ~ (pDem_Rep) * gov_proc.4 * (representation_Dem * representation_Rep) *  
##     (wave.lin + wave.quad + wave.cub) + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 13844.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3691 -0.4690  0.0933  0.4914  4.2235 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.2646   1.1245  
##  Residual             0.7158   0.8461  
## Number of obs: 4485, groups:  pid, 1163
## 
## Fixed effects:
##                                                                       Estimate
## (Intercept)                                                          1.831e+00
## pDem_Rep                                                             2.170e-01
## gov_proc.4                                                          -3.798e-01
## representation_Dem                                                  -7.919e-02
## representation_Rep                                                  -1.038e-01
## wave.lin                                                             5.432e-02
## wave.quad                                                            5.777e-01
## wave.cub                                                            -9.747e-02
## pDem_Rep:gov_proc.4                                                  4.820e-01
## representation_Dem:representation_Rep                                1.776e-02
## pDem_Rep:representation_Dem                                         -1.037e-01
## pDem_Rep:representation_Rep                                         -1.324e-01
## gov_proc.4:representation_Dem                                        1.322e-01
## gov_proc.4:representation_Rep                                        1.957e-01
## pDem_Rep:wave.lin                                                    7.942e-01
## pDem_Rep:wave.quad                                                  -6.103e-02
## pDem_Rep:wave.cub                                                   -2.630e-01
## gov_proc.4:wave.lin                                                 -4.081e-01
## gov_proc.4:wave.quad                                                -2.586e-01
## gov_proc.4:wave.cub                                                  7.970e-03
## representation_Dem:wave.lin                                         -3.663e-02
## representation_Dem:wave.quad                                        -1.592e-01
## representation_Dem:wave.cub                                         -4.034e-02
## representation_Rep:wave.lin                                         -1.412e-02
## representation_Rep:wave.quad                                        -7.006e-02
## representation_Rep:wave.cub                                          4.414e-02
## pDem_Rep:representation_Dem:representation_Rep                       4.254e-02
## gov_proc.4:representation_Dem:representation_Rep                    -7.574e-02
## pDem_Rep:gov_proc.4:representation_Dem                              -1.224e-01
## pDem_Rep:gov_proc.4:representation_Rep                              -1.942e-01
## pDem_Rep:gov_proc.4:wave.lin                                         3.531e-01
## pDem_Rep:gov_proc.4:wave.quad                                       -6.483e-01
## pDem_Rep:gov_proc.4:wave.cub                                        -4.566e-01
## representation_Dem:representation_Rep:wave.lin                       2.203e-02
## representation_Dem:representation_Rep:wave.quad                      3.416e-02
## representation_Dem:representation_Rep:wave.cub                       2.738e-03
## pDem_Rep:representation_Dem:wave.lin                                -1.940e-01
## pDem_Rep:representation_Dem:wave.quad                               -1.761e-01
## pDem_Rep:representation_Dem:wave.cub                                -1.817e-02
## pDem_Rep:representation_Rep:wave.lin                                -9.599e-02
## pDem_Rep:representation_Rep:wave.quad                                1.556e-01
## pDem_Rep:representation_Rep:wave.cub                                 2.372e-02
## gov_proc.4:representation_Dem:wave.lin                               1.407e-01
## gov_proc.4:representation_Dem:wave.quad                              1.057e-01
## gov_proc.4:representation_Dem:wave.cub                              -3.329e-03
## gov_proc.4:representation_Rep:wave.lin                               1.208e-01
## gov_proc.4:representation_Rep:wave.quad                              8.427e-02
## gov_proc.4:representation_Rep:wave.cub                              -4.185e-02
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep            3.709e-02
## pDem_Rep:representation_Dem:representation_Rep:wave.lin              3.407e-02
## pDem_Rep:representation_Dem:representation_Rep:wave.quad             3.096e-02
## pDem_Rep:representation_Dem:representation_Rep:wave.cub              5.891e-03
## gov_proc.4:representation_Dem:representation_Rep:wave.lin           -4.421e-02
## gov_proc.4:representation_Dem:representation_Rep:wave.quad          -4.187e-02
## gov_proc.4:representation_Dem:representation_Rep:wave.cub            1.251e-02
## pDem_Rep:gov_proc.4:representation_Dem:wave.lin                     -2.882e-02
## pDem_Rep:gov_proc.4:representation_Dem:wave.quad                     1.850e-01
## pDem_Rep:gov_proc.4:representation_Dem:wave.cub                      2.735e-02
## pDem_Rep:gov_proc.4:representation_Rep:wave.lin                     -1.476e-01
## pDem_Rep:gov_proc.4:representation_Rep:wave.quad                     1.467e-01
## pDem_Rep:gov_proc.4:representation_Rep:wave.cub                      2.023e-01
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.lin   1.557e-02
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.quad -5.813e-02
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.cub  -3.132e-02
##                                                                     Std. Error
## (Intercept)                                                          1.985e-01
## pDem_Rep                                                             3.669e-01
## gov_proc.4                                                           1.454e-01
## representation_Dem                                                   7.454e-02
## representation_Rep                                                   6.745e-02
## wave.lin                                                             1.878e-01
## wave.quad                                                            2.971e-01
## wave.cub                                                             1.879e-01
## pDem_Rep:gov_proc.4                                                  2.498e-01
## representation_Dem:representation_Rep                                2.325e-02
## pDem_Rep:representation_Dem                                          1.383e-01
## pDem_Rep:representation_Rep                                          1.278e-01
## gov_proc.4:representation_Dem                                        4.887e-02
## gov_proc.4:representation_Rep                                        5.526e-02
## pDem_Rep:wave.lin                                                    3.773e-01
## pDem_Rep:wave.quad                                                   5.958e-01
## pDem_Rep:wave.cub                                                    3.771e-01
## gov_proc.4:wave.lin                                                  1.378e-01
## gov_proc.4:wave.quad                                                 2.188e-01
## gov_proc.4:wave.cub                                                  1.401e-01
## representation_Dem:wave.lin                                          7.180e-02
## representation_Dem:wave.quad                                         1.148e-01
## representation_Dem:wave.cub                                          7.290e-02
## representation_Rep:wave.lin                                          6.315e-02
## representation_Rep:wave.quad                                         9.986e-02
## representation_Rep:wave.cub                                          6.317e-02
## pDem_Rep:representation_Dem:representation_Rep                       4.362e-02
## gov_proc.4:representation_Dem:representation_Rep                     1.587e-02
## pDem_Rep:gov_proc.4:representation_Dem                               8.435e-02
## pDem_Rep:gov_proc.4:representation_Rep                               1.029e-01
## pDem_Rep:gov_proc.4:wave.lin                                         2.794e-01
## pDem_Rep:gov_proc.4:wave.quad                                        4.382e-01
## pDem_Rep:gov_proc.4:wave.cub                                         2.821e-01
## representation_Dem:representation_Rep:wave.lin                       2.205e-02
## representation_Dem:representation_Rep:wave.quad                      3.507e-02
## representation_Dem:representation_Rep:wave.cub                       2.222e-02
## pDem_Rep:representation_Dem:wave.lin                                 1.442e-01
## pDem_Rep:representation_Dem:wave.quad                                2.302e-01
## pDem_Rep:representation_Dem:wave.cub                                 1.462e-01
## pDem_Rep:representation_Rep:wave.lin                                 1.267e-01
## pDem_Rep:representation_Rep:wave.quad                                2.001e-01
## pDem_Rep:representation_Rep:wave.cub                                 1.266e-01
## gov_proc.4:representation_Dem:wave.lin                               4.705e-02
## gov_proc.4:representation_Dem:wave.quad                              7.644e-02
## gov_proc.4:representation_Dem:wave.cub                               5.029e-02
## gov_proc.4:representation_Rep:wave.lin                               5.206e-02
## gov_proc.4:representation_Rep:wave.quad                              8.245e-02
## gov_proc.4:representation_Rep:wave.cub                               5.241e-02
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep            2.882e-02
## pDem_Rep:representation_Dem:representation_Rep:wave.lin              4.427e-02
## pDem_Rep:representation_Dem:representation_Rep:wave.quad             7.033e-02
## pDem_Rep:representation_Dem:representation_Rep:wave.cub              4.454e-02
## gov_proc.4:representation_Dem:representation_Rep:wave.lin            1.507e-02
## gov_proc.4:representation_Dem:representation_Rep:wave.quad           2.414e-02
## gov_proc.4:representation_Dem:representation_Rep:wave.cub            1.559e-02
## pDem_Rep:gov_proc.4:representation_Dem:wave.lin                      9.491e-02
## pDem_Rep:gov_proc.4:representation_Dem:wave.quad                     1.532e-01
## pDem_Rep:gov_proc.4:representation_Dem:wave.cub                      1.014e-01
## pDem_Rep:gov_proc.4:representation_Rep:wave.lin                      1.048e-01
## pDem_Rep:gov_proc.4:representation_Rep:wave.quad                     1.650e-01
## pDem_Rep:gov_proc.4:representation_Rep:wave.cub                      1.051e-01
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.lin   3.032e-02
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.quad  4.837e-02
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.cub   3.132e-02
##                                                                             df
## (Intercept)                                                          1.230e+03
## pDem_Rep                                                             1.695e+03
## gov_proc.4                                                           1.227e+03
## representation_Dem                                                   1.354e+03
## representation_Rep                                                   1.242e+03
## wave.lin                                                             3.330e+03
## wave.quad                                                            3.327e+03
## wave.cub                                                             3.315e+03
## pDem_Rep:gov_proc.4                                                  2.252e+03
## representation_Dem:representation_Rep                                1.304e+03
## pDem_Rep:representation_Dem                                          1.858e+03
## pDem_Rep:representation_Rep                                          1.556e+03
## gov_proc.4:representation_Dem                                        1.352e+03
## gov_proc.4:representation_Rep                                        1.294e+03
## pDem_Rep:wave.lin                                                    3.341e+03
## pDem_Rep:wave.quad                                                   3.324e+03
## pDem_Rep:wave.cub                                                    3.314e+03
## gov_proc.4:wave.lin                                                  3.321e+03
## gov_proc.4:wave.quad                                                 3.332e+03
## gov_proc.4:wave.cub                                                  3.349e+03
## representation_Dem:wave.lin                                          3.321e+03
## representation_Dem:wave.quad                                         3.330e+03
## representation_Dem:wave.cub                                          3.312e+03
## representation_Rep:wave.lin                                          3.315e+03
## representation_Rep:wave.quad                                         3.309e+03
## representation_Rep:wave.cub                                          3.300e+03
## pDem_Rep:representation_Dem:representation_Rep                       1.711e+03
## gov_proc.4:representation_Dem:representation_Rep                     1.327e+03
## pDem_Rep:gov_proc.4:representation_Dem                               2.470e+03
## pDem_Rep:gov_proc.4:representation_Rep                               1.723e+03
## pDem_Rep:gov_proc.4:wave.lin                                         3.351e+03
## pDem_Rep:gov_proc.4:wave.quad                                        3.308e+03
## pDem_Rep:gov_proc.4:wave.cub                                         3.338e+03
## representation_Dem:representation_Rep:wave.lin                       3.315e+03
## representation_Dem:representation_Rep:wave.quad                      3.317e+03
## representation_Dem:representation_Rep:wave.cub                       3.301e+03
## pDem_Rep:representation_Dem:wave.lin                                 3.330e+03
## pDem_Rep:representation_Dem:wave.quad                                3.328e+03
## pDem_Rep:representation_Dem:wave.cub                                 3.311e+03
## pDem_Rep:representation_Rep:wave.lin                                 3.321e+03
## pDem_Rep:representation_Rep:wave.quad                                3.307e+03
## pDem_Rep:representation_Rep:wave.cub                                 3.300e+03
## gov_proc.4:representation_Dem:wave.lin                               3.324e+03
## gov_proc.4:representation_Dem:wave.quad                              3.328e+03
## gov_proc.4:representation_Dem:wave.cub                               3.371e+03
## gov_proc.4:representation_Rep:wave.lin                               3.305e+03
## gov_proc.4:representation_Rep:wave.quad                              3.307e+03
## gov_proc.4:representation_Rep:wave.cub                               3.309e+03
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep            1.957e+03
## pDem_Rep:representation_Dem:representation_Rep:wave.lin              3.321e+03
## pDem_Rep:representation_Dem:representation_Rep:wave.quad             3.316e+03
## pDem_Rep:representation_Dem:representation_Rep:wave.cub              3.301e+03
## gov_proc.4:representation_Dem:representation_Rep:wave.lin            3.317e+03
## gov_proc.4:representation_Dem:representation_Rep:wave.quad           3.311e+03
## gov_proc.4:representation_Dem:representation_Rep:wave.cub            3.331e+03
## pDem_Rep:gov_proc.4:representation_Dem:wave.lin                      3.335e+03
## pDem_Rep:gov_proc.4:representation_Dem:wave.quad                     3.311e+03
## pDem_Rep:gov_proc.4:representation_Dem:wave.cub                      3.362e+03
## pDem_Rep:gov_proc.4:representation_Rep:wave.lin                      3.319e+03
## pDem_Rep:gov_proc.4:representation_Rep:wave.quad                     3.296e+03
## pDem_Rep:gov_proc.4:representation_Rep:wave.cub                      3.305e+03
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.lin   3.321e+03
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.quad  3.303e+03
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.cub   3.326e+03
##                                                                     t value
## (Intercept)                                                           9.222
## pDem_Rep                                                              0.591
## gov_proc.4                                                           -2.612
## representation_Dem                                                   -1.062
## representation_Rep                                                   -1.540
## wave.lin                                                              0.289
## wave.quad                                                             1.945
## wave.cub                                                             -0.519
## pDem_Rep:gov_proc.4                                                   1.929
## representation_Dem:representation_Rep                                 0.764
## pDem_Rep:representation_Dem                                          -0.750
## pDem_Rep:representation_Rep                                          -1.035
## gov_proc.4:representation_Dem                                         2.706
## gov_proc.4:representation_Rep                                         3.541
## pDem_Rep:wave.lin                                                     2.105
## pDem_Rep:wave.quad                                                   -0.102
## pDem_Rep:wave.cub                                                    -0.697
## gov_proc.4:wave.lin                                                  -2.961
## gov_proc.4:wave.quad                                                 -1.182
## gov_proc.4:wave.cub                                                   0.057
## representation_Dem:wave.lin                                          -0.510
## representation_Dem:wave.quad                                         -1.387
## representation_Dem:wave.cub                                          -0.553
## representation_Rep:wave.lin                                          -0.224
## representation_Rep:wave.quad                                         -0.702
## representation_Rep:wave.cub                                           0.699
## pDem_Rep:representation_Dem:representation_Rep                        0.975
## gov_proc.4:representation_Dem:representation_Rep                     -4.773
## pDem_Rep:gov_proc.4:representation_Dem                               -1.451
## pDem_Rep:gov_proc.4:representation_Rep                               -1.887
## pDem_Rep:gov_proc.4:wave.lin                                          1.264
## pDem_Rep:gov_proc.4:wave.quad                                        -1.479
## pDem_Rep:gov_proc.4:wave.cub                                         -1.618
## representation_Dem:representation_Rep:wave.lin                        0.999
## representation_Dem:representation_Rep:wave.quad                       0.974
## representation_Dem:representation_Rep:wave.cub                        0.123
## pDem_Rep:representation_Dem:wave.lin                                 -1.345
## pDem_Rep:representation_Dem:wave.quad                                -0.765
## pDem_Rep:representation_Dem:wave.cub                                 -0.124
## pDem_Rep:representation_Rep:wave.lin                                 -0.758
## pDem_Rep:representation_Rep:wave.quad                                 0.777
## pDem_Rep:representation_Rep:wave.cub                                  0.187
## gov_proc.4:representation_Dem:wave.lin                                2.991
## gov_proc.4:representation_Dem:wave.quad                               1.383
## gov_proc.4:representation_Dem:wave.cub                               -0.066
## gov_proc.4:representation_Rep:wave.lin                                2.320
## gov_proc.4:representation_Rep:wave.quad                               1.022
## gov_proc.4:representation_Rep:wave.cub                               -0.799
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep             1.287
## pDem_Rep:representation_Dem:representation_Rep:wave.lin               0.770
## pDem_Rep:representation_Dem:representation_Rep:wave.quad              0.440
## pDem_Rep:representation_Dem:representation_Rep:wave.cub               0.132
## gov_proc.4:representation_Dem:representation_Rep:wave.lin            -2.934
## gov_proc.4:representation_Dem:representation_Rep:wave.quad           -1.735
## gov_proc.4:representation_Dem:representation_Rep:wave.cub             0.803
## pDem_Rep:gov_proc.4:representation_Dem:wave.lin                      -0.304
## pDem_Rep:gov_proc.4:representation_Dem:wave.quad                      1.208
## pDem_Rep:gov_proc.4:representation_Dem:wave.cub                       0.270
## pDem_Rep:gov_proc.4:representation_Rep:wave.lin                      -1.408
## pDem_Rep:gov_proc.4:representation_Rep:wave.quad                      0.889
## pDem_Rep:gov_proc.4:representation_Rep:wave.cub                       1.924
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.lin    0.513
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.quad  -1.202
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.cub   -1.000
##                                                                     Pr(>|t|)
## (Intercept)                                                          < 2e-16
## pDem_Rep                                                            0.554346
## gov_proc.4                                                          0.009113
## representation_Dem                                                  0.288254
## representation_Rep                                                  0.123904
## wave.lin                                                            0.772381
## wave.quad                                                           0.051878
## wave.cub                                                            0.603977
## pDem_Rep:gov_proc.4                                                 0.053832
## representation_Dem:representation_Rep                               0.444975
## pDem_Rep:representation_Dem                                         0.453638
## pDem_Rep:representation_Rep                                         0.300639
## gov_proc.4:representation_Dem                                       0.006897
## gov_proc.4:representation_Rep                                       0.000414
## pDem_Rep:wave.lin                                                   0.035354
## pDem_Rep:wave.quad                                                  0.918430
## pDem_Rep:wave.cub                                                   0.485631
## gov_proc.4:wave.lin                                                 0.003087
## gov_proc.4:wave.quad                                                0.237353
## gov_proc.4:wave.cub                                                 0.954649
## representation_Dem:wave.lin                                         0.609974
## representation_Dem:wave.quad                                        0.165481
## representation_Dem:wave.cub                                         0.580089
## representation_Rep:wave.lin                                         0.823062
## representation_Rep:wave.quad                                        0.482992
## representation_Rep:wave.cub                                         0.484729
## pDem_Rep:representation_Dem:representation_Rep                      0.329618
## gov_proc.4:representation_Dem:representation_Rep                    2.02e-06
## pDem_Rep:gov_proc.4:representation_Dem                              0.146948
## pDem_Rep:gov_proc.4:representation_Rep                              0.059386
## pDem_Rep:gov_proc.4:wave.lin                                        0.206408
## pDem_Rep:gov_proc.4:wave.quad                                       0.139184
## pDem_Rep:gov_proc.4:wave.cub                                        0.105662
## representation_Dem:representation_Rep:wave.lin                      0.317761
## representation_Dem:representation_Rep:wave.quad                     0.330155
## representation_Dem:representation_Rep:wave.cub                      0.901951
## pDem_Rep:representation_Dem:wave.lin                                0.178595
## pDem_Rep:representation_Dem:wave.quad                               0.444285
## pDem_Rep:representation_Dem:wave.cub                                0.901111
## pDem_Rep:representation_Rep:wave.lin                                0.448720
## pDem_Rep:representation_Rep:wave.quad                               0.436966
## pDem_Rep:representation_Rep:wave.cub                                0.851415
## gov_proc.4:representation_Dem:wave.lin                              0.002800
## gov_proc.4:representation_Dem:wave.quad                             0.166806
## gov_proc.4:representation_Dem:wave.cub                              0.947222
## gov_proc.4:representation_Rep:wave.lin                              0.020407
## gov_proc.4:representation_Rep:wave.quad                             0.306814
## gov_proc.4:representation_Rep:wave.cub                              0.424600
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep           0.198185
## pDem_Rep:representation_Dem:representation_Rep:wave.lin             0.441618
## pDem_Rep:representation_Dem:representation_Rep:wave.quad            0.659799
## pDem_Rep:representation_Dem:representation_Rep:wave.cub             0.894778
## gov_proc.4:representation_Dem:representation_Rep:wave.lin           0.003365
## gov_proc.4:representation_Dem:representation_Rep:wave.quad          0.082893
## gov_proc.4:representation_Dem:representation_Rep:wave.cub           0.422233
## pDem_Rep:gov_proc.4:representation_Dem:wave.lin                     0.761413
## pDem_Rep:gov_proc.4:representation_Dem:wave.quad                    0.227271
## pDem_Rep:gov_proc.4:representation_Dem:wave.cub                     0.787474
## pDem_Rep:gov_proc.4:representation_Rep:wave.lin                     0.159263
## pDem_Rep:gov_proc.4:representation_Rep:wave.quad                    0.374264
## pDem_Rep:gov_proc.4:representation_Rep:wave.cub                     0.054379
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.lin  0.607649
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.quad 0.229523
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.cub  0.317442
##                                                                        
## (Intercept)                                                         ***
## pDem_Rep                                                               
## gov_proc.4                                                          ** 
## representation_Dem                                                     
## representation_Rep                                                     
## wave.lin                                                               
## wave.quad                                                           .  
## wave.cub                                                               
## pDem_Rep:gov_proc.4                                                 .  
## representation_Dem:representation_Rep                                  
## pDem_Rep:representation_Dem                                            
## pDem_Rep:representation_Rep                                            
## gov_proc.4:representation_Dem                                       ** 
## gov_proc.4:representation_Rep                                       ***
## pDem_Rep:wave.lin                                                   *  
## pDem_Rep:wave.quad                                                     
## pDem_Rep:wave.cub                                                      
## gov_proc.4:wave.lin                                                 ** 
## gov_proc.4:wave.quad                                                   
## gov_proc.4:wave.cub                                                    
## representation_Dem:wave.lin                                            
## representation_Dem:wave.quad                                           
## representation_Dem:wave.cub                                            
## representation_Rep:wave.lin                                            
## representation_Rep:wave.quad                                           
## representation_Rep:wave.cub                                            
## pDem_Rep:representation_Dem:representation_Rep                         
## gov_proc.4:representation_Dem:representation_Rep                    ***
## pDem_Rep:gov_proc.4:representation_Dem                                 
## pDem_Rep:gov_proc.4:representation_Rep                              .  
## pDem_Rep:gov_proc.4:wave.lin                                           
## pDem_Rep:gov_proc.4:wave.quad                                          
## pDem_Rep:gov_proc.4:wave.cub                                           
## representation_Dem:representation_Rep:wave.lin                         
## representation_Dem:representation_Rep:wave.quad                        
## representation_Dem:representation_Rep:wave.cub                         
## pDem_Rep:representation_Dem:wave.lin                                   
## pDem_Rep:representation_Dem:wave.quad                                  
## pDem_Rep:representation_Dem:wave.cub                                   
## pDem_Rep:representation_Rep:wave.lin                                   
## pDem_Rep:representation_Rep:wave.quad                                  
## pDem_Rep:representation_Rep:wave.cub                                   
## gov_proc.4:representation_Dem:wave.lin                              ** 
## gov_proc.4:representation_Dem:wave.quad                                
## gov_proc.4:representation_Dem:wave.cub                                 
## gov_proc.4:representation_Rep:wave.lin                              *  
## gov_proc.4:representation_Rep:wave.quad                                
## gov_proc.4:representation_Rep:wave.cub                                 
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep              
## pDem_Rep:representation_Dem:representation_Rep:wave.lin                
## pDem_Rep:representation_Dem:representation_Rep:wave.quad               
## pDem_Rep:representation_Dem:representation_Rep:wave.cub                
## gov_proc.4:representation_Dem:representation_Rep:wave.lin           ** 
## gov_proc.4:representation_Dem:representation_Rep:wave.quad          .  
## gov_proc.4:representation_Dem:representation_Rep:wave.cub              
## pDem_Rep:gov_proc.4:representation_Dem:wave.lin                        
## pDem_Rep:gov_proc.4:representation_Dem:wave.quad                       
## pDem_Rep:gov_proc.4:representation_Dem:wave.cub                        
## pDem_Rep:gov_proc.4:representation_Rep:wave.lin                        
## pDem_Rep:gov_proc.4:representation_Rep:wave.quad                       
## pDem_Rep:gov_proc.4:representation_Rep:wave.cub                     .  
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.lin     
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.quad    
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.cub     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
DN.m10.w4 <- lmer(demNorms ~ (pDem_Rep) * gov_proc.4 * (representation_Dem * representation_Rep) * (wave4_1 + wave4_2 + wave4_3) + (1|pid), 
               data = d)
summary(DN.m10.w4)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## demNorms ~ (pDem_Rep) * gov_proc.4 * (representation_Dem * representation_Rep) *  
##     (wave4_1 + wave4_2 + wave4_3) + (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 13859.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.3691 -0.4690  0.0933  0.4914  4.2235 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.2646   1.1245  
##  Residual             0.7158   0.8461  
## Number of obs: 4485, groups:  pid, 1163
## 
## Fixed effects:
##                                                                     Estimate
## (Intercept)                                                        1.738e+00
## pDem_Rep                                                           6.951e-01
## gov_proc.4                                                        -5.212e-01
## representation_Dem                                                -4.762e-02
## representation_Rep                                                -1.044e-01
## wave4_1                                                           -1.031e-01
## wave4_2                                                            2.725e-01
## wave4_3                                                            2.022e-01
## pDem_Rep:gov_proc.4                                                9.347e-01
## representation_Dem:representation_Rep                              1.956e-02
## pDem_Rep:representation_Dem                                       -1.521e-01
## pDem_Rep:representation_Rep                                       -2.252e-01
## gov_proc.4:representation_Dem                                      1.770e-01
## gov_proc.4:representation_Rep                                      2.455e-01
## pDem_Rep:wave4_1                                                  -9.257e-01
## pDem_Rep:wave4_2                                                  -5.604e-01
## pDem_Rep:wave4_3                                                  -4.263e-01
## gov_proc.4:wave4_1                                                 4.121e-01
## gov_proc.4:wave4_2                                                 1.748e-01
## gov_proc.4:wave4_3                                                -2.131e-02
## representation_Dem:wave4_1                                         1.646e-02
## representation_Dem:wave4_2                                        -4.204e-02
## representation_Dem:wave4_3                                        -1.007e-01
## representation_Rep:wave4_1                                         3.619e-02
## representation_Rep:wave4_2                                        -3.547e-02
## representation_Rep:wave4_3                                         1.609e-03
## pDem_Rep:representation_Dem:representation_Rep                     5.036e-02
## gov_proc.4:representation_Dem:representation_Rep                  -9.050e-02
## pDem_Rep:gov_proc.4:representation_Dem                            -1.899e-01
## pDem_Rep:gov_proc.4:representation_Rep                            -3.552e-01
## pDem_Rep:gov_proc.4:wave4_1                                       -5.814e-01
## pDem_Rep:gov_proc.4:wave4_2                                       -4.748e-01
## pDem_Rep:gov_proc.4:wave4_3                                       -7.548e-01
## representation_Dem:representation_Rep:wave4_1                     -2.067e-02
## representation_Dem:representation_Rep:wave4_2                     -1.312e-04
## representation_Dem:representation_Rep:wave4_3                      1.362e-02
## pDem_Rep:representation_Dem:wave4_1                                1.849e-01
## pDem_Rep:representation_Dem:wave4_2                                6.200e-02
## pDem_Rep:representation_Dem:wave4_3                               -5.318e-02
## pDem_Rep:representation_Rep:wave4_1                                1.079e-01
## pDem_Rep:representation_Rep:wave4_2                                1.439e-01
## pDem_Rep:representation_Rep:wave4_3                                1.196e-01
## gov_proc.4:representation_Dem:wave4_1                             -1.424e-01
## gov_proc.4:representation_Dem:wave4_2                             -5.186e-02
## gov_proc.4:representation_Dem:wave4_3                              1.517e-02
## gov_proc.4:representation_Rep:wave4_1                             -1.417e-01
## gov_proc.4:representation_Rep:wave4_2                             -3.799e-02
## gov_proc.4:representation_Rep:wave4_3                             -1.945e-02
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep          6.724e-02
## pDem_Rep:representation_Dem:representation_Rep:wave4_1            -3.113e-02
## pDem_Rep:representation_Dem:representation_Rep:wave4_2            -1.154e-02
## pDem_Rep:representation_Dem:representation_Rep:wave4_3             1.138e-02
## gov_proc.4:representation_Dem:representation_Rep:wave4_1           5.046e-02
## gov_proc.4:representation_Dem:representation_Rep:wave4_2           9.091e-03
## gov_proc.4:representation_Dem:representation_Rep:wave4_3          -5.019e-04
## pDem_Rep:gov_proc.4:representation_Dem:wave4_1                     4.249e-02
## pDem_Rep:gov_proc.4:representation_Dem:wave4_2                     1.073e-01
## pDem_Rep:gov_proc.4:representation_Dem:wave4_3                     1.202e-01
## pDem_Rep:gov_proc.4:representation_Rep:wave4_1                     2.487e-01
## pDem_Rep:gov_proc.4:representation_Rep:wave4_2                     1.334e-01
## pDem_Rep:gov_proc.4:representation_Rep:wave4_3                     2.620e-01
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_1 -3.123e-02
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_2 -3.291e-02
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_3 -5.645e-02
##                                                                   Std. Error
## (Intercept)                                                        2.346e-01
## pDem_Rep                                                           4.436e-01
## gov_proc.4                                                         1.720e-01
## representation_Dem                                                 8.887e-02
## representation_Rep                                                 7.996e-02
## wave4_1                                                            2.096e-01
## wave4_2                                                            2.089e-01
## wave4_3                                                            2.097e-01
## pDem_Rep:gov_proc.4                                                3.103e-01
## representation_Dem:representation_Rep                              2.765e-02
## pDem_Rep:representation_Dem                                        1.691e-01
## pDem_Rep:representation_Rep                                        1.540e-01
## gov_proc.4:representation_Dem                                      5.730e-02
## gov_proc.4:representation_Rep                                      6.607e-02
## pDem_Rep:wave4_1                                                   4.206e-01
## pDem_Rep:wave4_2                                                   4.199e-01
## pDem_Rep:wave4_3                                                   4.213e-01
## gov_proc.4:wave4_1                                                 1.539e-01
## gov_proc.4:wave4_2                                                 1.540e-01
## gov_proc.4:wave4_3                                                 1.571e-01
## representation_Dem:wave4_1                                         7.982e-02
## representation_Dem:wave4_2                                         8.053e-02
## representation_Dem:wave4_3                                         8.126e-02
## representation_Rep:wave4_1                                         7.056e-02
## representation_Rep:wave4_2                                         7.040e-02
## representation_Rep:wave4_3                                         7.082e-02
## pDem_Rep:representation_Dem:representation_Rep                     5.296e-02
## gov_proc.4:representation_Dem:representation_Rep                   1.882e-02
## pDem_Rep:gov_proc.4:representation_Dem                             1.039e-01
## pDem_Rep:gov_proc.4:representation_Rep                             1.257e-01
## pDem_Rep:gov_proc.4:wave4_1                                        3.102e-01
## pDem_Rep:gov_proc.4:wave4_2                                        3.108e-01
## pDem_Rep:gov_proc.4:wave4_3                                        3.154e-01
## representation_Dem:representation_Rep:wave4_1                      2.458e-02
## representation_Dem:representation_Rep:wave4_2                      2.461e-02
## representation_Dem:representation_Rep:wave4_3                      2.484e-02
## pDem_Rep:representation_Dem:wave4_1                                1.602e-01
## pDem_Rep:representation_Dem:wave4_2                                1.616e-01
## pDem_Rep:representation_Dem:wave4_3                                1.629e-01
## pDem_Rep:representation_Rep:wave4_1                                1.415e-01
## pDem_Rep:representation_Rep:wave4_2                                1.412e-01
## pDem_Rep:representation_Rep:wave4_3                                1.420e-01
## gov_proc.4:representation_Dem:wave4_1                              5.140e-02
## gov_proc.4:representation_Dem:wave4_2                              5.363e-02
## gov_proc.4:representation_Dem:wave4_3                              5.477e-02
## gov_proc.4:representation_Rep:wave4_1                              5.819e-02
## gov_proc.4:representation_Rep:wave4_2                              5.834e-02
## gov_proc.4:representation_Rep:wave4_3                              5.899e-02
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep          3.511e-02
## pDem_Rep:representation_Dem:representation_Rep:wave4_1             4.936e-02
## pDem_Rep:representation_Dem:representation_Rep:wave4_2             4.934e-02
## pDem_Rep:representation_Dem:representation_Rep:wave4_3             4.978e-02
## gov_proc.4:representation_Dem:representation_Rep:wave4_1           1.665e-02
## gov_proc.4:representation_Dem:representation_Rep:wave4_2           1.698e-02
## gov_proc.4:representation_Dem:representation_Rep:wave4_3           1.726e-02
## pDem_Rep:gov_proc.4:representation_Dem:wave4_1                     1.033e-01
## pDem_Rep:gov_proc.4:representation_Dem:wave4_2                     1.082e-01
## pDem_Rep:gov_proc.4:representation_Dem:wave4_3                     1.098e-01
## pDem_Rep:gov_proc.4:representation_Rep:wave4_1                     1.169e-01
## pDem_Rep:gov_proc.4:representation_Rep:wave4_2                     1.172e-01
## pDem_Rep:gov_proc.4:representation_Rep:wave4_3                     1.183e-01
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_1  3.346e-02
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_2  3.418e-02
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_3  3.466e-02
##                                                                           df
## (Intercept)                                                        2.241e+03
## pDem_Rep                                                           3.046e+03
## gov_proc.4                                                         2.256e+03
## representation_Dem                                                 2.458e+03
## representation_Rep                                                 2.268e+03
## wave4_1                                                            3.337e+03
## wave4_2                                                            3.324e+03
## wave4_3                                                            3.338e+03
## pDem_Rep:gov_proc.4                                                3.778e+03
## representation_Dem:representation_Rep                              2.372e+03
## pDem_Rep:representation_Dem                                        3.241e+03
## pDem_Rep:representation_Rep                                        2.817e+03
## gov_proc.4:representation_Dem                                      2.391e+03
## gov_proc.4:representation_Rep                                      2.373e+03
## pDem_Rep:wave4_1                                                   3.342e+03
## pDem_Rep:wave4_2                                                   3.331e+03
## pDem_Rep:wave4_3                                                   3.335e+03
## gov_proc.4:wave4_1                                                 3.339e+03
## gov_proc.4:wave4_2                                                 3.339e+03
## gov_proc.4:wave4_3                                                 3.378e+03
## representation_Dem:wave4_1                                         3.327e+03
## representation_Dem:wave4_2                                         3.314e+03
## representation_Dem:wave4_3                                         3.325e+03
## representation_Rep:wave4_1                                         3.321e+03
## representation_Rep:wave4_2                                         3.305e+03
## representation_Rep:wave4_3                                         3.315e+03
## pDem_Rep:representation_Dem:representation_Rep                     3.038e+03
## gov_proc.4:representation_Dem:representation_Rep                   2.380e+03
## pDem_Rep:gov_proc.4:representation_Dem                             3.881e+03
## pDem_Rep:gov_proc.4:representation_Rep                             3.100e+03
## pDem_Rep:gov_proc.4:wave4_1                                        3.347e+03
## pDem_Rep:gov_proc.4:wave4_2                                        3.340e+03
## pDem_Rep:gov_proc.4:wave4_3                                        3.344e+03
## representation_Dem:representation_Rep:wave4_1                      3.322e+03
## representation_Dem:representation_Rep:wave4_2                      3.300e+03
## representation_Dem:representation_Rep:wave4_3                      3.309e+03
## pDem_Rep:representation_Dem:wave4_1                                3.332e+03
## pDem_Rep:representation_Dem:wave4_2                                3.316e+03
## pDem_Rep:representation_Dem:wave4_3                                3.324e+03
## pDem_Rep:representation_Rep:wave4_1                                3.324e+03
## pDem_Rep:representation_Rep:wave4_2                                3.310e+03
## pDem_Rep:representation_Rep:wave4_3                                3.313e+03
## gov_proc.4:representation_Dem:wave4_1                              3.313e+03
## gov_proc.4:representation_Dem:wave4_2                              3.347e+03
## gov_proc.4:representation_Dem:wave4_3                              3.357e+03
## gov_proc.4:representation_Rep:wave4_1                              3.315e+03
## gov_proc.4:representation_Rep:wave4_2                              3.304e+03
## gov_proc.4:representation_Rep:wave4_3                              3.326e+03
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep          3.390e+03
## pDem_Rep:representation_Dem:representation_Rep:wave4_1             3.326e+03
## pDem_Rep:representation_Dem:representation_Rep:wave4_2             3.302e+03
## pDem_Rep:representation_Dem:representation_Rep:wave4_3             3.309e+03
## gov_proc.4:representation_Dem:representation_Rep:wave4_1           3.315e+03
## gov_proc.4:representation_Dem:representation_Rep:wave4_2           3.318e+03
## gov_proc.4:representation_Dem:representation_Rep:wave4_3           3.330e+03
## pDem_Rep:gov_proc.4:representation_Dem:wave4_1                     3.318e+03
## pDem_Rep:gov_proc.4:representation_Dem:wave4_2                     3.335e+03
## pDem_Rep:gov_proc.4:representation_Dem:wave4_3                     3.341e+03
## pDem_Rep:gov_proc.4:representation_Rep:wave4_1                     3.320e+03
## pDem_Rep:gov_proc.4:representation_Rep:wave4_2                     3.305e+03
## pDem_Rep:gov_proc.4:representation_Rep:wave4_3                     3.310e+03
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_1  3.314e+03
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_2  3.312e+03
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_3  3.319e+03
##                                                                   t value
## (Intercept)                                                         7.407
## pDem_Rep                                                            1.567
## gov_proc.4                                                         -3.030
## representation_Dem                                                 -0.536
## representation_Rep                                                 -1.306
## wave4_1                                                            -0.492
## wave4_2                                                             1.304
## wave4_3                                                             0.964
## pDem_Rep:gov_proc.4                                                 3.012
## representation_Dem:representation_Rep                               0.707
## pDem_Rep:representation_Dem                                        -0.900
## pDem_Rep:representation_Rep                                        -1.462
## gov_proc.4:representation_Dem                                       3.089
## gov_proc.4:representation_Rep                                       3.715
## pDem_Rep:wave4_1                                                   -2.201
## pDem_Rep:wave4_2                                                   -1.335
## pDem_Rep:wave4_3                                                   -1.012
## gov_proc.4:wave4_1                                                  2.678
## gov_proc.4:wave4_2                                                  1.135
## gov_proc.4:wave4_3                                                 -0.136
## representation_Dem:wave4_1                                          0.206
## representation_Dem:wave4_2                                         -0.522
## representation_Dem:wave4_3                                         -1.239
## representation_Rep:wave4_1                                          0.513
## representation_Rep:wave4_2                                         -0.504
## representation_Rep:wave4_3                                          0.023
## pDem_Rep:representation_Dem:representation_Rep                      0.951
## gov_proc.4:representation_Dem:representation_Rep                   -4.808
## pDem_Rep:gov_proc.4:representation_Dem                             -1.828
## pDem_Rep:gov_proc.4:representation_Rep                             -2.827
## pDem_Rep:gov_proc.4:wave4_1                                        -1.874
## pDem_Rep:gov_proc.4:wave4_2                                        -1.528
## pDem_Rep:gov_proc.4:wave4_3                                        -2.393
## representation_Dem:representation_Rep:wave4_1                      -0.841
## representation_Dem:representation_Rep:wave4_2                      -0.005
## representation_Dem:representation_Rep:wave4_3                       0.548
## pDem_Rep:representation_Dem:wave4_1                                 1.154
## pDem_Rep:representation_Dem:wave4_2                                 0.384
## pDem_Rep:representation_Dem:wave4_3                                -0.326
## pDem_Rep:representation_Rep:wave4_1                                 0.762
## pDem_Rep:representation_Rep:wave4_2                                 1.019
## pDem_Rep:representation_Rep:wave4_3                                 0.842
## gov_proc.4:representation_Dem:wave4_1                              -2.770
## gov_proc.4:representation_Dem:wave4_2                              -0.967
## gov_proc.4:representation_Dem:wave4_3                               0.277
## gov_proc.4:representation_Rep:wave4_1                              -2.435
## gov_proc.4:representation_Rep:wave4_2                              -0.651
## gov_proc.4:representation_Rep:wave4_3                              -0.330
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep           1.915
## pDem_Rep:representation_Dem:representation_Rep:wave4_1             -0.631
## pDem_Rep:representation_Dem:representation_Rep:wave4_2             -0.234
## pDem_Rep:representation_Dem:representation_Rep:wave4_3              0.229
## gov_proc.4:representation_Dem:representation_Rep:wave4_1            3.030
## gov_proc.4:representation_Dem:representation_Rep:wave4_2            0.535
## gov_proc.4:representation_Dem:representation_Rep:wave4_3           -0.029
## pDem_Rep:gov_proc.4:representation_Dem:wave4_1                      0.411
## pDem_Rep:gov_proc.4:representation_Dem:wave4_2                      0.991
## pDem_Rep:gov_proc.4:representation_Dem:wave4_3                      1.094
## pDem_Rep:gov_proc.4:representation_Rep:wave4_1                      2.128
## pDem_Rep:gov_proc.4:representation_Rep:wave4_2                      1.138
## pDem_Rep:gov_proc.4:representation_Rep:wave4_3                      2.214
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_1  -0.933
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_2  -0.963
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_3  -1.629
##                                                                   Pr(>|t|)    
## (Intercept)                                                       1.82e-13 ***
## pDem_Rep                                                          0.117214    
## gov_proc.4                                                        0.002476 ** 
## representation_Dem                                                0.592116    
## representation_Rep                                                0.191706    
## wave4_1                                                           0.622957    
## wave4_2                                                           0.192198    
## wave4_3                                                           0.335093    
## pDem_Rep:gov_proc.4                                               0.002614 ** 
## representation_Dem:representation_Rep                             0.479421    
## pDem_Rep:representation_Dem                                       0.368340    
## pDem_Rep:representation_Rep                                       0.143745    
## gov_proc.4:representation_Dem                                     0.002031 ** 
## gov_proc.4:representation_Rep                                     0.000208 ***
## pDem_Rep:wave4_1                                                  0.027820 *  
## pDem_Rep:wave4_2                                                  0.182079    
## pDem_Rep:wave4_3                                                  0.311625    
## gov_proc.4:wave4_1                                                0.007448 ** 
## gov_proc.4:wave4_2                                                0.256482    
## gov_proc.4:wave4_3                                                0.892109    
## representation_Dem:wave4_1                                        0.836617    
## representation_Dem:wave4_2                                        0.601657    
## representation_Dem:wave4_3                                        0.215407    
## representation_Rep:wave4_1                                        0.608032    
## representation_Rep:wave4_2                                        0.614404    
## representation_Rep:wave4_3                                        0.981879    
## pDem_Rep:representation_Dem:representation_Rep                    0.341775    
## gov_proc.4:representation_Dem:representation_Rep                  1.62e-06 ***
## pDem_Rep:gov_proc.4:representation_Dem                            0.067609 .  
## pDem_Rep:gov_proc.4:representation_Rep                            0.004726 ** 
## pDem_Rep:gov_proc.4:wave4_1                                       0.061013 .  
## pDem_Rep:gov_proc.4:wave4_2                                       0.126695    
## pDem_Rep:gov_proc.4:wave4_3                                       0.016773 *  
## representation_Dem:representation_Rep:wave4_1                     0.400610    
## representation_Dem:representation_Rep:wave4_2                     0.995747    
## representation_Dem:representation_Rep:wave4_3                     0.583451    
## pDem_Rep:representation_Dem:wave4_1                               0.248513    
## pDem_Rep:representation_Dem:wave4_2                               0.701346    
## pDem_Rep:representation_Dem:wave4_3                               0.744106    
## pDem_Rep:representation_Rep:wave4_1                               0.445933    
## pDem_Rep:representation_Rep:wave4_2                               0.308451    
## pDem_Rep:representation_Rep:wave4_3                               0.399884    
## gov_proc.4:representation_Dem:wave4_1                             0.005633 ** 
## gov_proc.4:representation_Dem:wave4_2                             0.333603    
## gov_proc.4:representation_Dem:wave4_3                             0.781745    
## gov_proc.4:representation_Rep:wave4_1                             0.014932 *  
## gov_proc.4:representation_Rep:wave4_2                             0.514956    
## gov_proc.4:representation_Rep:wave4_3                             0.741615    
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep         0.055557 .  
## pDem_Rep:representation_Dem:representation_Rep:wave4_1            0.528334    
## pDem_Rep:representation_Dem:representation_Rep:wave4_2            0.815019    
## pDem_Rep:representation_Dem:representation_Rep:wave4_3            0.819161    
## gov_proc.4:representation_Dem:representation_Rep:wave4_1          0.002463 ** 
## gov_proc.4:representation_Dem:representation_Rep:wave4_2          0.592507    
## gov_proc.4:representation_Dem:representation_Rep:wave4_3          0.976808    
## pDem_Rep:gov_proc.4:representation_Dem:wave4_1                    0.680869    
## pDem_Rep:gov_proc.4:representation_Dem:wave4_2                    0.321635    
## pDem_Rep:gov_proc.4:representation_Dem:wave4_3                    0.273864    
## pDem_Rep:gov_proc.4:representation_Rep:wave4_1                    0.033410 *  
## pDem_Rep:gov_proc.4:representation_Rep:wave4_2                    0.255016    
## pDem_Rep:gov_proc.4:representation_Rep:wave4_3                    0.026878 *  
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_1 0.350826    
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_2 0.335658    
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_3 0.103454    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary( lmer(voteconfidence ~ (pDem_Rep) * gov_proc.4 * (representation_Dem * representation_Rep) * (wave.lin + wave.quad + wave.cub) + (1|pid), 
               data = d) )
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_Rep) * gov_proc.4 * (representation_Dem *  
##     representation_Rep) * (wave.lin + wave.quad + wave.cub) +      (1 | pid)
##    Data: d
## 
## REML criterion at convergence: 13704.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8632 -0.4915  0.0503  0.5441  3.8785 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.7019   0.8378  
##  Residual             0.5223   0.7227  
## Number of obs: 5068, groups:  pid, 1267
## 
## Fixed effects:
##                                                                       Estimate
## (Intercept)                                                          2.646e+00
## pDem_Rep                                                            -6.079e-01
## gov_proc.4                                                           9.833e-02
## representation_Dem                                                   2.621e-01
## representation_Rep                                                   1.395e-01
## wave.lin                                                             1.601e-01
## wave.quad                                                            5.852e-01
## wave.cub                                                            -5.225e-02
## pDem_Rep:gov_proc.4                                                  9.693e-02
## representation_Dem:representation_Rep                               -3.810e-02
## pDem_Rep:representation_Dem                                          1.529e-01
## pDem_Rep:representation_Rep                                          2.452e-01
## gov_proc.4:representation_Dem                                       -2.892e-02
## gov_proc.4:representation_Rep                                       -1.752e-02
## pDem_Rep:wave.lin                                                    8.039e-01
## pDem_Rep:wave.quad                                                   1.493e+00
## pDem_Rep:wave.cub                                                   -4.881e-01
## gov_proc.4:wave.lin                                                 -9.667e-02
## gov_proc.4:wave.quad                                                 6.292e-02
## gov_proc.4:wave.cub                                                  1.522e-01
## representation_Dem:wave.lin                                         -1.497e-01
## representation_Dem:wave.quad                                        -1.226e-01
## representation_Dem:wave.cub                                          1.681e-03
## representation_Rep:wave.lin                                          9.940e-02
## representation_Rep:wave.quad                                         8.048e-02
## representation_Rep:wave.cub                                         -9.087e-02
## pDem_Rep:representation_Dem:representation_Rep                      -7.539e-02
## gov_proc.4:representation_Dem:representation_Rep                     1.190e-02
## pDem_Rep:gov_proc.4:representation_Dem                              -5.639e-02
## pDem_Rep:gov_proc.4:representation_Rep                              -3.094e-02
## pDem_Rep:gov_proc.4:wave.lin                                         1.002e-02
## pDem_Rep:gov_proc.4:wave.quad                                       -4.181e-01
## pDem_Rep:gov_proc.4:wave.cub                                         7.928e-02
## representation_Dem:representation_Rep:wave.lin                       1.652e-02
## representation_Dem:representation_Rep:wave.quad                     -4.392e-03
## representation_Dem:representation_Rep:wave.cub                       2.102e-02
## pDem_Rep:representation_Dem:wave.lin                                 6.396e-02
## pDem_Rep:representation_Dem:wave.quad                               -3.502e-01
## pDem_Rep:representation_Dem:wave.cub                                 1.966e-02
## pDem_Rep:representation_Rep:wave.lin                                 1.124e-01
## pDem_Rep:representation_Rep:wave.quad                                3.613e-02
## pDem_Rep:representation_Rep:wave.cub                                -6.815e-02
## gov_proc.4:representation_Dem:wave.lin                               3.790e-02
## gov_proc.4:representation_Dem:wave.quad                              1.286e-02
## gov_proc.4:representation_Dem:wave.cub                              -6.257e-02
## gov_proc.4:representation_Rep:wave.lin                               2.618e-02
## gov_proc.4:representation_Rep:wave.quad                              5.580e-03
## gov_proc.4:representation_Rep:wave.cub                              -3.950e-03
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep            1.740e-02
## pDem_Rep:representation_Dem:representation_Rep:wave.lin             -2.746e-02
## pDem_Rep:representation_Dem:representation_Rep:wave.quad             4.304e-02
## pDem_Rep:representation_Dem:representation_Rep:wave.cub              7.831e-03
## gov_proc.4:representation_Dem:representation_Rep:wave.lin           -1.421e-02
## gov_proc.4:representation_Dem:representation_Rep:wave.quad          -1.466e-02
## gov_proc.4:representation_Dem:representation_Rep:wave.cub            6.262e-03
## pDem_Rep:gov_proc.4:representation_Dem:wave.lin                     -9.248e-03
## pDem_Rep:gov_proc.4:representation_Dem:wave.quad                     1.860e-01
## pDem_Rep:gov_proc.4:representation_Dem:wave.cub                     -1.231e-02
## pDem_Rep:gov_proc.4:representation_Rep:wave.lin                      4.837e-02
## pDem_Rep:gov_proc.4:representation_Rep:wave.quad                     4.115e-02
## pDem_Rep:gov_proc.4:representation_Rep:wave.cub                     -1.927e-02
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.lin  -2.058e-02
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.quad -2.845e-02
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.cub   2.458e-03
##                                                                     Std. Error
## (Intercept)                                                          1.378e-01
## pDem_Rep                                                             2.703e-01
## gov_proc.4                                                           9.890e-02
## representation_Dem                                                   5.326e-02
## representation_Rep                                                   4.756e-02
## wave.lin                                                             1.404e-01
## wave.quad                                                            2.233e-01
## wave.cub                                                             1.419e-01
## pDem_Rep:gov_proc.4                                                  1.835e-01
## representation_Dem:representation_Rep                                1.673e-02
## pDem_Rep:representation_Dem                                          1.024e-01
## pDem_Rep:representation_Rep                                          9.370e-02
## gov_proc.4:representation_Dem                                        3.509e-02
## gov_proc.4:representation_Rep                                        3.784e-02
## pDem_Rep:wave.lin                                                    3.168e-01
## pDem_Rep:wave.quad                                                   5.010e-01
## pDem_Rep:wave.cub                                                    3.174e-01
## gov_proc.4:wave.lin                                                  1.008e-01
## gov_proc.4:wave.quad                                                 1.607e-01
## gov_proc.4:wave.cub                                                  1.024e-01
## representation_Dem:wave.lin                                          5.586e-02
## representation_Dem:wave.quad                                         8.914e-02
## representation_Dem:wave.cub                                          5.684e-02
## representation_Rep:wave.lin                                          4.883e-02
## representation_Rep:wave.quad                                         7.737e-02
## representation_Rep:wave.cub                                          4.908e-02
## pDem_Rep:representation_Dem:representation_Rep                       3.229e-02
## gov_proc.4:representation_Dem:representation_Rep                     1.129e-02
## pDem_Rep:gov_proc.4:representation_Dem                               6.356e-02
## pDem_Rep:gov_proc.4:representation_Rep                               7.324e-02
## pDem_Rep:gov_proc.4:wave.lin                                         2.341e-01
## pDem_Rep:gov_proc.4:wave.quad                                        3.686e-01
## pDem_Rep:gov_proc.4:wave.cub                                         2.358e-01
## representation_Dem:representation_Rep:wave.lin                       1.741e-02
## representation_Dem:representation_Rep:wave.quad                      2.765e-02
## representation_Dem:representation_Rep:wave.cub                       1.757e-02
## pDem_Rep:representation_Dem:wave.lin                                 1.200e-01
## pDem_Rep:representation_Dem:wave.quad                                1.910e-01
## pDem_Rep:representation_Dem:wave.cub                                 1.216e-01
## pDem_Rep:representation_Rep:wave.lin                                 1.061e-01
## pDem_Rep:representation_Rep:wave.quad                                1.676e-01
## pDem_Rep:representation_Rep:wave.cub                                 1.061e-01
## gov_proc.4:representation_Dem:wave.lin                               3.658e-02
## gov_proc.4:representation_Dem:wave.quad                              5.930e-02
## gov_proc.4:representation_Dem:wave.cub                               3.839e-02
## gov_proc.4:representation_Rep:wave.lin                               3.957e-02
## gov_proc.4:representation_Rep:wave.quad                              6.264e-02
## gov_proc.4:representation_Rep:wave.cub                               3.968e-02
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep            2.110e-02
## pDem_Rep:representation_Dem:representation_Rep:wave.lin              3.695e-02
## pDem_Rep:representation_Dem:representation_Rep:wave.quad             5.858e-02
## pDem_Rep:representation_Dem:representation_Rep:wave.cub              3.716e-02
## gov_proc.4:representation_Dem:representation_Rep:wave.lin            1.182e-02
## gov_proc.4:representation_Dem:representation_Rep:wave.quad           1.889e-02
## gov_proc.4:representation_Dem:representation_Rep:wave.cub            1.208e-02
## pDem_Rep:gov_proc.4:representation_Dem:wave.lin                      7.945e-02
## pDem_Rep:gov_proc.4:representation_Dem:wave.quad                     1.281e-01
## pDem_Rep:gov_proc.4:representation_Dem:wave.cub                      8.374e-02
## pDem_Rep:gov_proc.4:representation_Rep:wave.lin                      8.577e-02
## pDem_Rep:gov_proc.4:representation_Rep:wave.quad                     1.352e-01
## pDem_Rep:gov_proc.4:representation_Rep:wave.cub                      8.593e-02
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.lin   2.505e-02
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.quad  3.996e-02
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.cub   2.570e-02
##                                                                             df
## (Intercept)                                                          1.330e+03
## pDem_Rep                                                             2.372e+03
## gov_proc.4                                                           1.337e+03
## representation_Dem                                                   1.488e+03
## representation_Rep                                                   1.366e+03
## wave.lin                                                             3.759e+03
## wave.quad                                                            3.767e+03
## wave.cub                                                             3.763e+03
## pDem_Rep:gov_proc.4                                                  3.148e+03
## representation_Dem:representation_Rep                                1.437e+03
## pDem_Rep:representation_Dem                                          2.421e+03
## pDem_Rep:representation_Rep                                          2.061e+03
## gov_proc.4:representation_Dem                                        1.496e+03
## gov_proc.4:representation_Rep                                        1.460e+03
## pDem_Rep:wave.lin                                                    3.782e+03
## pDem_Rep:wave.quad                                                   3.774e+03
## pDem_Rep:wave.cub                                                    3.772e+03
## gov_proc.4:wave.lin                                                  3.760e+03
## gov_proc.4:wave.quad                                                 3.775e+03
## gov_proc.4:wave.cub                                                  3.773e+03
## representation_Dem:wave.lin                                          3.767e+03
## representation_Dem:wave.quad                                         3.775e+03
## representation_Dem:wave.cub                                          3.777e+03
## representation_Rep:wave.lin                                          3.767e+03
## representation_Rep:wave.quad                                         3.759e+03
## representation_Rep:wave.cub                                          3.758e+03
## pDem_Rep:representation_Dem:representation_Rep                       2.172e+03
## gov_proc.4:representation_Dem:representation_Rep                     1.485e+03
## pDem_Rep:gov_proc.4:representation_Dem                               3.167e+03
## pDem_Rep:gov_proc.4:representation_Rep                               2.285e+03
## pDem_Rep:gov_proc.4:wave.lin                                         3.808e+03
## pDem_Rep:gov_proc.4:wave.quad                                        3.779e+03
## pDem_Rep:gov_proc.4:wave.cub                                         3.803e+03
## representation_Dem:representation_Rep:wave.lin                       3.768e+03
## representation_Dem:representation_Rep:wave.quad                      3.765e+03
## representation_Dem:representation_Rep:wave.cub                       3.768e+03
## pDem_Rep:representation_Dem:wave.lin                                 3.782e+03
## pDem_Rep:representation_Dem:wave.quad                                3.782e+03
## pDem_Rep:representation_Dem:wave.cub                                 3.777e+03
## pDem_Rep:representation_Rep:wave.lin                                 3.776e+03
## pDem_Rep:representation_Rep:wave.quad                                3.767e+03
## pDem_Rep:representation_Rep:wave.cub                                 3.765e+03
## gov_proc.4:representation_Dem:wave.lin                               3.770e+03
## gov_proc.4:representation_Dem:wave.quad                              3.800e+03
## gov_proc.4:representation_Dem:wave.cub                               3.796e+03
## gov_proc.4:representation_Rep:wave.lin                               3.773e+03
## gov_proc.4:representation_Rep:wave.quad                              3.764e+03
## gov_proc.4:representation_Rep:wave.cub                               3.762e+03
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep            2.505e+03
## pDem_Rep:representation_Dem:representation_Rep:wave.lin              3.779e+03
## pDem_Rep:representation_Dem:representation_Rep:wave.quad             3.775e+03
## pDem_Rep:representation_Dem:representation_Rep:wave.cub              3.769e+03
## gov_proc.4:representation_Dem:representation_Rep:wave.lin            3.779e+03
## gov_proc.4:representation_Dem:representation_Rep:wave.quad           3.781e+03
## gov_proc.4:representation_Dem:representation_Rep:wave.cub            3.775e+03
## pDem_Rep:gov_proc.4:representation_Dem:wave.lin                      3.795e+03
## pDem_Rep:gov_proc.4:representation_Dem:wave.quad                     3.788e+03
## pDem_Rep:gov_proc.4:representation_Dem:wave.cub                      3.828e+03
## pDem_Rep:gov_proc.4:representation_Rep:wave.lin                      3.790e+03
## pDem_Rep:gov_proc.4:representation_Rep:wave.quad                     3.769e+03
## pDem_Rep:gov_proc.4:representation_Rep:wave.cub                      3.779e+03
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.lin   3.789e+03
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.quad  3.778e+03
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.cub   3.798e+03
##                                                                     t value
## (Intercept)                                                          19.196
## pDem_Rep                                                             -2.249
## gov_proc.4                                                            0.994
## representation_Dem                                                    4.922
## representation_Rep                                                    2.934
## wave.lin                                                              1.140
## wave.quad                                                             2.621
## wave.cub                                                             -0.368
## pDem_Rep:gov_proc.4                                                   0.528
## representation_Dem:representation_Rep                                -2.278
## pDem_Rep:representation_Dem                                           1.493
## pDem_Rep:representation_Rep                                           2.617
## gov_proc.4:representation_Dem                                        -0.824
## gov_proc.4:representation_Rep                                        -0.463
## pDem_Rep:wave.lin                                                     2.537
## pDem_Rep:wave.quad                                                    2.980
## pDem_Rep:wave.cub                                                    -1.538
## gov_proc.4:wave.lin                                                  -0.959
## gov_proc.4:wave.quad                                                  0.391
## gov_proc.4:wave.cub                                                   1.486
## representation_Dem:wave.lin                                          -2.680
## representation_Dem:wave.quad                                         -1.375
## representation_Dem:wave.cub                                           0.030
## representation_Rep:wave.lin                                           2.036
## representation_Rep:wave.quad                                          1.040
## representation_Rep:wave.cub                                          -1.851
## pDem_Rep:representation_Dem:representation_Rep                       -2.335
## gov_proc.4:representation_Dem:representation_Rep                      1.054
## pDem_Rep:gov_proc.4:representation_Dem                               -0.887
## pDem_Rep:gov_proc.4:representation_Rep                               -0.422
## pDem_Rep:gov_proc.4:wave.lin                                          0.043
## pDem_Rep:gov_proc.4:wave.quad                                        -1.134
## pDem_Rep:gov_proc.4:wave.cub                                          0.336
## representation_Dem:representation_Rep:wave.lin                        0.949
## representation_Dem:representation_Rep:wave.quad                      -0.159
## representation_Dem:representation_Rep:wave.cub                        1.196
## pDem_Rep:representation_Dem:wave.lin                                  0.533
## pDem_Rep:representation_Dem:wave.quad                                -1.833
## pDem_Rep:representation_Dem:wave.cub                                  0.162
## pDem_Rep:representation_Rep:wave.lin                                  1.060
## pDem_Rep:representation_Rep:wave.quad                                 0.216
## pDem_Rep:representation_Rep:wave.cub                                 -0.642
## gov_proc.4:representation_Dem:wave.lin                                1.036
## gov_proc.4:representation_Dem:wave.quad                               0.217
## gov_proc.4:representation_Dem:wave.cub                               -1.630
## gov_proc.4:representation_Rep:wave.lin                                0.661
## gov_proc.4:representation_Rep:wave.quad                               0.089
## gov_proc.4:representation_Rep:wave.cub                               -0.100
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep             0.825
## pDem_Rep:representation_Dem:representation_Rep:wave.lin              -0.743
## pDem_Rep:representation_Dem:representation_Rep:wave.quad              0.735
## pDem_Rep:representation_Dem:representation_Rep:wave.cub               0.211
## gov_proc.4:representation_Dem:representation_Rep:wave.lin            -1.202
## gov_proc.4:representation_Dem:representation_Rep:wave.quad           -0.776
## gov_proc.4:representation_Dem:representation_Rep:wave.cub             0.518
## pDem_Rep:gov_proc.4:representation_Dem:wave.lin                      -0.116
## pDem_Rep:gov_proc.4:representation_Dem:wave.quad                      1.452
## pDem_Rep:gov_proc.4:representation_Dem:wave.cub                      -0.147
## pDem_Rep:gov_proc.4:representation_Rep:wave.lin                       0.564
## pDem_Rep:gov_proc.4:representation_Rep:wave.quad                      0.304
## pDem_Rep:gov_proc.4:representation_Rep:wave.cub                      -0.224
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.lin   -0.822
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.quad  -0.712
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.cub    0.096
##                                                                     Pr(>|t|)
## (Intercept)                                                          < 2e-16
## pDem_Rep                                                             0.02461
## gov_proc.4                                                           0.32026
## representation_Dem                                                  9.52e-07
## representation_Rep                                                   0.00340
## wave.lin                                                             0.25416
## wave.quad                                                            0.00881
## wave.cub                                                             0.71282
## pDem_Rep:gov_proc.4                                                  0.59732
## representation_Dem:representation_Rep                                0.02290
## pDem_Rep:representation_Dem                                          0.13565
## pDem_Rep:representation_Rep                                          0.00893
## gov_proc.4:representation_Dem                                        0.41001
## gov_proc.4:representation_Rep                                        0.64337
## pDem_Rep:wave.lin                                                    0.01120
## pDem_Rep:wave.quad                                                   0.00290
## pDem_Rep:wave.cub                                                    0.12411
## gov_proc.4:wave.lin                                                  0.33770
## gov_proc.4:wave.quad                                                 0.69551
## gov_proc.4:wave.cub                                                  0.13735
## representation_Dem:wave.lin                                          0.00739
## representation_Dem:wave.quad                                         0.16919
## representation_Dem:wave.cub                                          0.97641
## representation_Rep:wave.lin                                          0.04185
## representation_Rep:wave.quad                                         0.29834
## representation_Rep:wave.cub                                          0.06418
## pDem_Rep:representation_Dem:representation_Rep                       0.01965
## gov_proc.4:representation_Dem:representation_Rep                     0.29227
## pDem_Rep:gov_proc.4:representation_Dem                               0.37501
## pDem_Rep:gov_proc.4:representation_Rep                               0.67272
## pDem_Rep:gov_proc.4:wave.lin                                         0.96586
## pDem_Rep:gov_proc.4:wave.quad                                        0.25684
## pDem_Rep:gov_proc.4:wave.cub                                         0.73676
## representation_Dem:representation_Rep:wave.lin                       0.34268
## representation_Dem:representation_Rep:wave.quad                      0.87382
## representation_Dem:representation_Rep:wave.cub                       0.23167
## pDem_Rep:representation_Dem:wave.lin                                 0.59409
## pDem_Rep:representation_Dem:wave.quad                                0.06682
## pDem_Rep:representation_Dem:wave.cub                                 0.87157
## pDem_Rep:representation_Rep:wave.lin                                 0.28927
## pDem_Rep:representation_Rep:wave.quad                                0.82936
## pDem_Rep:representation_Rep:wave.cub                                 0.52077
## gov_proc.4:representation_Dem:wave.lin                               0.30029
## gov_proc.4:representation_Dem:wave.quad                              0.82839
## gov_proc.4:representation_Dem:wave.cub                               0.10323
## gov_proc.4:representation_Rep:wave.lin                               0.50838
## gov_proc.4:representation_Rep:wave.quad                              0.92902
## gov_proc.4:representation_Rep:wave.cub                               0.92071
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep            0.40955
## pDem_Rep:representation_Dem:representation_Rep:wave.lin              0.45737
## pDem_Rep:representation_Dem:representation_Rep:wave.quad             0.46257
## pDem_Rep:representation_Dem:representation_Rep:wave.cub              0.83313
## gov_proc.4:representation_Dem:representation_Rep:wave.lin            0.22942
## gov_proc.4:representation_Dem:representation_Rep:wave.quad           0.43790
## gov_proc.4:representation_Dem:representation_Rep:wave.cub            0.60418
## pDem_Rep:gov_proc.4:representation_Dem:wave.lin                      0.90734
## pDem_Rep:gov_proc.4:representation_Dem:wave.quad                     0.14666
## pDem_Rep:gov_proc.4:representation_Dem:wave.cub                      0.88316
## pDem_Rep:gov_proc.4:representation_Rep:wave.lin                      0.57284
## pDem_Rep:gov_proc.4:representation_Rep:wave.quad                     0.76085
## pDem_Rep:gov_proc.4:representation_Rep:wave.cub                      0.82257
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.lin   0.41133
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.quad  0.47658
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.cub   0.92381
##                                                                        
## (Intercept)                                                         ***
## pDem_Rep                                                            *  
## gov_proc.4                                                             
## representation_Dem                                                  ***
## representation_Rep                                                  ** 
## wave.lin                                                               
## wave.quad                                                           ** 
## wave.cub                                                               
## pDem_Rep:gov_proc.4                                                    
## representation_Dem:representation_Rep                               *  
## pDem_Rep:representation_Dem                                            
## pDem_Rep:representation_Rep                                         ** 
## gov_proc.4:representation_Dem                                          
## gov_proc.4:representation_Rep                                          
## pDem_Rep:wave.lin                                                   *  
## pDem_Rep:wave.quad                                                  ** 
## pDem_Rep:wave.cub                                                      
## gov_proc.4:wave.lin                                                    
## gov_proc.4:wave.quad                                                   
## gov_proc.4:wave.cub                                                    
## representation_Dem:wave.lin                                         ** 
## representation_Dem:wave.quad                                           
## representation_Dem:wave.cub                                            
## representation_Rep:wave.lin                                         *  
## representation_Rep:wave.quad                                           
## representation_Rep:wave.cub                                         .  
## pDem_Rep:representation_Dem:representation_Rep                      *  
## gov_proc.4:representation_Dem:representation_Rep                       
## pDem_Rep:gov_proc.4:representation_Dem                                 
## pDem_Rep:gov_proc.4:representation_Rep                                 
## pDem_Rep:gov_proc.4:wave.lin                                           
## pDem_Rep:gov_proc.4:wave.quad                                          
## pDem_Rep:gov_proc.4:wave.cub                                           
## representation_Dem:representation_Rep:wave.lin                         
## representation_Dem:representation_Rep:wave.quad                        
## representation_Dem:representation_Rep:wave.cub                         
## pDem_Rep:representation_Dem:wave.lin                                   
## pDem_Rep:representation_Dem:wave.quad                               .  
## pDem_Rep:representation_Dem:wave.cub                                   
## pDem_Rep:representation_Rep:wave.lin                                   
## pDem_Rep:representation_Rep:wave.quad                                  
## pDem_Rep:representation_Rep:wave.cub                                   
## gov_proc.4:representation_Dem:wave.lin                                 
## gov_proc.4:representation_Dem:wave.quad                                
## gov_proc.4:representation_Dem:wave.cub                                 
## gov_proc.4:representation_Rep:wave.lin                                 
## gov_proc.4:representation_Rep:wave.quad                                
## gov_proc.4:representation_Rep:wave.cub                                 
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep              
## pDem_Rep:representation_Dem:representation_Rep:wave.lin                
## pDem_Rep:representation_Dem:representation_Rep:wave.quad               
## pDem_Rep:representation_Dem:representation_Rep:wave.cub                
## gov_proc.4:representation_Dem:representation_Rep:wave.lin              
## gov_proc.4:representation_Dem:representation_Rep:wave.quad             
## gov_proc.4:representation_Dem:representation_Rep:wave.cub              
## pDem_Rep:gov_proc.4:representation_Dem:wave.lin                        
## pDem_Rep:gov_proc.4:representation_Dem:wave.quad                       
## pDem_Rep:gov_proc.4:representation_Dem:wave.cub                        
## pDem_Rep:gov_proc.4:representation_Rep:wave.lin                        
## pDem_Rep:gov_proc.4:representation_Rep:wave.quad                       
## pDem_Rep:gov_proc.4:representation_Rep:wave.cub                        
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.lin     
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.quad    
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave.cub     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary( lmer(voteconfidence ~ (pDem_Rep) * gov_proc.4 * (representation_Dem * representation_Rep) * (wave4_1 + wave4_2 + wave4_3) + (1|pid), 
               data = d) )
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: voteconfidence ~ (pDem_Rep) * gov_proc.4 * (representation_Dem *  
##     representation_Rep) * (wave4_1 + wave4_2 + wave4_3) + (1 |      pid)
##    Data: d
## 
## REML criterion at convergence: 13719.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8632 -0.4915  0.0503  0.5441  3.8785 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.7019   0.8378  
##  Residual             0.5223   0.7227  
## Number of obs: 5068, groups:  pid, 1267
## 
## Fixed effects:
##                                                                     Estimate
## (Intercept)                                                        2.593e+00
## pDem_Rep                                                          -4.571e-01
## gov_proc.4                                                        -3.776e-03
## representation_Dem                                                 2.175e-01
## representation_Rep                                                 1.918e-01
## wave4_1                                                           -1.862e-01
## wave4_2                                                            1.856e-01
## wave4_3                                                            2.134e-01
## pDem_Rep:gov_proc.4                                                1.866e-01
## representation_Dem:representation_Rep                             -3.399e-02
## pDem_Rep:representation_Dem                                        2.675e-01
## pDem_Rep:representation_Rep                                        3.094e-01
## gov_proc.4:representation_Dem                                      2.453e-03
## gov_proc.4:representation_Rep                                     -4.845e-03
## pDem_Rep:wave4_1                                                  -1.048e+00
## pDem_Rep:wave4_2                                                   2.656e-01
## pDem_Rep:wave4_3                                                   1.794e-01
## gov_proc.4:wave4_1                                                 1.728e-01
## gov_proc.4:wave4_2                                                 6.591e-02
## gov_proc.4:wave4_3                                                 1.698e-01
## representation_Dem:wave4_1                                         1.505e-01
## representation_Dem:wave4_2                                         5.057e-02
## representation_Dem:wave4_3                                        -2.260e-02
## representation_Rep:wave4_1                                        -1.448e-01
## representation_Rep:wave4_2                                        -1.159e-02
## representation_Rep:wave4_3                                        -5.276e-02
## pDem_Rep:representation_Dem:representation_Rep                    -1.018e-01
## gov_proc.4:representation_Dem:representation_Rep                   6.889e-03
## pDem_Rep:gov_proc.4:representation_Dem                            -1.044e-01
## pDem_Rep:gov_proc.4:representation_Rep                            -1.223e-02
## pDem_Rep:gov_proc.4:wave4_1                                        2.962e-02
## pDem_Rep:gov_proc.4:wave4_2                                       -2.364e-01
## pDem_Rep:gov_proc.4:wave4_3                                       -1.521e-01
## representation_Dem:representation_Rep:wave4_1                     -6.015e-03
## representation_Dem:representation_Rep:wave4_2                     -1.984e-02
## representation_Dem:representation_Rep:wave4_3                      9.437e-03
## pDem_Rep:representation_Dem:wave4_1                               -5.413e-02
## pDem_Rep:representation_Dem:wave4_2                               -2.280e-01
## pDem_Rep:representation_Dem:wave4_3                               -1.764e-01
## pDem_Rep:representation_Rep:wave4_1                               -1.465e-01
## pDem_Rep:representation_Rep:wave4_2                               -4.922e-02
## pDem_Rep:representation_Rep:wave4_3                               -6.115e-02
## gov_proc.4:representation_Dem:wave4_1                             -6.918e-02
## gov_proc.4:representation_Dem:wave4_2                             -6.352e-03
## gov_proc.4:representation_Dem:wave4_3                             -4.997e-02
## gov_proc.4:representation_Rep:wave4_1                             -2.815e-02
## gov_proc.4:representation_Rep:wave4_2                             -1.585e-02
## gov_proc.4:representation_Rep:wave4_3                             -6.716e-03
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep          1.361e-02
## pDem_Rep:representation_Dem:representation_Rep:wave4_1             3.138e-02
## pDem_Rep:representation_Dem:representation_Rep:wave4_2             4.016e-02
## pDem_Rep:representation_Dem:representation_Rep:wave4_3             3.426e-02
## gov_proc.4:representation_Dem:representation_Rep:wave4_1           1.734e-02
## gov_proc.4:representation_Dem:representation_Rep:wave4_2           1.765e-03
## gov_proc.4:representation_Dem:representation_Rep:wave4_3           9.206e-04
## pDem_Rep:gov_proc.4:representation_Dem:wave4_1                     3.094e-03
## pDem_Rep:gov_proc.4:representation_Dem:wave4_2                     1.030e-01
## pDem_Rep:gov_proc.4:representation_Dem:wave4_3                     8.608e-02
## pDem_Rep:gov_proc.4:representation_Rep:wave4_1                    -5.800e-02
## pDem_Rep:gov_proc.4:representation_Rep:wave4_2                    -1.088e-02
## pDem_Rep:gov_proc.4:representation_Rep:wave4_3                    -5.966e-03
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_1  2.181e-02
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_2  6.008e-04
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_3 -7.234e-03
##                                                                   Std. Error
## (Intercept)                                                        1.674e-01
## pDem_Rep                                                           3.416e-01
## gov_proc.4                                                         1.199e-01
## representation_Dem                                                 6.538e-02
## representation_Rep                                                 5.843e-02
## wave4_1                                                            1.564e-01
## wave4_2                                                            1.582e-01
## wave4_3                                                            1.577e-01
## pDem_Rep:gov_proc.4                                                2.400e-01
## representation_Dem:representation_Rep                              2.057e-02
## pDem_Rep:representation_Dem                                        1.301e-01
## pDem_Rep:representation_Rep                                        1.180e-01
## gov_proc.4:representation_Dem                                      4.218e-02
## gov_proc.4:representation_Rep                                      4.692e-02
## pDem_Rep:wave4_1                                                   3.537e-01
## pDem_Rep:wave4_2                                                   3.532e-01
## pDem_Rep:wave4_3                                                   3.538e-01
## gov_proc.4:wave4_1                                                 1.121e-01
## gov_proc.4:wave4_2                                                 1.136e-01
## gov_proc.4:wave4_3                                                 1.136e-01
## representation_Dem:wave4_1                                         6.212e-02
## representation_Dem:wave4_2                                         6.340e-02
## representation_Dem:wave4_3                                         6.289e-02
## representation_Rep:wave4_1                                         5.449e-02
## representation_Rep:wave4_2                                         5.487e-02
## representation_Rep:wave4_3                                         5.501e-02
## pDem_Rep:representation_Dem:representation_Rep                     4.080e-02
## gov_proc.4:representation_Dem:representation_Rep                   1.382e-02
## pDem_Rep:gov_proc.4:representation_Dem                             8.120e-02
## pDem_Rep:gov_proc.4:representation_Rep                             9.405e-02
## pDem_Rep:gov_proc.4:wave4_1                                        2.603e-01
## pDem_Rep:gov_proc.4:wave4_2                                        2.611e-01
## pDem_Rep:gov_proc.4:wave4_3                                        2.638e-01
## representation_Dem:representation_Rep:wave4_1                      1.941e-02
## representation_Dem:representation_Rep:wave4_2                      1.962e-02
## representation_Dem:representation_Rep:wave4_3                      1.958e-02
## pDem_Rep:representation_Dem:wave4_1                                1.336e-01
## pDem_Rep:representation_Dem:wave4_2                                1.350e-01
## pDem_Rep:representation_Dem:wave4_3                                1.349e-01
## pDem_Rep:representation_Rep:wave4_1                                1.185e-01
## pDem_Rep:representation_Rep:wave4_2                                1.183e-01
## pDem_Rep:representation_Rep:wave4_3                                1.189e-01
## gov_proc.4:representation_Dem:wave4_1                              4.019e-02
## gov_proc.4:representation_Dem:wave4_2                              4.221e-02
## gov_proc.4:representation_Dem:wave4_3                              4.145e-02
## gov_proc.4:representation_Rep:wave4_1                              4.417e-02
## gov_proc.4:representation_Rep:wave4_2                              4.428e-02
## gov_proc.4:representation_Rep:wave4_3                              4.470e-02
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep          2.683e-02
## pDem_Rep:representation_Dem:representation_Rep:wave4_1             4.124e-02
## pDem_Rep:representation_Dem:representation_Rep:wave4_2             4.131e-02
## pDem_Rep:representation_Dem:representation_Rep:wave4_3             4.142e-02
## gov_proc.4:representation_Dem:representation_Rep:wave4_1           1.311e-02
## gov_proc.4:representation_Dem:representation_Rep:wave4_2           1.338e-02
## gov_proc.4:representation_Dem:representation_Rep:wave4_3           1.336e-02
## pDem_Rep:gov_proc.4:representation_Dem:wave4_1                     8.705e-02
## pDem_Rep:gov_proc.4:representation_Dem:wave4_2                     9.103e-02
## pDem_Rep:gov_proc.4:representation_Dem:wave4_3                     9.065e-02
## pDem_Rep:gov_proc.4:representation_Rep:wave4_1                     9.568e-02
## pDem_Rep:gov_proc.4:representation_Rep:wave4_2                     9.588e-02
## pDem_Rep:gov_proc.4:representation_Rep:wave4_3                     9.677e-02
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_1  2.774e-02
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_2  2.832e-02
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_3  2.843e-02
##                                                                           df
## (Intercept)                                                        2.668e+03
## pDem_Rep                                                           4.292e+03
## gov_proc.4                                                         2.669e+03
## representation_Dem                                                 2.985e+03
## representation_Rep                                                 2.761e+03
## wave4_1                                                            3.759e+03
## wave4_2                                                            3.766e+03
## wave4_3                                                            3.767e+03
## pDem_Rep:gov_proc.4                                                4.853e+03
## representation_Dem:representation_Rep                              2.896e+03
## pDem_Rep:representation_Dem                                        4.307e+03
## pDem_Rep:representation_Rep                                        3.915e+03
## gov_proc.4:representation_Dem                                      2.909e+03
## gov_proc.4:representation_Rep                                      2.945e+03
## pDem_Rep:wave4_1                                                   3.782e+03
## pDem_Rep:wave4_2                                                   3.779e+03
## pDem_Rep:wave4_3                                                   3.780e+03
## gov_proc.4:wave4_1                                                 3.755e+03
## gov_proc.4:wave4_2                                                 3.774e+03
## gov_proc.4:wave4_3                                                 3.778e+03
## representation_Dem:wave4_1                                         3.767e+03
## representation_Dem:wave4_2                                         3.770e+03
## representation_Dem:wave4_3                                         3.769e+03
## representation_Rep:wave4_1                                         3.767e+03
## representation_Rep:wave4_2                                         3.760e+03
## representation_Rep:wave4_3                                         3.759e+03
## pDem_Rep:representation_Dem:representation_Rep                     4.032e+03
## gov_proc.4:representation_Dem:representation_Rep                   2.942e+03
## pDem_Rep:gov_proc.4:representation_Dem                             4.815e+03
## pDem_Rep:gov_proc.4:representation_Rep                             4.199e+03
## pDem_Rep:gov_proc.4:wave4_1                                        3.803e+03
## pDem_Rep:gov_proc.4:wave4_2                                        3.805e+03
## pDem_Rep:gov_proc.4:wave4_3                                        3.803e+03
## representation_Dem:representation_Rep:wave4_1                      3.769e+03
## representation_Dem:representation_Rep:wave4_2                      3.762e+03
## representation_Dem:representation_Rep:wave4_3                      3.762e+03
## pDem_Rep:representation_Dem:wave4_1                                3.784e+03
## pDem_Rep:representation_Dem:wave4_2                                3.777e+03
## pDem_Rep:representation_Dem:wave4_3                                3.777e+03
## pDem_Rep:representation_Rep:wave4_1                                3.778e+03
## pDem_Rep:representation_Rep:wave4_2                                3.769e+03
## pDem_Rep:representation_Rep:wave4_3                                3.770e+03
## gov_proc.4:representation_Dem:wave4_1                              3.756e+03
## gov_proc.4:representation_Dem:wave4_2                              3.802e+03
## gov_proc.4:representation_Dem:wave4_3                              3.791e+03
## gov_proc.4:representation_Rep:wave4_1                              3.766e+03
## gov_proc.4:representation_Rep:wave4_2                              3.769e+03
## gov_proc.4:representation_Rep:wave4_3                              3.764e+03
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep          4.397e+03
## pDem_Rep:representation_Dem:representation_Rep:wave4_1             3.782e+03
## pDem_Rep:representation_Dem:representation_Rep:wave4_2             3.768e+03
## pDem_Rep:representation_Dem:representation_Rep:wave4_3             3.770e+03
## gov_proc.4:representation_Dem:representation_Rep:wave4_1           3.771e+03
## gov_proc.4:representation_Dem:representation_Rep:wave4_2           3.787e+03
## gov_proc.4:representation_Dem:representation_Rep:wave4_3           3.778e+03
## pDem_Rep:gov_proc.4:representation_Dem:wave4_1                     3.781e+03
## pDem_Rep:gov_proc.4:representation_Dem:wave4_2                     3.813e+03
## pDem_Rep:gov_proc.4:representation_Dem:wave4_3                     3.801e+03
## pDem_Rep:gov_proc.4:representation_Rep:wave4_1                     3.787e+03
## pDem_Rep:gov_proc.4:representation_Rep:wave4_2                     3.783e+03
## pDem_Rep:gov_proc.4:representation_Rep:wave4_3                     3.778e+03
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_1  3.783e+03
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_2  3.794e+03
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_3  3.788e+03
##                                                                   t value
## (Intercept)                                                        15.486
## pDem_Rep                                                           -1.338
## gov_proc.4                                                         -0.031
## representation_Dem                                                  3.327
## representation_Rep                                                  3.283
## wave4_1                                                            -1.191
## wave4_2                                                             1.173
## wave4_3                                                             1.353
## pDem_Rep:gov_proc.4                                                 0.778
## representation_Dem:representation_Rep                              -1.653
## pDem_Rep:representation_Dem                                         2.057
## pDem_Rep:representation_Rep                                         2.622
## gov_proc.4:representation_Dem                                       0.058
## gov_proc.4:representation_Rep                                      -0.103
## pDem_Rep:wave4_1                                                   -2.963
## pDem_Rep:wave4_2                                                    0.752
## pDem_Rep:wave4_3                                                    0.507
## gov_proc.4:wave4_1                                                  1.541
## gov_proc.4:wave4_2                                                  0.580
## gov_proc.4:wave4_3                                                  1.494
## representation_Dem:wave4_1                                          2.423
## representation_Dem:wave4_2                                          0.798
## representation_Dem:wave4_3                                         -0.359
## representation_Rep:wave4_1                                         -2.658
## representation_Rep:wave4_2                                         -0.211
## representation_Rep:wave4_3                                         -0.959
## pDem_Rep:representation_Dem:representation_Rep                     -2.496
## gov_proc.4:representation_Dem:representation_Rep                    0.498
## pDem_Rep:gov_proc.4:representation_Dem                             -1.286
## pDem_Rep:gov_proc.4:representation_Rep                             -0.130
## pDem_Rep:gov_proc.4:wave4_1                                         0.114
## pDem_Rep:gov_proc.4:wave4_2                                        -0.905
## pDem_Rep:gov_proc.4:wave4_3                                        -0.576
## representation_Dem:representation_Rep:wave4_1                      -0.310
## representation_Dem:representation_Rep:wave4_2                      -1.012
## representation_Dem:representation_Rep:wave4_3                       0.482
## pDem_Rep:representation_Dem:wave4_1                                -0.405
## pDem_Rep:representation_Dem:wave4_2                                -1.689
## pDem_Rep:representation_Dem:wave4_3                                -1.308
## pDem_Rep:representation_Rep:wave4_1                                -1.236
## pDem_Rep:representation_Rep:wave4_2                                -0.416
## pDem_Rep:representation_Rep:wave4_3                                -0.514
## gov_proc.4:representation_Dem:wave4_1                              -1.721
## gov_proc.4:representation_Dem:wave4_2                              -0.150
## gov_proc.4:representation_Dem:wave4_3                              -1.205
## gov_proc.4:representation_Rep:wave4_1                              -0.637
## gov_proc.4:representation_Rep:wave4_2                              -0.358
## gov_proc.4:representation_Rep:wave4_3                              -0.150
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep           0.507
## pDem_Rep:representation_Dem:representation_Rep:wave4_1              0.761
## pDem_Rep:representation_Dem:representation_Rep:wave4_2              0.972
## pDem_Rep:representation_Dem:representation_Rep:wave4_3              0.827
## gov_proc.4:representation_Dem:representation_Rep:wave4_1            1.323
## gov_proc.4:representation_Dem:representation_Rep:wave4_2            0.132
## gov_proc.4:representation_Dem:representation_Rep:wave4_3            0.069
## pDem_Rep:gov_proc.4:representation_Dem:wave4_1                      0.036
## pDem_Rep:gov_proc.4:representation_Dem:wave4_2                      1.132
## pDem_Rep:gov_proc.4:representation_Dem:wave4_3                      0.950
## pDem_Rep:gov_proc.4:representation_Rep:wave4_1                     -0.606
## pDem_Rep:gov_proc.4:representation_Rep:wave4_2                     -0.113
## pDem_Rep:gov_proc.4:representation_Rep:wave4_3                     -0.062
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_1   0.786
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_2   0.021
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_3  -0.254
##                                                                   Pr(>|t|)    
## (Intercept)                                                        < 2e-16 ***
## pDem_Rep                                                           0.18095    
## gov_proc.4                                                         0.97489    
## representation_Dem                                                 0.00089 ***
## representation_Rep                                                 0.00104 ** 
## wave4_1                                                            0.23382    
## wave4_2                                                            0.24088    
## wave4_3                                                            0.17613    
## pDem_Rep:gov_proc.4                                                0.43688    
## representation_Dem:representation_Rep                              0.09845 .  
## pDem_Rep:representation_Dem                                        0.03976 *  
## pDem_Rep:representation_Rep                                        0.00877 ** 
## gov_proc.4:representation_Dem                                      0.95361    
## gov_proc.4:representation_Rep                                      0.91777    
## pDem_Rep:wave4_1                                                   0.00306 ** 
## pDem_Rep:wave4_2                                                   0.45217    
## pDem_Rep:wave4_3                                                   0.61210    
## gov_proc.4:wave4_1                                                 0.12342    
## gov_proc.4:wave4_2                                                 0.56184    
## gov_proc.4:wave4_3                                                 0.13532    
## representation_Dem:wave4_1                                         0.01543 *  
## representation_Dem:wave4_2                                         0.42515    
## representation_Dem:wave4_3                                         0.71932    
## representation_Rep:wave4_1                                         0.00789 ** 
## representation_Rep:wave4_2                                         0.83267    
## representation_Rep:wave4_3                                         0.33756    
## pDem_Rep:representation_Dem:representation_Rep                     0.01260 *  
## gov_proc.4:representation_Dem:representation_Rep                   0.61826    
## pDem_Rep:gov_proc.4:representation_Dem                             0.19844    
## pDem_Rep:gov_proc.4:representation_Rep                             0.89656    
## pDem_Rep:gov_proc.4:wave4_1                                        0.90942    
## pDem_Rep:gov_proc.4:wave4_2                                        0.36534    
## pDem_Rep:gov_proc.4:wave4_3                                        0.56432    
## representation_Dem:representation_Rep:wave4_1                      0.75670    
## representation_Dem:representation_Rep:wave4_2                      0.31180    
## representation_Dem:representation_Rep:wave4_3                      0.62984    
## pDem_Rep:representation_Dem:wave4_1                                0.68545    
## pDem_Rep:representation_Dem:wave4_2                                0.09128 .  
## pDem_Rep:representation_Dem:wave4_3                                0.19101    
## pDem_Rep:representation_Rep:wave4_1                                0.21649    
## pDem_Rep:representation_Rep:wave4_2                                0.67745    
## pDem_Rep:representation_Rep:wave4_3                                0.60700    
## gov_proc.4:representation_Dem:wave4_1                              0.08529 .  
## gov_proc.4:representation_Dem:wave4_2                              0.88038    
## gov_proc.4:representation_Dem:wave4_3                              0.22810    
## gov_proc.4:representation_Rep:wave4_1                              0.52392    
## gov_proc.4:representation_Rep:wave4_2                              0.72034    
## gov_proc.4:representation_Rep:wave4_3                              0.88058    
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep          0.61199    
## pDem_Rep:representation_Dem:representation_Rep:wave4_1             0.44681    
## pDem_Rep:representation_Dem:representation_Rep:wave4_2             0.33099    
## pDem_Rep:representation_Dem:representation_Rep:wave4_3             0.40820    
## gov_proc.4:representation_Dem:representation_Rep:wave4_1           0.18601    
## gov_proc.4:representation_Dem:representation_Rep:wave4_2           0.89508    
## gov_proc.4:representation_Dem:representation_Rep:wave4_3           0.94508    
## pDem_Rep:gov_proc.4:representation_Dem:wave4_1                     0.97165    
## pDem_Rep:gov_proc.4:representation_Dem:wave4_2                     0.25788    
## pDem_Rep:gov_proc.4:representation_Dem:wave4_3                     0.34239    
## pDem_Rep:gov_proc.4:representation_Rep:wave4_1                     0.54441    
## pDem_Rep:gov_proc.4:representation_Rep:wave4_2                     0.90965    
## pDem_Rep:gov_proc.4:representation_Rep:wave4_3                     0.95084    
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_1  0.43174    
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_2  0.98308    
## pDem_Rep:gov_proc.4:representation_Dem:representation_Rep:wave4_3  0.79917    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

10. Full Model

DN.m11 <- lmer(demNorms ~ pDem_Rep
                * wave
                * trustGovt.c
                * (Pos_Emo.c + Neg_Emo.c)
                * FT_Diff.100
                + representation_Dem
                + representation_Rep
                + GCB.c
                + pollAcc
                + pollFreq.c
                + vs_age
                + vs_race
                + male_female
                + nonbinary_mf
                + (1 | pid),
                data = d[d$party_factor != "Independent",])

sjPlot::tab_model(PEL.m11)
  voteconfidence
Predictors Estimates CI p
(Intercept) 2.73 2.37 – 3.09 <0.001
pDem Rep -0.69 -0.88 – -0.49 <0.001
wave [2] 0.20 0.08 – 0.33 0.001
wave [3] 0.20 0.07 – 0.32 0.002
wave [4] 0.33 0.20 – 0.46 <0.001
trustGovt c 0.24 0.15 – 0.33 <0.001
Pos Emo c 0.20 0.12 – 0.28 <0.001
Neg Emo c -0.02 -0.11 – 0.06 0.568
FT Diff 100 -0.17 -0.33 – -0.01 0.043
govt process 0.04 -0.00 – 0.08 0.056
representation Dem 0.05 0.01 – 0.10 0.014
representation Rep 0.04 0.00 – 0.08 0.039
GCB c -0.23 -0.28 – -0.18 <0.001
pollAcc 0.04 0.02 – 0.06 <0.001
pollFreq c -0.00 -0.02 – 0.02 0.756
vs age 0.01 0.00 – 0.01 0.003
vs race [Black] -0.33 -0.49 – -0.17 <0.001
vs race [Hispanic] 0.03 -0.13 – 0.20 0.683
vs race [Other] -0.00 -0.18 – 0.18 1.000
male female -0.26 -0.35 – -0.16 <0.001
nonbinary mf -0.03 -0.74 – 0.68 0.939
pDem Rep × wave [2] 0.51 0.25 – 0.76 <0.001
pDem Rep × wave [3] 0.62 0.37 – 0.87 <0.001
pDem Rep × wave [4] 0.64 0.38 – 0.89 <0.001
pDem Rep × trustGovt c 0.22 0.04 – 0.40 0.016
wave [2] × trustGovt c -0.12 -0.24 – -0.01 0.037
wave [3] × trustGovt c -0.09 -0.21 – 0.04 0.185
wave [4] × trustGovt c -0.02 -0.15 – 0.11 0.787
pDem Rep × Pos Emo c -0.08 -0.24 – 0.08 0.346
pDem Rep × Neg Emo c -0.06 -0.23 – 0.11 0.473
wave [2] × Pos Emo c -0.06 -0.17 – 0.05 0.281
wave [3] × Pos Emo c -0.15 -0.25 – -0.04 0.008
wave [4] × Pos Emo c -0.19 -0.30 – -0.08 0.001
wave [2] × Neg Emo c -0.07 -0.18 – 0.04 0.223
wave [3] × Neg Emo c -0.08 -0.19 – 0.03 0.152
wave [4] × Neg Emo c 0.03 -0.08 – 0.14 0.542
trustGovt c × Pos Emo c -0.07 -0.14 – -0.01 0.031
trustGovt c × Neg Emo c 0.00 -0.08 – 0.08 0.953
pDem Rep × FT Diff 100 -0.71 -1.04 – -0.38 <0.001
wave [2] × FT Diff 100 0.09 -0.14 – 0.32 0.436
wave [3] × FT Diff 100 0.18 -0.04 – 0.40 0.110
wave [4] × FT Diff 100 -0.07 -0.29 – 0.16 0.562
trustGovt c × FT Diff 100 -0.06 -0.21 – 0.09 0.436
Pos Emo c × FT Diff 100 -0.02 -0.15 – 0.10 0.693
Neg Emo c × FT Diff 100 -0.04 -0.17 – 0.10 0.610
(pDem Rep × wave [2]) ×
trustGovt c
-0.14 -0.37 – 0.09 0.247
(pDem Rep × wave [3]) ×
trustGovt c
-0.21 -0.47 – 0.04 0.100
(pDem Rep × wave [4]) ×
trustGovt c
-0.26 -0.51 – 0.00 0.051
(pDem Rep × wave [2]) ×
Pos Emo c
0.14 -0.08 – 0.36 0.214
(pDem Rep × wave [3]) ×
Pos Emo c
0.24 0.02 – 0.45 0.030
(pDem Rep × wave [4]) ×
Pos Emo c
0.03 -0.20 – 0.25 0.823
(pDem Rep × wave [2]) ×
Neg Emo c
0.02 -0.21 – 0.24 0.876
(pDem Rep × wave [3]) ×
Neg Emo c
0.08 -0.15 – 0.30 0.507
(pDem Rep × wave [4]) ×
Neg Emo c
0.00 -0.22 – 0.22 0.986
(pDem Rep × trustGovt c)
× Pos Emo c
0.07 -0.06 – 0.20 0.290
(pDem Rep × trustGovt c)
× Neg Emo c
0.11 -0.05 – 0.26 0.187
(wave [2] × trustGovt c)
× Pos Emo c
0.09 -0.00 – 0.19 0.051
(wave [3] × trustGovt c)
× Pos Emo c
0.12 0.03 – 0.21 0.007
(wave [4] × trustGovt c)
× Pos Emo c
0.08 -0.01 – 0.17 0.074
(wave [2] × trustGovt c)
× Neg Emo c
0.05 -0.05 – 0.15 0.325
(wave [3] × trustGovt c)
× Neg Emo c
0.03 -0.07 – 0.14 0.510
(wave [4] × trustGovt c)
× Neg Emo c
0.02 -0.08 – 0.13 0.689
(pDem Rep × wave [2]) ×
FT Diff 100
0.39 -0.06 – 0.85 0.089
(pDem Rep × wave [3]) ×
FT Diff 100
0.67 0.23 – 1.10 0.003
(pDem Rep × wave [4]) ×
FT Diff 100
0.66 0.21 – 1.11 0.004
(pDem Rep × trustGovt c)
× FT Diff 100
0.17 -0.12 – 0.47 0.256
(wave [2] × trustGovt c)
× FT Diff 100
0.09 -0.11 – 0.29 0.384
(wave [3] × trustGovt c)
× FT Diff 100
-0.05 -0.27 – 0.17 0.631
(wave [4] × trustGovt c)
× FT Diff 100
-0.08 -0.30 – 0.15 0.505
(pDem Rep × Pos Emo c) ×
FT Diff 100
0.09 -0.16 – 0.34 0.479
(pDem Rep × Neg Emo c) ×
FT Diff 100
-0.04 -0.31 – 0.23 0.759
(wave [2] × Pos Emo c) ×
FT Diff 100
0.20 0.03 – 0.38 0.022
(wave [3] × Pos Emo c) ×
FT Diff 100
0.13 -0.04 – 0.29 0.148
(wave [4] × Pos Emo c) ×
FT Diff 100
0.17 -0.00 – 0.34 0.055
(wave [2] × Neg Emo c) ×
FT Diff 100
0.02 -0.16 – 0.20 0.817
(wave [3] × Neg Emo c) ×
FT Diff 100
0.15 -0.03 – 0.32 0.104
(wave [4] × Neg Emo c) ×
FT Diff 100
-0.07 -0.25 – 0.11 0.454
(trustGovt c × Pos Emo c)
× FT Diff 100
0.07 -0.04 – 0.17 0.209
(trustGovt c × Neg Emo c)
× FT Diff 100
-0.01 -0.13 – 0.10 0.828
(pDem Rep × wave [2] ×
trustGovt c) × Pos Emo c
-0.11 -0.31 – 0.08 0.239
(pDem Rep × wave [3] ×
trustGovt c) × Pos Emo c
-0.11 -0.30 – 0.07 0.215
(pDem Rep × wave [4] ×
trustGovt c) × Pos Emo c
-0.02 -0.20 – 0.16 0.826
(pDem Rep × wave [2] ×
trustGovt c) × Neg Emo c
-0.07 -0.27 – 0.13 0.495
(pDem Rep × wave [3] ×
trustGovt c) × Neg Emo c
-0.06 -0.27 – 0.14 0.533
(pDem Rep × wave [4] ×
trustGovt c) × Neg Emo c
-0.05 -0.26 – 0.16 0.669
(pDem Rep × wave [2] ×
trustGovt c) × FT Diff
100
-0.13 -0.53 – 0.27 0.529
(pDem Rep × wave [3] ×
trustGovt c) × FT Diff
100
-0.26 -0.70 – 0.18 0.246
(pDem Rep × wave [4] ×
trustGovt c) × FT Diff
100
-0.16 -0.61 – 0.29 0.483
(pDem Rep × wave [2] ×
Pos Emo c) × FT Diff 100
-0.07 -0.41 – 0.28 0.714
(pDem Rep × wave [3] ×
Pos Emo c) × FT Diff 100
-0.09 -0.43 – 0.25 0.590
(pDem Rep × wave [4] ×
Pos Emo c) × FT Diff 100
0.14 -0.21 – 0.48 0.433
(pDem Rep × wave [2] ×
Neg Emo c) × FT Diff 100
-0.12 -0.47 – 0.24 0.514
(pDem Rep × wave [3] ×
Neg Emo c) × FT Diff 100
0.14 -0.22 – 0.49 0.448
(pDem Rep × wave [4] ×
Neg Emo c) × FT Diff 100
0.18 -0.18 – 0.55 0.327
(pDem Rep × trustGovt c ×
Pos Emo c) × FT Diff 100
-0.09 -0.30 – 0.12 0.396
(pDem Rep × trustGovt c ×
Neg Emo c) × FT Diff 100
-0.14 -0.37 – 0.09 0.238
(wave [2] × trustGovt c ×
Pos Emo c) × FT Diff 100
-0.15 -0.30 – -0.00 0.043
(wave [3] × trustGovt c ×
Pos Emo c) × FT Diff 100
-0.13 -0.27 – 0.02 0.080
(wave [4] × trustGovt c ×
Pos Emo c) × FT Diff 100
-0.04 -0.18 – 0.10 0.548
(wave [2] × trustGovt c ×
Neg Emo c) × FT Diff 100
-0.05 -0.20 – 0.11 0.556
(wave [3] × trustGovt c ×
Neg Emo c) × FT Diff 100
-0.07 -0.23 – 0.08 0.361
(wave [4] × trustGovt c ×
Neg Emo c) × FT Diff 100
0.02 -0.14 – 0.19 0.796
(pDem Rep × wave [2] ×
trustGovt c × Pos Emo c)
× FT Diff 100
0.14 -0.15 – 0.44 0.341
(pDem Rep × wave [3] ×
trustGovt c × Pos Emo c)
× FT Diff 100
0.18 -0.11 – 0.46 0.232
(pDem Rep × wave [4] ×
trustGovt c × Pos Emo c)
× FT Diff 100
-0.02 -0.30 – 0.26 0.887
(pDem Rep × wave [2] ×
trustGovt c × Neg Emo c)
× FT Diff 100
0.12 -0.19 – 0.44 0.438
(pDem Rep × wave [3] ×
trustGovt c × Neg Emo c)
× FT Diff 100
-0.05 -0.36 – 0.26 0.770
(pDem Rep × wave [4] ×
trustGovt c × Neg Emo c)
× FT Diff 100
-0.04 -0.37 – 0.29 0.809
Random Effects
σ2 0.45
τ00 pid 0.51
ICC 0.53
N pid 1159
Observations 4423
Marginal R2 / Conditional R2 0.272 / 0.659
sjPlot::tab_model(DN.m11)
  demNorms
Predictors Estimates CI p
(Intercept) 1.38 0.93 – 1.83 <0.001
pDem Rep -0.25 -0.51 – 0.01 0.058
wave [2] 0.26 0.10 – 0.42 0.002
wave [3] 0.09 -0.07 – 0.25 0.261
wave [4] 0.17 0.01 – 0.33 0.033
trustGovt c -0.09 -0.21 – 0.02 0.115
Pos Emo c -0.11 -0.21 – -0.00 0.042
Neg Emo c -0.04 -0.15 – 0.07 0.438
FT Diff 100 -0.07 -0.28 – 0.14 0.499
representation Dem -0.07 -0.12 – -0.01 0.024
representation Rep -0.04 -0.09 – 0.01 0.150
GCB c -0.34 -0.42 – -0.27 <0.001
pollAcc -0.01 -0.03 – 0.02 0.709
pollFreq c 0.03 0.00 – 0.06 0.036
vs age 0.01 0.00 – 0.01 <0.001
vs race [Black] -0.69 -0.90 – -0.48 <0.001
vs race [Hispanic] -0.46 -0.69 – -0.23 <0.001
vs race [Other] -0.04 -0.28 – 0.20 0.724
male female 0.02 -0.11 – 0.15 0.784
nonbinary mf -0.40 -1.37 – 0.58 0.424
pDem Rep × wave [2] -0.08 -0.40 – 0.24 0.633
pDem Rep × wave [3] 0.04 -0.28 – 0.36 0.797
pDem Rep × wave [4] 0.26 -0.06 – 0.58 0.111
pDem Rep × trustGovt c -0.02 -0.25 – 0.20 0.844
wave [2] × trustGovt c -0.02 -0.16 – 0.13 0.811
wave [3] × trustGovt c -0.03 -0.19 – 0.13 0.707
wave [4] × trustGovt c 0.03 -0.14 – 0.19 0.738
pDem Rep × Pos Emo c -0.00 -0.21 – 0.20 0.977
pDem Rep × Neg Emo c -0.07 -0.29 – 0.14 0.519
wave [2] × Pos Emo c 0.02 -0.12 – 0.15 0.823
wave [3] × Pos Emo c 0.07 -0.06 – 0.21 0.285
wave [4] × Pos Emo c 0.08 -0.06 – 0.22 0.245
wave [2] × Neg Emo c -0.18 -0.32 – -0.04 0.011
wave [3] × Neg Emo c -0.10 -0.24 – 0.04 0.175
wave [4] × Neg Emo c -0.12 -0.25 – 0.02 0.105
trustGovt c × Pos Emo c 0.06 -0.03 – 0.14 0.188
trustGovt c × Neg Emo c -0.09 -0.19 – 0.01 0.067
pDem Rep × FT Diff 100 -0.52 -0.94 – -0.10 0.015
wave [2] × FT Diff 100 -0.16 -0.45 – 0.13 0.280
wave [3] × FT Diff 100 0.00 -0.28 – 0.28 0.988
wave [4] × FT Diff 100 -0.07 -0.36 – 0.21 0.620
trustGovt c × FT Diff 100 0.04 -0.15 – 0.23 0.687
Pos Emo c × FT Diff 100 0.16 0.00 – 0.32 0.045
Neg Emo c × FT Diff 100 0.01 -0.16 – 0.18 0.920
(pDem Rep × wave [2]) ×
trustGovt c
0.14 -0.15 – 0.44 0.334
(pDem Rep × wave [3]) ×
trustGovt c
-0.22 -0.54 – 0.11 0.187
(pDem Rep × wave [4]) ×
trustGovt c
-0.07 -0.39 – 0.26 0.688
(pDem Rep × wave [2]) ×
Pos Emo c
0.18 -0.10 – 0.46 0.203
(pDem Rep × wave [3]) ×
Pos Emo c
0.09 -0.19 – 0.36 0.538
(pDem Rep × wave [4]) ×
Pos Emo c
0.12 -0.16 – 0.41 0.387
(pDem Rep × wave [2]) ×
Neg Emo c
0.17 -0.11 – 0.45 0.240
(pDem Rep × wave [3]) ×
Neg Emo c
-0.10 -0.38 – 0.18 0.494
(pDem Rep × wave [4]) ×
Neg Emo c
0.18 -0.10 – 0.46 0.203
(pDem Rep × trustGovt c)
× Pos Emo c
0.03 -0.14 – 0.20 0.706
(pDem Rep × trustGovt c)
× Neg Emo c
-0.16 -0.36 – 0.04 0.118
(wave [2] × trustGovt c)
× Pos Emo c
-0.08 -0.20 – 0.04 0.169
(wave [3] × trustGovt c)
× Pos Emo c
-0.03 -0.14 – 0.09 0.621
(wave [4] × trustGovt c)
× Pos Emo c
0.02 -0.10 – 0.13 0.786
(wave [2] × trustGovt c)
× Neg Emo c
0.17 0.05 – 0.30 0.008
(wave [3] × trustGovt c)
× Neg Emo c
0.01 -0.12 – 0.14 0.856
(wave [4] × trustGovt c)
× Neg Emo c
0.01 -0.12 – 0.14 0.900
(pDem Rep × wave [2]) ×
FT Diff 100
0.41 -0.17 – 0.98 0.165
(pDem Rep × wave [3]) ×
FT Diff 100
0.19 -0.36 – 0.75 0.497
(pDem Rep × wave [4]) ×
FT Diff 100
0.27 -0.31 – 0.85 0.360
(pDem Rep × trustGovt c)
× FT Diff 100
0.17 -0.21 – 0.54 0.383
(wave [2] × trustGovt c)
× FT Diff 100
0.03 -0.22 – 0.29 0.791
(wave [3] × trustGovt c)
× FT Diff 100
-0.11 -0.39 – 0.17 0.427
(wave [4] × trustGovt c)
× FT Diff 100
-0.03 -0.32 – 0.25 0.810
(pDem Rep × Pos Emo c) ×
FT Diff 100
-0.05 -0.36 – 0.26 0.749
(pDem Rep × Neg Emo c) ×
FT Diff 100
0.11 -0.23 – 0.46 0.518
(wave [2] × Pos Emo c) ×
FT Diff 100
-0.19 -0.41 – 0.03 0.084
(wave [3] × Pos Emo c) ×
FT Diff 100
-0.18 -0.39 – 0.04 0.103
(wave [4] × Pos Emo c) ×
FT Diff 100
-0.24 -0.46 – -0.02 0.031
(wave [2] × Neg Emo c) ×
FT Diff 100
0.02 -0.21 – 0.24 0.872
(wave [3] × Neg Emo c) ×
FT Diff 100
-0.00 -0.23 – 0.22 0.966
(wave [4] × Neg Emo c) ×
FT Diff 100
0.11 -0.12 – 0.34 0.363
(trustGovt c × Pos Emo c)
× FT Diff 100
-0.16 -0.29 – -0.03 0.017
(trustGovt c × Neg Emo c)
× FT Diff 100
0.15 0.01 – 0.30 0.041
(pDem Rep × wave [2] ×
trustGovt c) × Pos Emo c
0.07 -0.17 – 0.31 0.575
(pDem Rep × wave [3] ×
trustGovt c) × Pos Emo c
0.17 -0.06 – 0.40 0.157
(pDem Rep × wave [4] ×
trustGovt c) × Pos Emo c
-0.11 -0.34 – 0.12 0.362
(pDem Rep × wave [2] ×
trustGovt c) × Neg Emo c
0.06 -0.19 – 0.32 0.625
(pDem Rep × wave [3] ×
trustGovt c) × Neg Emo c
0.14 -0.12 – 0.40 0.287
(pDem Rep × wave [4] ×
trustGovt c) × Neg Emo c
0.13 -0.14 – 0.39 0.352
(pDem Rep × wave [2] ×
trustGovt c) × FT Diff
100
-0.39 -0.90 – 0.12 0.135
(pDem Rep × wave [3] ×
trustGovt c) × FT Diff
100
0.07 -0.49 – 0.63 0.799
(pDem Rep × wave [4] ×
trustGovt c) × FT Diff
100
-0.16 -0.72 – 0.41 0.593
(pDem Rep × wave [2] ×
Pos Emo c) × FT Diff 100
-0.20 -0.64 – 0.25 0.385
(pDem Rep × wave [3] ×
Pos Emo c) × FT Diff 100
-0.00 -0.43 – 0.43 0.991
(pDem Rep × wave [4] ×
Pos Emo c) × FT Diff 100
-0.02 -0.46 – 0.42 0.919
(pDem Rep × wave [2] ×
Neg Emo c) × FT Diff 100
-0.29 -0.74 – 0.16 0.213
(pDem Rep × wave [3] ×
Neg Emo c) × FT Diff 100
-0.02 -0.47 – 0.42 0.914
(pDem Rep × wave [4] ×
Neg Emo c) × FT Diff 100
-0.08 -0.55 – 0.38 0.725
(pDem Rep × trustGovt c ×
Pos Emo c) × FT Diff 100
0.03 -0.23 – 0.30 0.794
(pDem Rep × trustGovt c ×
Neg Emo c) × FT Diff 100
0.28 -0.02 – 0.57 0.068
(wave [2] × trustGovt c ×
Pos Emo c) × FT Diff 100
0.18 -0.01 – 0.36 0.063
(wave [3] × trustGovt c ×
Pos Emo c) × FT Diff 100
0.09 -0.10 – 0.27 0.354
(wave [4] × trustGovt c ×
Pos Emo c) × FT Diff 100
0.00 -0.18 – 0.18 0.989
(wave [2] × trustGovt c ×
Neg Emo c) × FT Diff 100
-0.27 -0.47 – -0.07 0.008
(wave [3] × trustGovt c ×
Neg Emo c) × FT Diff 100
-0.05 -0.25 – 0.15 0.618
(wave [4] × trustGovt c ×
Neg Emo c) × FT Diff 100
-0.11 -0.31 – 0.10 0.324
(pDem Rep × wave [2] ×
trustGovt c × Pos Emo c)
× FT Diff 100
-0.18 -0.55 – 0.20 0.354
(pDem Rep × wave [3] ×
trustGovt c × Pos Emo c)
× FT Diff 100
-0.23 -0.59 – 0.13 0.215
(pDem Rep × wave [4] ×
trustGovt c × Pos Emo c)
× FT Diff 100
0.19 -0.16 – 0.55 0.279
(pDem Rep × wave [2] ×
trustGovt c × Neg Emo c)
× FT Diff 100
-0.21 -0.60 – 0.19 0.307
(pDem Rep × wave [3] ×
trustGovt c × Neg Emo c)
× FT Diff 100
-0.44 -0.84 – -0.05 0.027
(pDem Rep × wave [4] ×
trustGovt c × Neg Emo c)
× FT Diff 100
-0.23 -0.65 – 0.19 0.283
Random Effects
σ2 0.72
τ00 pid 0.99
ICC 0.58
N pid 1159
Observations 4423
Marginal R2 / Conditional R2 0.165 / 0.650

Overall Summary

As in previous research, perceived election legitimacy (PEL) is responsive to election outcome: Democrats’ PEL decreased after the 2024 election and Republicans’ PEL increased. This correlates with changes in positive and negative emotions: emotions predict PEL in line with their valence (positive emotions predict PEL positively, negative emotions predict PEL negatively), and partisans’ emotions follow expected patterns relative to the 2024 election: from wave 1 to wave 4, Democrats increase in negative and decrease in positive emotions, while Republicans decrease in negative and increase in positive emotions, with the steepest changes happening from wave 1 (pre-election) to wave 2 (immediately post-election).

Trust in government seems to buffer against these trends—for those high in governmental trust, PEL is also high, regardless of party ID. Governmental trust may also moderate the effect of negative emotions: there was a significant 4-way interaction of governmental trust, negative emotions, party ID (Dem vs. Rep), and linear time (b = -0.10, p = .032); there was also a significant 4-way interaction of governmental trust, negative emotions, party ID (partisans vs. Ind), and linear time (b = -0.22, p = .005). No such interactions were present for positive emotions.