4+3
[1] 7
4-3
[1] 1
4==3
[1] FALSE
3^2
[1] 9
sqrt(4)
[1] 2
3==5
[1] FALSE
3==8
[1] FALSE
3==3
[1] TRUE
3==(2+1)
[1] TRUE
4!=4
[1] FALSE
2!=4
[1] TRUE
TRUE | FALSE
[1] TRUE
TRUE & FALSE
[1] FALSE
!FALSE
[1] TRUE
!TRUE
[1] FALSE
!FALSE & FALSE | TRUE
[1] TRUE
!FALSE & !TRUE| TRUE
[1] TRUE
2>5|1==3
[1] FALSE
11>7|4==3
[1] TRUE
log(10)#ln, natural log, base e=2.72
[1] 2.302585
log10(10)
[1] 1
log10(100)
[1] 2
log10(1000)
[1] 3

#Question_1: Compute the log base 5 of 10 and the log of 10.

log(10,base = 5)
[1] 1.430677
log(10)#ln of 10
[1] 2.302585
log10(10)
[1] 1
#Batting Average=(No.of Hits)/(No. of At Bats)
#What is the batting average of a player that bats 29 hits in 112 at bats?
BA=(29)/(112)
BA
[1] 0.2589286
Batting_Average=round(BA,digits = 3)
Batting_Average
[1] 0.259

#Question_2:What is the batting average of a player that bats 42 hits in 212 at bats?

BA_1=(42)/212
Batting_Average1=round(BA_1,digits = 3)
Batting_Average1
[1] 0.198

On Base Percentage OBP=(H+BB+HBP)/(AtBats+BB+HBP+SF) Let us compute the OBP for a player with the following general stats AB=515,H=172,BB=84,HBP=5,SF=6

OBP=(172+84+5)/(515+84+5+6)
OBP
[1] 0.4278689
On_Base_Percentage=round(OBP,digits = 3)
On_Base_Percentage
[1] 0.428

Question_3:Compute the OBP for a player with the following general stats: AB=565,H=156,BB=65,HBP=3,SF=7

OBP=(156+65+3)/(565+65+3+7)
On_Base_Percentage2=round(OBP,digits =3 )
On_Base_Percentage2
[1] 0.35
Total_Bases<-136+ 214
Total_Bases
[1] 350
ls()
[1] "BA"                  "BA_1"                "Batting_Average"     "Batting_Average1"   
[5] "OBP"                 "On_Base_Percentage"  "On_Base_Percentage2" "Total_Bases"        
rm(Total_Bases)
ls()
[1] "BA"                  "BA_1"                "Batting_Average"     "Batting_Average1"   
[5] "OBP"                 "On_Base_Percentage"  "On_Base_Percentage2"
pitches_by_innings <- c(12, 15, 10, 20, 10) 
pitches_by_innings
[1] 12 15 10 20 10
Wins_Season<-c(94,88,96,87,79)
Wins_Season
[1] 94 88 96 87 79
strike_Innigns<-c(5,6,9,7,14)
strike_Innigns
[1]  5  6  9  7 14
rep(2,5)
[1] 2 2 2 2 2
1:6
[1] 1 2 3 4 5 6
seq(3,10,3)
[1] 3 6 9
strike_Innigns
[1]  5  6  9  7 14
Wins_Season
[1] 94 88 96 87 79
pitches_by_innings
[1] 12 15 10 20 10
strike_Innigns+pitches_by_innings
[1] 17 21 19 27 24
strike_Innigns==pitches_by_innings
[1] FALSE FALSE FALSE FALSE FALSE
length(pitches_by_innings)
[1] 5
min(pitches_by_innings)
[1] 10
max(pitches_by_innings)
[1] 20
mean(pitches_by_innings)
[1] 13.4
pitches_by_innings[3]
[1] 10
pitches_by_innings[1]
[1] 12
pitches_by_innings[5]
[1] 10
pitches_by_innings[length(pitches_by_innings)]
[1] 10
pitches_by_innings[c(2,3,4)]
[1] 15 10 20
players_positions<-c("catchers","pitchers","infielders","outfielders")
players_positions
[1] "catchers"    "pitchers"    "infielders"  "outfielders"
soccer_positions<-c("goalkeepers","defenders","midfielders","forwards")
soccer_positions
[1] "goalkeepers" "defenders"   "midfielders" "forwards"   
data.frame(bonus = c(2, 3, 1),#in millions 
           active_roster = c("yes", "no", "yes"), 
           salary = c(1.5, 2.5, 1))#in millions
sample(1:9,size = 2)
[1] 9 4
x<-c("yes","no","no","no","yes","yes","yes","yes","yes","yes")
x
 [1] "yes" "no"  "no"  "no"  "yes" "yes" "yes" "yes" "yes" "yes"
table(x)
x
 no yes 
  3   7 
sals <- c(12, .4, 5, 2, 50, 8, 3, 1, 4, 0.25)
mean(sals)
[1] 8.565
var(sals)
[1] 225.5145
sd(sals)
[1] 15.01714
median(sals)
[1] 3.5
# Tukeys five number summary, usefull for boxplots
# five numbers: min, lower hinge, median, upper hinge, max
fivenum(sals)
[1]  0.25  1.00  3.50  8.00 50.00
summary(sals)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  0.250   1.250   3.500   8.565   7.250  50.000 
# Function to find the mode, i.e. most frequent value
getMode <- function(x) {
     ux <- unique(x)
     ux[which.max(tabulate(match(x, ux)))]
 }
getMode(pitches_by_innings)
[1] 10
getMode(Wins_Season)
[1] 94
Wins_Season
[1] 94 88 96 87 79
#Question_8: Summarize the following survey with the `table()` command:
#What is your favorite day of the week to watch baseball? A total of 10 fans submitted this survey.
#Saturday, Saturday, Sunday, Monday, Saturday,Tuesday, Sunday, Friday, Friday, Monday
game_day<-c("Saturday", "Saturday", "Sunday", "Monday", "Saturday","Tuesday", "Sunday", "Friday", "Friday", "Monday")
table(game_day)
game_day
  Friday   Monday Saturday   Sunday  Tuesday 
       2        2        3        2        1 
getMode(game_day)
[1] "Saturday"
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayBBY3Rpdml0eSA0IgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgoKCmBgYHtyfQo0KzMKNC0zCjQ9PTMKM14yCnNxcnQoNCkKYGBgCgoKCgpgYGB7cn0KMz09NQozPT04CjM9PTMKMz09KDIrMSkKNCE9NAoyIT00CgpgYGAKCgpgYGB7cn0KVFJVRSB8IEZBTFNFCmBgYAoKYGBge3J9ClRSVUUgJiBGQUxTRQpgYGAKCgpgYGB7cn0KIUZBTFNFCmBgYAoKYGBge3J9CiFUUlVFCmBgYAoKYGBge3J9CiFGQUxTRSAmIEZBTFNFIHwgVFJVRQohRkFMU0UgJiAhVFJVRXwgVFJVRQpgYGAKCmBgYHtyfQoyPjV8MT09MwoxMT43fDQ9PTMKYGBgCgoKCmBgYHtyfQpsb2coMTApI2xuLCBuYXR1cmFsIGxvZywgYmFzZSBlPTIuNzIKYGBgCgoKCmBgYHtyfQpsb2cxMCgxMCkKbG9nMTAoMTAwKQpsb2cxMCgxMDAwKQpgYGAKCiNRdWVzdGlvbl8xOiBDb21wdXRlIHRoZSBsb2cgYmFzZSA1IG9mIDEwIGFuZCB0aGUgbG9nIG9mIDEwLgoKYGBge3J9CmxvZygxMCxiYXNlID0gNSkKYGBgCgoKYGBge3J9CmxvZygxMCkjbG4gb2YgMTAKbG9nMTAoMTApCmBgYAoKCmBgYHtyfQojQmF0dGluZyBBdmVyYWdlPShOby5vZiBIaXRzKS8oTm8uIG9mIEF0IEJhdHMpCiNXaGF0IGlzIHRoZSBiYXR0aW5nIGF2ZXJhZ2Ugb2YgYSBwbGF5ZXIgdGhhdCBiYXRzIDI5IGhpdHMgaW4gMTEyIGF0IGJhdHM/CkJBPSgyOSkvKDExMikKQkEKYGBgCgoKYGBge3J9CkJhdHRpbmdfQXZlcmFnZT1yb3VuZChCQSxkaWdpdHMgPSAzKQpCYXR0aW5nX0F2ZXJhZ2UKYGBgCgojUXVlc3Rpb25fMjpXaGF0IGlzIHRoZSBiYXR0aW5nIGF2ZXJhZ2Ugb2YgYSBwbGF5ZXIgdGhhdCBiYXRzIDQyIGhpdHMgaW4gMjEyIGF0IGJhdHM/CgpgYGB7cn0KQkFfMT0oNDIpLzIxMgpCYXR0aW5nX0F2ZXJhZ2UxPXJvdW5kKEJBXzEsZGlnaXRzID0gMykKQmF0dGluZ19BdmVyYWdlMQpgYGAKCk9uIEJhc2UgUGVyY2VudGFnZQpPQlA9KEgrQkIrSEJQKS8oQXRCYXRzK0JCK0hCUCtTRikKTGV0IHVzIGNvbXB1dGUgdGhlIE9CUCBmb3IgYSBwbGF5ZXIgd2l0aCB0aGUgZm9sbG93aW5nIGdlbmVyYWwgc3RhdHMKQUI9NTE1LEg9MTcyLEJCPTg0LEhCUD01LFNGPTYKCgpgYGB7cn0KT0JQPSgxNzIrODQrNSkvKDUxNSs4NCs1KzYpCk9CUApgYGAKCgpgYGB7cn0KT25fQmFzZV9QZXJjZW50YWdlPXJvdW5kKE9CUCxkaWdpdHMgPSAzKQpPbl9CYXNlX1BlcmNlbnRhZ2UKYGBgCgpRdWVzdGlvbl8zOkNvbXB1dGUgdGhlIE9CUCBmb3IgYSBwbGF5ZXIgd2l0aCB0aGUgZm9sbG93aW5nIGdlbmVyYWwgc3RhdHM6CkFCPTU2NSxIPTE1NixCQj02NSxIQlA9MyxTRj03CgpgYGB7cn0KT0JQPSgxNTYrNjUrMykvKDU2NSs2NSszKzcpCk9uX0Jhc2VfUGVyY2VudGFnZTI9cm91bmQoT0JQLGRpZ2l0cyA9MyApCk9uX0Jhc2VfUGVyY2VudGFnZTIKYGBgCgoKYGBge3J9ClRvdGFsX0Jhc2VzPC0xMzYrIDIxNApUb3RhbF9CYXNlcwpgYGAKCgpgYGB7cn0KbHMoKQpgYGAKCgpgYGB7cn0Kcm0oVG90YWxfQmFzZXMpCmBgYAoKCmBgYHtyfQpscygpCmBgYAoKCmBgYHtyfQpwaXRjaGVzX2J5X2lubmluZ3MgPC0gYygxMiwgMTUsIDEwLCAyMCwgMTApIApwaXRjaGVzX2J5X2lubmluZ3MKYGBgCgoKCmBgYHtyfQpXaW5zX1NlYXNvbjwtYyg5NCw4OCw5Niw4Nyw3OSkKV2luc19TZWFzb24KYGBgCgoKYGBge3J9CnN0cmlrZV9Jbm5pZ25zPC1jKDUsNiw5LDcsMTQpCnN0cmlrZV9Jbm5pZ25zCmBgYAoKCmBgYHtyfQpyZXAoMiw1KQpgYGAKCgoKYGBge3J9CjE6NgpzZXEoMywxMCwzKQpgYGAKCmBgYHtyfQpzdHJpa2VfSW5uaWducwpXaW5zX1NlYXNvbgpwaXRjaGVzX2J5X2lubmluZ3MKYGBgCgpgYGB7cn0Kc3RyaWtlX0lubmlnbnMrcGl0Y2hlc19ieV9pbm5pbmdzCnN0cmlrZV9Jbm5pZ25zPT1waXRjaGVzX2J5X2lubmluZ3MKYGBgCgoKYGBge3J9Cmxlbmd0aChwaXRjaGVzX2J5X2lubmluZ3MpCm1pbihwaXRjaGVzX2J5X2lubmluZ3MpCm1heChwaXRjaGVzX2J5X2lubmluZ3MpCm1lYW4ocGl0Y2hlc19ieV9pbm5pbmdzKQpgYGAKCgoKYGBge3J9CnBpdGNoZXNfYnlfaW5uaW5nc1szXQpwaXRjaGVzX2J5X2lubmluZ3NbMV0KcGl0Y2hlc19ieV9pbm5pbmdzWzVdCmBgYAoKYGBge3J9CnBpdGNoZXNfYnlfaW5uaW5nc1tsZW5ndGgocGl0Y2hlc19ieV9pbm5pbmdzKV0KYGBgCgpgYGB7cn0KcGl0Y2hlc19ieV9pbm5pbmdzW2MoMiwzLDQpXQpgYGAKCgoKYGBge3J9CnBsYXllcnNfcG9zaXRpb25zPC1jKCJjYXRjaGVycyIsInBpdGNoZXJzIiwiaW5maWVsZGVycyIsIm91dGZpZWxkZXJzIikKcGxheWVyc19wb3NpdGlvbnMKYGBgCgoKCmBgYHtyfQpzb2NjZXJfcG9zaXRpb25zPC1jKCJnb2Fsa2VlcGVycyIsImRlZmVuZGVycyIsIm1pZGZpZWxkZXJzIiwiZm9yd2FyZHMiKQpzb2NjZXJfcG9zaXRpb25zCmBgYAoKCmBgYHtyfQpkYXRhLmZyYW1lKGJvbnVzID0gYygyLCAzLCAxKSwjaW4gbWlsbGlvbnMgCiAgICAgICAgICAgYWN0aXZlX3Jvc3RlciA9IGMoInllcyIsICJubyIsICJ5ZXMiKSwgCiAgICAgICAgICAgc2FsYXJ5ID0gYygxLjUsIDIuNSwgMSkpI2luIG1pbGxpb25zCmBgYAoKCgpgYGB7cn0Kc2FtcGxlKDE6OSxzaXplID0gMikKYGBgCgpgYGB7cn0KeDwtYygieWVzIiwibm8iLCJubyIsIm5vIiwieWVzIiwieWVzIiwieWVzIiwieWVzIiwieWVzIiwieWVzIikKeAp0YWJsZSh4KQpgYGAKCgpgYGB7cn0Kc2FscyA8LSBjKDEyLCAuNCwgNSwgMiwgNTAsIDgsIDMsIDEsIDQsIDAuMjUpCm1lYW4oc2FscykKYGBgCgoKYGBge3J9CnZhcihzYWxzKQpzZChzYWxzKQptZWRpYW4oc2FscykKYGBgCgoKYGBge3J9CiMgVHVrZXlzIGZpdmUgbnVtYmVyIHN1bW1hcnksIHVzZWZ1bGwgZm9yIGJveHBsb3RzCiMgZml2ZSBudW1iZXJzOiBtaW4sIGxvd2VyIGhpbmdlLCBtZWRpYW4sIHVwcGVyIGhpbmdlLCBtYXgKZml2ZW51bShzYWxzKQpgYGAKCgoKYGBge3J9CnN1bW1hcnkoc2FscykKYGBgCgoKYGBge3J9CiMgRnVuY3Rpb24gdG8gZmluZCB0aGUgbW9kZSwgaS5lLiBtb3N0IGZyZXF1ZW50IHZhbHVlCmdldE1vZGUgPC0gZnVuY3Rpb24oeCkgewogICAgIHV4IDwtIHVuaXF1ZSh4KQogICAgIHV4W3doaWNoLm1heCh0YWJ1bGF0ZShtYXRjaCh4LCB1eCkpKV0KIH0KYGBgCgoKCgpgYGB7cn0KZ2V0TW9kZShwaXRjaGVzX2J5X2lubmluZ3MpCmBgYAoKCmBgYHtyfQpnZXRNb2RlKFdpbnNfU2Vhc29uKQpXaW5zX1NlYXNvbgpgYGAKCgpgYGB7cn0KI1F1ZXN0aW9uXzg6IFN1bW1hcml6ZSB0aGUgZm9sbG93aW5nIHN1cnZleSB3aXRoIHRoZSBgdGFibGUoKWAgY29tbWFuZDoKI1doYXQgaXMgeW91ciBmYXZvcml0ZSBkYXkgb2YgdGhlIHdlZWsgdG8gd2F0Y2ggYmFzZWJhbGw/IEEgdG90YWwgb2YgMTAgZmFucyBzdWJtaXR0ZWQgdGhpcyBzdXJ2ZXkuCiNTYXR1cmRheSwgU2F0dXJkYXksIFN1bmRheSwgTW9uZGF5LCBTYXR1cmRheSxUdWVzZGF5LCBTdW5kYXksIEZyaWRheSwgRnJpZGF5LCBNb25kYXkKZ2FtZV9kYXk8LWMoIlNhdHVyZGF5IiwgIlNhdHVyZGF5IiwgIlN1bmRheSIsICJNb25kYXkiLCAiU2F0dXJkYXkiLCJUdWVzZGF5IiwgIlN1bmRheSIsICJGcmlkYXkiLCAiRnJpZGF5IiwgIk1vbmRheSIpCmBgYAoKCmBgYHtyfQp0YWJsZShnYW1lX2RheSkKYGBgCgoKYGBge3J9CmdldE1vZGUoZ2FtZV9kYXkpCmBgYAoKCgo=