Multilevel models Probl
m0 <- lmer(probl~1+(1|v2.idmen/id), data=alldat)
print(icc(m0, by_group = TRUE))
## # ICC by Group
##
## Group | ICC
## -------------------
## id:v2.idmen | 0.041
## v2.idmen | 0.277
m1 <- lmer(probl~relevel(cluster, ref="companionship")+sex+factor(wave)+length+(1|v2.idmen/id), data=alldat)
m1b <- lmer(probl~relevel(cluster, ref="companionship")+sex+factor(wave)+factor(wave)*length+(1|v2.idmen/id), data=alldat)
m1c <- lmer(probl~relevel(cluster, ref="companionship")+relevel(cluster, ref="companionship")*sex+factor(wave)+length+(1|v2.idmen/id), data=alldat)
m2 <- lmer(probl~relevel(cluster, ref="companionship")+sex+factor(wave)+length+educ+enf+activ+(1|v2.idmen/id), data=alldat)
fm1 <- plm(probl~relevel(cluster, ref="companionship")+sex+factor(wave), index="id", model="within", data=alldat)
fm2 <- plm(probl~relevel(cluster, ref="companionship")+sex+factor(wave)+length+educ+enf+activ, index="id", model="within", data=alldat)
htmlreg(list("Multilevel 0"=m0, "Multilevel 1"=m1, "Multilevel 1b"=m1b,"Multilevel 1c"=m1c, "Multilevel 2"=m2, "Fixed-Effect 1"=fm1, "Fixed-Effect 2"=fm2))
Statistical models
|
|
Multilevel 0
|
Multilevel 1
|
Multilevel 1b
|
Multilevel 1c
|
Multilevel 2
|
Fixed-Effect 1
|
Fixed-Effect 2
|
|
(Intercept)
|
1.60***
|
1.16**
|
0.85*
|
1.20**
|
0.58
|
|
|
|
|
(0.07)
|
(0.38)
|
(0.40)
|
(0.39)
|
(0.44)
|
|
|
|
relevel(cluster, ref = “companionship”)cocoon
|
|
0.31
|
0.36
|
0.18
|
0.37
|
0.40
|
0.39
|
|
|
|
(0.35)
|
(0.35)
|
(0.36)
|
(0.36)
|
(0.38)
|
(0.39)
|
|
relevel(cluster, ref = “companionship”)bastion
|
|
0.49
|
0.55
|
0.37
|
0.55
|
0.89*
|
0.82*
|
|
|
|
(0.38)
|
(0.38)
|
(0.41)
|
(0.39)
|
(0.41)
|
(0.42)
|
|
relevel(cluster, ref = “companionship”)association
|
|
0.43***
|
0.40**
|
0.43*
|
0.39**
|
0.31*
|
0.25
|
|
|
|
(0.13)
|
(0.13)
|
(0.17)
|
(0.13)
|
(0.14)
|
(0.14)
|
|
relevel(cluster, ref = “companionship”)parallel
|
|
0.58***
|
0.53***
|
0.60**
|
0.52***
|
0.39*
|
0.33*
|
|
|
|
(0.14)
|
(0.14)
|
(0.19)
|
(0.15)
|
(0.16)
|
(0.16)
|
|
sexh
|
|
-0.33***
|
-0.33***
|
-0.41**
|
-0.43***
|
|
|
|
|
|
(0.08)
|
(0.08)
|
(0.13)
|
(0.11)
|
|
|
|
factor(wave)2
|
|
1.36***
|
1.83***
|
1.36***
|
1.43***
|
1.56***
|
1.59***
|
|
|
|
(0.34)
|
(0.39)
|
(0.34)
|
(0.35)
|
(0.37)
|
(0.37)
|
|
factor(wave)3
|
|
1.31***
|
1.75***
|
1.31***
|
1.40***
|
1.51***
|
1.59***
|
|
|
|
(0.34)
|
(0.39)
|
(0.34)
|
(0.35)
|
(0.37)
|
(0.38)
|
|
length
|
|
-0.03***
|
-0.01
|
-0.03***
|
-0.03***
|
|
|
|
|
|
(0.01)
|
(0.01)
|
(0.01)
|
(0.01)
|
|
|
|
factor(wave)2:length
|
|
|
-0.02*
|
|
|
|
|
|
|
|
|
(0.01)
|
|
|
|
|
|
factor(wave)3:length
|
|
|
-0.02*
|
|
|
|
|
|
|
|
|
(0.01)
|
|
|
|
|
|
relevel(cluster, ref = “companionship”)cocoon:sexh
|
|
|
|
0.27
|
|
|
|
|
|
|
|
|
(0.19)
|
|
|
|
|
relevel(cluster, ref = “companionship”)bastion:sexh
|
|
|
|
0.23
|
|
|
|
|
|
|
|
|
(0.32)
|
|
|
|
|
relevel(cluster, ref = “companionship”)association:sexh
|
|
|
|
0.01
|
|
|
|
|
|
|
|
|
(0.22)
|
|
|
|
|
relevel(cluster, ref = “companionship”)parallel:sexh
|
|
|
|
-0.05
|
|
|
|
|
|
|
|
|
(0.25)
|
|
|
|
|
educprof_school
|
|
|
|
|
0.03
|
|
-0.12
|
|
|
|
|
|
|
(0.11)
|
|
(0.15)
|
|
educuniversity
|
|
|
|
|
0.11
|
|
-0.37
|
|
|
|
|
|
|
(0.15)
|
|
(0.26)
|
|
enfenfants_oui
|
|
|
|
|
0.45*
|
|
0.14
|
|
|
|
|
|
|
(0.21)
|
|
(0.30)
|
|
activ25-75%
|
|
|
|
|
0.08
|
|
0.04
|
|
|
|
|
|
|
(0.12)
|
|
(0.15)
|
|
activ>=80%
|
|
|
|
|
0.20
|
|
0.38**
|
|
|
|
|
|
|
(0.12)
|
|
(0.14)
|
|
activretired
|
|
|
|
|
-0.05
|
|
-0.13
|
|
|
|
|
|
|
(0.19)
|
|
(0.20)
|
|
AIC
|
8713.47
|
8466.00
|
8478.51
|
8475.28
|
8381.13
|
|
|
|
BIC
|
8735.99
|
8533.55
|
8557.33
|
8565.36
|
8482.21
|
|
|
|
Log Likelihood
|
-4352.74
|
-4221.00
|
-4225.26
|
-4221.64
|
-4172.56
|
|
|
|
Num. obs.
|
2058
|
2058
|
2058
|
2058
|
2030
|
2058
|
2030
|
|
Num. groups: id:v2.idmen
|
686
|
686
|
686
|
686
|
686
|
|
|
|
Num. groups: v2.idmen
|
343
|
343
|
343
|
343
|
343
|
|
|
|
Var: id:v2.idmen (Intercept)
|
0.19
|
0.31
|
0.31
|
0.31
|
0.33
|
|
|
|
Var: v2.idmen (Intercept)
|
1.28
|
1.17
|
1.18
|
1.17
|
1.18
|
|
|
|
Var: Residual
|
3.15
|
2.65
|
2.64
|
2.65
|
2.65
|
|
|
|
R2
|
|
|
|
|
|
0.17
|
0.16
|
|
Adj. R2
|
|
|
|
|
|
-0.26
|
-0.27
|
|
***p < 0.001; **p < 0.01; *p <
0.05
|
Multilevel models satisf
m0 <- lmer(satisf~1+(1|v2.idmen/id), data=alldat)
print(icc(m0, by_group = TRUE))
## # ICC by Group
##
## Group | ICC
## -------------------
## id:v2.idmen | 0.088
## v2.idmen | 0.310
m0g <- glmer(satisf~1+(1|v2.idmen/id), data=alldat, family=binomial, control = glmerControl(optimizer = "bobyqa"))
print(icc(m0g, by_group = TRUE))
## # ICC by Group
##
## Group | ICC
## -------------------
## id:v2.idmen | 0.061
## v2.idmen | 0.438
m1 <- lmer(satisf~relevel(cluster, ref="companionship")+sex+factor(wave)+length+(1|v2.idmen/id), data=alldat)
m1b <- lmer(satisf~relevel(cluster, ref="companionship")+sex+factor(wave)+factor(wave)*length+(1|v2.idmen/id), data=alldat)
m1c <- lmer(satisf~relevel(cluster, ref="companionship")+relevel(cluster, ref="companionship")*sex+factor(wave)+length+(1|v2.idmen/id), data=alldat)
m2 <- lmer(satisf~relevel(cluster, ref="companionship")+sex+factor(wave)+length+educ+enf+activ+(1|v2.idmen/id), data=alldat)
m1g <- glmer(satisf~relevel(cluster, ref="companionship")+sex+factor(wave)+length+(1|v2.idmen/id), data=alldat, family=binomial, control = glmerControl(optimizer = "bobyqa",
optCtrl = list(maxfun=100000)))
m2g <- glmer(satisf~relevel(cluster, ref="companionship")+sex+factor(wave)+length+educ+enf+activ+(1|v2.idmen/id),
data=alldat, family=binomial, control = glmerControl(optimizer = "bobyqa",
optCtrl = list(maxfun=100000)))
fm1 <- plm(satisf~relevel(cluster, ref="companionship")+sex+factor(wave), index="id", model="within", data=alldat)
fm2 <- plm(satisf~relevel(cluster, ref="companionship")+sex+factor(wave)+length+educ+enf+activ, index="id", model="within", data=alldat)
htmlreg(list("Multilevel 0"=m0, "Multilevel 1"=m1, "Multilevel 1b"=m1b,"Multilevel 1c"=m1c, "Multilevel 2"=m2, "Fixed-Effect 1"=fm1, "Fixed-Effect 2"=fm2, "Logistic 0"=m0g, "Logistic 1"=m1g, "Logistic 2"=m2g))
Statistical models
|
|
Multilevel 0
|
Multilevel 1
|
Multilevel 1b
|
Multilevel 1c
|
Multilevel 2
|
Fixed-Effect 1
|
Fixed-Effect 2
|
Logistic 0
|
Logistic 1
|
Logistic 2
|
|
(Intercept)
|
0.52***
|
0.59***
|
0.54***
|
0.60***
|
0.48***
|
|
|
0.10
|
0.51
|
-0.13
|
|
|
(0.02)
|
(0.09)
|
(0.10)
|
(0.09)
|
(0.11)
|
|
|
(0.11)
|
(0.58)
|
(0.65)
|
|
relevel(cluster, ref = “companionship”)cocoon
|
|
-0.04
|
-0.03
|
-0.06
|
-0.04
|
-0.05
|
-0.05
|
|
-0.23
|
-0.22
|
|
|
|
(0.08)
|
(0.08)
|
(0.09)
|
(0.09)
|
(0.09)
|
(0.09)
|
|
(0.53)
|
(0.54)
|
|
relevel(cluster, ref = “companionship”)bastion
|
|
-0.09
|
-0.09
|
-0.14
|
-0.07
|
-0.05
|
-0.03
|
|
-0.58
|
-0.48
|
|
|
|
(0.09)
|
(0.09)
|
(0.10)
|
(0.09)
|
(0.10)
|
(0.10)
|
|
(0.57)
|
(0.58)
|
|
relevel(cluster, ref = “companionship”)association
|
|
0.06*
|
0.05
|
0.01
|
0.05
|
0.02
|
0.00
|
|
0.40*
|
0.32
|
|
|
|
(0.03)
|
(0.03)
|
(0.04)
|
(0.03)
|
(0.03)
|
(0.03)
|
|
(0.19)
|
(0.19)
|
|
relevel(cluster, ref = “companionship”)parallel
|
|
0.06
|
0.05
|
0.07
|
0.05
|
0.01
|
-0.01
|
|
0.39
|
0.34
|
|
|
|
(0.03)
|
(0.03)
|
(0.05)
|
(0.04)
|
(0.04)
|
(0.04)
|
|
(0.22)
|
(0.22)
|
|
sexh
|
|
-0.05*
|
-0.05*
|
-0.07*
|
-0.04
|
|
|
|
-0.29*
|
-0.26
|
|
|
|
(0.02)
|
(0.02)
|
(0.03)
|
(0.03)
|
|
|
|
(0.12)
|
(0.15)
|
|
factor(wave)2
|
|
-0.04
|
0.05
|
-0.04
|
-0.04
|
-0.02
|
-0.01
|
|
-0.26
|
-0.21
|
|
|
|
(0.08)
|
(0.09)
|
(0.08)
|
(0.08)
|
(0.09)
|
(0.09)
|
|
(0.52)
|
(0.52)
|
|
factor(wave)3
|
|
-0.03
|
0.01
|
-0.03
|
-0.03
|
-0.00
|
-0.00
|
|
-0.15
|
-0.17
|
|
|
|
(0.08)
|
(0.09)
|
(0.08)
|
(0.08)
|
(0.09)
|
(0.09)
|
|
(0.51)
|
(0.53)
|
|
length
|
|
-0.00
|
0.00
|
-0.00
|
-0.00
|
|
|
|
-0.01
|
-0.01
|
|
|
|
(0.00)
|
(0.00)
|
(0.00)
|
(0.00)
|
|
|
|
(0.01)
|
(0.01)
|
|
factor(wave)2:length
|
|
|
-0.00*
|
|
|
|
|
|
|
|
|
|
|
|
(0.00)
|
|
|
|
|
|
|
|
|
factor(wave)3:length
|
|
|
-0.00
|
|
|
|
|
|
|
|
|
|
|
|
(0.00)
|
|
|
|
|
|
|
|
|
relevel(cluster, ref = “companionship”)cocoon:sexh
|
|
|
|
0.04
|
|
|
|
|
|
|
|
|
|
|
|
(0.04)
|
|
|
|
|
|
|
|
relevel(cluster, ref = “companionship”)bastion:sexh
|
|
|
|
0.09
|
|
|
|
|
|
|
|
|
|
|
|
(0.08)
|
|
|
|
|
|
|
|
relevel(cluster, ref = “companionship”)association:sexh
|
|
|
|
0.10
|
|
|
|
|
|
|
|
|
|
|
|
(0.05)
|
|
|
|
|
|
|
|
relevel(cluster, ref = “companionship”)parallel:sexh
|
|
|
|
-0.02
|
|
|
|
|
|
|
|
|
|
|
|
(0.06)
|
|
|
|
|
|
|
|
educprof_school
|
|
|
|
|
-0.03
|
|
-0.04
|
|
|
-0.19
|
|
|
|
|
|
|
(0.03)
|
|
(0.04)
|
|
|
(0.16)
|
|
educuniversity
|
|
|
|
|
-0.02
|
|
-0.09
|
|
|
-0.08
|
|
|
|
|
|
|
(0.04)
|
|
(0.06)
|
|
|
(0.21)
|
|
enfenfants_oui
|
|
|
|
|
0.10
|
|
0.11
|
|
|
0.57
|
|
|
|
|
|
|
(0.05)
|
|
(0.07)
|
|
|
(0.31)
|
|
activ25-75%
|
|
|
|
|
0.04
|
|
0.02
|
|
|
0.25
|
|
|
|
|
|
|
(0.03)
|
|
(0.04)
|
|
|
(0.18)
|
|
activ>=80%
|
|
|
|
|
0.04
|
|
0.06
|
|
|
0.26
|
|
|
|
|
|
|
(0.03)
|
|
(0.03)
|
|
|
(0.18)
|
|
activretired
|
|
|
|
|
0.08
|
|
0.08
|
|
|
0.52
|
|
|
|
|
|
|
(0.05)
|
|
(0.05)
|
|
|
(0.28)
|
|
AIC
|
2598.46
|
2643.31
|
2664.08
|
2662.09
|
2643.66
|
|
|
2504.63
|
2501.99
|
2474.99
|
|
BIC
|
2620.97
|
2710.86
|
2742.88
|
2752.16
|
2744.74
|
|
|
2521.52
|
2563.91
|
2570.46
|
|
Log Likelihood
|
-1295.23
|
-1309.66
|
-1318.04
|
-1315.05
|
-1303.83
|
|
|
-1249.32
|
-1240.00
|
-1220.49
|
|
Num. obs.
|
2057
|
2057
|
2057
|
2057
|
2030
|
2057
|
2030
|
2057
|
2057
|
2030
|
|
Num. groups: id:v2.idmen
|
686
|
686
|
686
|
686
|
686
|
|
|
686
|
686
|
686
|
|
Num. groups: v2.idmen
|
343
|
343
|
343
|
343
|
343
|
|
|
343
|
343
|
343
|
|
Var: id:v2.idmen (Intercept)
|
0.02
|
0.02
|
0.02
|
0.02
|
0.02
|
|
|
0.40
|
0.38
|
0.38
|
|
Var: v2.idmen (Intercept)
|
0.08
|
0.08
|
0.08
|
0.07
|
0.07
|
|
|
2.88
|
2.76
|
2.77
|
|
Var: Residual
|
0.15
|
0.15
|
0.15
|
0.15
|
0.15
|
|
|
|
|
|
|
R2
|
|
|
|
|
|
0.00
|
0.01
|
|
|
|
|
Adj. R2
|
|
|
|
|
|
-0.50
|
-0.51
|
|
|
|
|
***p < 0.001; **p < 0.01; *p <
0.05
|
Multilevel models sep
m0 <- lmer(sep~1+(1|v2.idmen/id), data=alldat)
print(icc(m0, by_group = TRUE))
## # ICC by Group
##
## Group | ICC
## -------------------
## id:v2.idmen | 0.163
## v2.idmen | 0.309
m0g <- glmer(sep~1+(1|v2.idmen/id), data=alldat, family=binomial, control = glmerControl(optimizer = "bobyqa"))
print(icc(m0g, by_group = TRUE))
## # ICC by Group
##
## Group | ICC
## -------------------
## id:v2.idmen | 0.169
## v2.idmen | 0.483
m1 <- lmer(sep~relevel(cluster, ref="companionship")+sex+factor(wave)+length+(1|v2.idmen/id), data=alldat)
m1b <- lmer(sep~relevel(cluster, ref="companionship")+sex+factor(wave)+factor(wave)*length+(1|v2.idmen/id), data=alldat)
m1c <- lmer(sep~relevel(cluster, ref="companionship")+relevel(cluster, ref="companionship")*sex+factor(wave)+length+(1|v2.idmen/id), data=alldat)
m2 <- lmer(sep~relevel(cluster, ref="companionship")+sex+factor(wave)+length+educ+enf+activ+(1|v2.idmen/id), data=alldat)
m1g <- glmer(sep~relevel(cluster, ref="companionship")+sex+factor(wave)+length+(1|v2.idmen/id), data=alldat, family=binomial, control = glmerControl(optimizer = "bobyqa",
optCtrl = list(maxfun=100000)))
m2g <- glmer(sep~relevel(cluster, ref="companionship")+sex+factor(wave)+length+educ+enf+activ+(1|v2.idmen/id),
data=alldat, family=binomial, control = glmerControl(optimizer = "bobyqa",
optCtrl = list(maxfun=100000)))
fm1 <- plm(sep~relevel(cluster, ref="companionship")+sex+factor(wave), index="id", model="within", data=alldat)
fm2 <- plm(sep~relevel(cluster, ref="companionship")+sex+factor(wave)+length+educ+enf+activ, index="id", model="within", data=alldat)
htmlreg(list("Multilevel 0"=m0, "Multilevel 1"=m1, "Multilevel 1b"=m1b,"Multilevel 1c"=m1c, "Multilevel 2"=m2, "Fixed-Effect 1"=fm1, "Fixed-Effect 2"=fm2, "Logistic 0"=m0g, "Logistic 1"=m1g, "Logistic 2"=m2g))
Statistical models
|
|
Multilevel 0
|
Multilevel 1
|
Multilevel 1b
|
Multilevel 1c
|
Multilevel 2
|
Fixed-Effect 1
|
Fixed-Effect 2
|
Logistic 0
|
Logistic 1
|
Logistic 2
|
|
(Intercept)
|
0.26***
|
0.36***
|
0.24**
|
0.36***
|
0.22*
|
|
|
-2.05***
|
-1.04
|
-2.41**
|
|
|
(0.02)
|
(0.08)
|
(0.08)
|
(0.08)
|
(0.09)
|
|
|
(0.19)
|
(0.69)
|
(0.82)
|
|
relevel(cluster, ref = “companionship”)cocoon
|
|
-0.01
|
0.01
|
-0.03
|
-0.02
|
0.04
|
0.02
|
|
-0.11
|
-0.23
|
|
|
|
(0.07)
|
(0.07)
|
(0.07)
|
(0.07)
|
(0.08)
|
(0.08)
|
|
(0.60)
|
(0.62)
|
|
relevel(cluster, ref = “companionship”)bastion
|
|
-0.05
|
-0.02
|
-0.09
|
-0.05
|
0.04
|
0.03
|
|
-0.70
|
-0.74
|
|
|
|
(0.08)
|
(0.08)
|
(0.08)
|
(0.08)
|
(0.08)
|
(0.08)
|
|
(0.70)
|
(0.73)
|
|
relevel(cluster, ref = “companionship”)association
|
|
0.06*
|
0.05*
|
0.07*
|
0.05*
|
0.05
|
0.03
|
|
0.56*
|
0.49*
|
|
|
|
(0.03)
|
(0.03)
|
(0.03)
|
(0.03)
|
(0.03)
|
(0.03)
|
|
(0.24)
|
(0.24)
|
|
relevel(cluster, ref = “companionship”)parallel
|
|
0.05
|
0.03
|
0.04
|
0.04
|
0.02
|
0.01
|
|
0.42
|
0.39
|
|
|
|
(0.03)
|
(0.03)
|
(0.04)
|
(0.03)
|
(0.03)
|
(0.03)
|
|
(0.27)
|
(0.27)
|
|
sexh
|
|
-0.10***
|
-0.10***
|
-0.12***
|
-0.11***
|
|
|
|
-0.96***
|
-1.06***
|
|
|
|
(0.02)
|
(0.02)
|
(0.03)
|
(0.02)
|
|
|
|
(0.17)
|
(0.22)
|
|
factor(wave)2
|
|
-0.01
|
0.14
|
-0.01
|
-0.01
|
0.05
|
0.05
|
|
-0.14
|
-0.10
|
|
|
|
(0.07)
|
(0.08)
|
(0.07)
|
(0.07)
|
(0.07)
|
(0.07)
|
|
(0.58)
|
(0.60)
|
|
factor(wave)3
|
|
0.00
|
0.18*
|
0.00
|
0.01
|
0.06
|
0.07
|
|
-0.05
|
0.06
|
|
|
|
(0.07)
|
(0.08)
|
(0.07)
|
(0.07)
|
(0.07)
|
(0.07)
|
|
(0.58)
|
(0.60)
|
|
length
|
|
-0.00
|
0.00
|
-0.00
|
-0.00
|
|
|
|
-0.03
|
-0.02
|
|
|
|
(0.00)
|
(0.00)
|
(0.00)
|
(0.00)
|
|
|
|
(0.02)
|
(0.02)
|
|
factor(wave)2:length
|
|
|
-0.01***
|
|
|
|
|
|
|
|
|
|
|
|
(0.00)
|
|
|
|
|
|
|
|
|
factor(wave)3:length
|
|
|
-0.01***
|
|
|
|
|
|
|
|
|
|
|
|
(0.00)
|
|
|
|
|
|
|
|
|
relevel(cluster, ref = “companionship”)cocoon:sexh
|
|
|
|
0.03
|
|
|
|
|
|
|
|
|
|
|
|
(0.04)
|
|
|
|
|
|
|
|
relevel(cluster, ref = “companionship”)bastion:sexh
|
|
|
|
0.09
|
|
|
|
|
|
|
|
|
|
|
|
(0.07)
|
|
|
|
|
|
|
|
relevel(cluster, ref = “companionship”)association:sexh
|
|
|
|
-0.02
|
|
|
|
|
|
|
|
|
|
|
|
(0.05)
|
|
|
|
|
|
|
|
relevel(cluster, ref = “companionship”)parallel:sexh
|
|
|
|
0.01
|
|
|
|
|
|
|
|
|
|
|
|
(0.05)
|
|
|
|
|
|
|
|
educprof_school
|
|
|
|
|
0.01
|
|
-0.02
|
|
|
0.09
|
|
|
|
|
|
|
(0.02)
|
|
(0.03)
|
|
|
(0.21)
|
|
educuniversity
|
|
|
|
|
0.05
|
|
0.01
|
|
|
0.49
|
|
|
|
|
|
|
(0.03)
|
|
(0.05)
|
|
|
(0.29)
|
|
enfenfants_oui
|
|
|
|
|
0.07
|
|
0.12*
|
|
|
0.67
|
|
|
|
|
|
|
(0.04)
|
|
(0.06)
|
|
|
(0.43)
|
|
activ25-75%
|
|
|
|
|
0.08***
|
|
0.08**
|
|
|
0.80***
|
|
|
|
|
|
|
(0.02)
|
|
(0.03)
|
|
|
(0.24)
|
|
activ>=80%
|
|
|
|
|
0.07**
|
|
0.08**
|
|
|
0.72**
|
|
|
|
|
|
|
(0.02)
|
|
(0.03)
|
|
|
(0.24)
|
|
activretired
|
|
|
|
|
0.02
|
|
0.01
|
|
|
0.20
|
|
|
|
|
|
|
(0.04)
|
|
(0.04)
|
|
|
(0.36)
|
|
AIC
|
1968.98
|
1989.99
|
1991.93
|
2011.94
|
1987.15
|
|
|
1978.34
|
1946.87
|
1912.96
|
|
BIC
|
1991.50
|
2057.53
|
2070.73
|
2102.00
|
2088.22
|
|
|
1995.23
|
2008.78
|
2008.42
|
|
Log Likelihood
|
-980.49
|
-982.99
|
-981.97
|
-989.97
|
-975.57
|
|
|
-986.17
|
-962.43
|
-939.48
|
|
Num. obs.
|
2056
|
2056
|
2056
|
2056
|
2029
|
2056
|
2029
|
2056
|
2056
|
2029
|
|
Num. groups: id:v2.idmen
|
686
|
686
|
686
|
686
|
686
|
|
|
686
|
686
|
686
|
|
Num. groups: v2.idmen
|
343
|
343
|
343
|
343
|
343
|
|
|
343
|
343
|
343
|
|
Var: id:v2.idmen (Intercept)
|
0.03
|
0.03
|
0.03
|
0.03
|
0.03
|
|
|
1.60
|
1.15
|
1.22
|
|
Var: v2.idmen (Intercept)
|
0.06
|
0.06
|
0.06
|
0.06
|
0.06
|
|
|
4.58
|
4.57
|
4.69
|
|
Var: Residual
|
0.10
|
0.10
|
0.10
|
0.10
|
0.10
|
|
|
|
|
|
|
R2
|
|
|
|
|
|
0.01
|
0.02
|
|
|
|
|
Adj. R2
|
|
|
|
|
|
-0.50
|
-0.50
|
|
|
|
|
***p < 0.001; **p < 0.01; *p <
0.05
|
## R Markdown
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see <http://rmarkdown.rstudio.com>.
When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
```r
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
Including Plots
You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.