## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## Warning: package 'ggplot2' was built under R version 4.3.3
## Warning: package 'psych' was built under R version 4.3.3
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
## Warning: package 'DescTools' was built under R version 4.3.3
## 
## Attaching package: 'DescTools'
## The following objects are masked from 'package:psych':
## 
##     AUC, ICC, SD
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ lubridate 1.9.3     ✔ tibble    3.2.1
## ✔ purrr     1.0.2     ✔ tidyr     1.3.0
## ✔ readr     2.1.5     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ psych::%+%()    masks ggplot2::%+%()
## ✖ psych::alpha()  masks ggplot2::alpha()
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## 
## Attaching package: 'scales'
## 
## 
## The following object is masked from 'package:purrr':
## 
##     discard
## 
## 
## The following object is masked from 'package:readr':
## 
##     col_factor
## 
## 
## The following objects are masked from 'package:psych':
## 
##     alpha, rescale
## Warning: package 'AER' was built under R version 4.3.3
## Loading required package: car
## Warning: package 'car' was built under R version 4.3.3
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.3.3
## 
## Attaching package: 'car'
## 
## The following object is masked from 'package:purrr':
## 
##     some
## 
## The following object is masked from 'package:DescTools':
## 
##     Recode
## 
## The following object is masked from 'package:psych':
## 
##     logit
## 
## The following object is masked from 'package:dplyr':
## 
##     recode
## 
## Loading required package: lmtest
## Warning: package 'lmtest' was built under R version 4.3.3
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 4.3.3
## 
## Attaching package: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## Loading required package: sandwich
## Warning: package 'sandwich' was built under R version 4.3.3
## Loading required package: survival
## 
## Attaching package: 'survival'
## 
## The following object is masked from 'package:epitools':
## 
##     ratetable
## Warning: package 'datarium' was built under R version 4.3.3
## Warning: package 'Ecdat' was built under R version 4.3.3
## Loading required package: Ecfun
## Warning: package 'Ecfun' was built under R version 4.3.3
## 
## Attaching package: 'Ecfun'
## 
## The following object is masked from 'package:DescTools':
## 
##     BoxCox
## 
## The following object is masked from 'package:base':
## 
##     sign
## 
## 
## Attaching package: 'Ecdat'
## 
## The following object is masked from 'package:carData':
## 
##     Mroz
## 
## The following object is masked from 'package:datasets':
## 
##     Orange
## Warning: package 'ISLR' was built under R version 4.3.3

1 Hồi quy logistics

iris
##     Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 1            5.1         3.5          1.4         0.2     setosa
## 2            4.9         3.0          1.4         0.2     setosa
## 3            4.7         3.2          1.3         0.2     setosa
## 4            4.6         3.1          1.5         0.2     setosa
## 5            5.0         3.6          1.4         0.2     setosa
## 6            5.4         3.9          1.7         0.4     setosa
## 7            4.6         3.4          1.4         0.3     setosa
## 8            5.0         3.4          1.5         0.2     setosa
## 9            4.4         2.9          1.4         0.2     setosa
## 10           4.9         3.1          1.5         0.1     setosa
## 11           5.4         3.7          1.5         0.2     setosa
## 12           4.8         3.4          1.6         0.2     setosa
## 13           4.8         3.0          1.4         0.1     setosa
## 14           4.3         3.0          1.1         0.1     setosa
## 15           5.8         4.0          1.2         0.2     setosa
## 16           5.7         4.4          1.5         0.4     setosa
## 17           5.4         3.9          1.3         0.4     setosa
## 18           5.1         3.5          1.4         0.3     setosa
## 19           5.7         3.8          1.7         0.3     setosa
## 20           5.1         3.8          1.5         0.3     setosa
## 21           5.4         3.4          1.7         0.2     setosa
## 22           5.1         3.7          1.5         0.4     setosa
## 23           4.6         3.6          1.0         0.2     setosa
## 24           5.1         3.3          1.7         0.5     setosa
## 25           4.8         3.4          1.9         0.2     setosa
## 26           5.0         3.0          1.6         0.2     setosa
## 27           5.0         3.4          1.6         0.4     setosa
## 28           5.2         3.5          1.5         0.2     setosa
## 29           5.2         3.4          1.4         0.2     setosa
## 30           4.7         3.2          1.6         0.2     setosa
## 31           4.8         3.1          1.6         0.2     setosa
## 32           5.4         3.4          1.5         0.4     setosa
## 33           5.2         4.1          1.5         0.1     setosa
## 34           5.5         4.2          1.4         0.2     setosa
## 35           4.9         3.1          1.5         0.2     setosa
## 36           5.0         3.2          1.2         0.2     setosa
## 37           5.5         3.5          1.3         0.2     setosa
## 38           4.9         3.6          1.4         0.1     setosa
## 39           4.4         3.0          1.3         0.2     setosa
## 40           5.1         3.4          1.5         0.2     setosa
## 41           5.0         3.5          1.3         0.3     setosa
## 42           4.5         2.3          1.3         0.3     setosa
## 43           4.4         3.2          1.3         0.2     setosa
## 44           5.0         3.5          1.6         0.6     setosa
## 45           5.1         3.8          1.9         0.4     setosa
## 46           4.8         3.0          1.4         0.3     setosa
## 47           5.1         3.8          1.6         0.2     setosa
## 48           4.6         3.2          1.4         0.2     setosa
## 49           5.3         3.7          1.5         0.2     setosa
## 50           5.0         3.3          1.4         0.2     setosa
## 51           7.0         3.2          4.7         1.4 versicolor
## 52           6.4         3.2          4.5         1.5 versicolor
## 53           6.9         3.1          4.9         1.5 versicolor
## 54           5.5         2.3          4.0         1.3 versicolor
## 55           6.5         2.8          4.6         1.5 versicolor
## 56           5.7         2.8          4.5         1.3 versicolor
## 57           6.3         3.3          4.7         1.6 versicolor
## 58           4.9         2.4          3.3         1.0 versicolor
## 59           6.6         2.9          4.6         1.3 versicolor
## 60           5.2         2.7          3.9         1.4 versicolor
## 61           5.0         2.0          3.5         1.0 versicolor
## 62           5.9         3.0          4.2         1.5 versicolor
## 63           6.0         2.2          4.0         1.0 versicolor
## 64           6.1         2.9          4.7         1.4 versicolor
## 65           5.6         2.9          3.6         1.3 versicolor
## 66           6.7         3.1          4.4         1.4 versicolor
## 67           5.6         3.0          4.5         1.5 versicolor
## 68           5.8         2.7          4.1         1.0 versicolor
## 69           6.2         2.2          4.5         1.5 versicolor
## 70           5.6         2.5          3.9         1.1 versicolor
## 71           5.9         3.2          4.8         1.8 versicolor
## 72           6.1         2.8          4.0         1.3 versicolor
## 73           6.3         2.5          4.9         1.5 versicolor
## 74           6.1         2.8          4.7         1.2 versicolor
## 75           6.4         2.9          4.3         1.3 versicolor
## 76           6.6         3.0          4.4         1.4 versicolor
## 77           6.8         2.8          4.8         1.4 versicolor
## 78           6.7         3.0          5.0         1.7 versicolor
## 79           6.0         2.9          4.5         1.5 versicolor
## 80           5.7         2.6          3.5         1.0 versicolor
## 81           5.5         2.4          3.8         1.1 versicolor
## 82           5.5         2.4          3.7         1.0 versicolor
## 83           5.8         2.7          3.9         1.2 versicolor
## 84           6.0         2.7          5.1         1.6 versicolor
## 85           5.4         3.0          4.5         1.5 versicolor
## 86           6.0         3.4          4.5         1.6 versicolor
## 87           6.7         3.1          4.7         1.5 versicolor
## 88           6.3         2.3          4.4         1.3 versicolor
## 89           5.6         3.0          4.1         1.3 versicolor
## 90           5.5         2.5          4.0         1.3 versicolor
## 91           5.5         2.6          4.4         1.2 versicolor
## 92           6.1         3.0          4.6         1.4 versicolor
## 93           5.8         2.6          4.0         1.2 versicolor
## 94           5.0         2.3          3.3         1.0 versicolor
## 95           5.6         2.7          4.2         1.3 versicolor
## 96           5.7         3.0          4.2         1.2 versicolor
## 97           5.7         2.9          4.2         1.3 versicolor
## 98           6.2         2.9          4.3         1.3 versicolor
## 99           5.1         2.5          3.0         1.1 versicolor
## 100          5.7         2.8          4.1         1.3 versicolor
## 101          6.3         3.3          6.0         2.5  virginica
## 102          5.8         2.7          5.1         1.9  virginica
## 103          7.1         3.0          5.9         2.1  virginica
## 104          6.3         2.9          5.6         1.8  virginica
## 105          6.5         3.0          5.8         2.2  virginica
## 106          7.6         3.0          6.6         2.1  virginica
## 107          4.9         2.5          4.5         1.7  virginica
## 108          7.3         2.9          6.3         1.8  virginica
## 109          6.7         2.5          5.8         1.8  virginica
## 110          7.2         3.6          6.1         2.5  virginica
## 111          6.5         3.2          5.1         2.0  virginica
## 112          6.4         2.7          5.3         1.9  virginica
## 113          6.8         3.0          5.5         2.1  virginica
## 114          5.7         2.5          5.0         2.0  virginica
## 115          5.8         2.8          5.1         2.4  virginica
## 116          6.4         3.2          5.3         2.3  virginica
## 117          6.5         3.0          5.5         1.8  virginica
## 118          7.7         3.8          6.7         2.2  virginica
## 119          7.7         2.6          6.9         2.3  virginica
## 120          6.0         2.2          5.0         1.5  virginica
## 121          6.9         3.2          5.7         2.3  virginica
## 122          5.6         2.8          4.9         2.0  virginica
## 123          7.7         2.8          6.7         2.0  virginica
## 124          6.3         2.7          4.9         1.8  virginica
## 125          6.7         3.3          5.7         2.1  virginica
## 126          7.2         3.2          6.0         1.8  virginica
## 127          6.2         2.8          4.8         1.8  virginica
## 128          6.1         3.0          4.9         1.8  virginica
## 129          6.4         2.8          5.6         2.1  virginica
## 130          7.2         3.0          5.8         1.6  virginica
## 131          7.4         2.8          6.1         1.9  virginica
## 132          7.9         3.8          6.4         2.0  virginica
## 133          6.4         2.8          5.6         2.2  virginica
## 134          6.3         2.8          5.1         1.5  virginica
## 135          6.1         2.6          5.6         1.4  virginica
## 136          7.7         3.0          6.1         2.3  virginica
## 137          6.3         3.4          5.6         2.4  virginica
## 138          6.4         3.1          5.5         1.8  virginica
## 139          6.0         3.0          4.8         1.8  virginica
## 140          6.9         3.1          5.4         2.1  virginica
## 141          6.7         3.1          5.6         2.4  virginica
## 142          6.9         3.1          5.1         2.3  virginica
## 143          5.8         2.7          5.1         1.9  virginica
## 144          6.8         3.2          5.9         2.3  virginica
## 145          6.7         3.3          5.7         2.5  virginica
## 146          6.7         3.0          5.2         2.3  virginica
## 147          6.3         2.5          5.0         1.9  virginica
## 148          6.5         3.0          5.2         2.0  virginica
## 149          6.2         3.4          5.4         2.3  virginica
## 150          5.9         3.0          5.1         1.8  virginica
# Lọc dữ liệu, loại bỏ setosa.
iris2 <- iris %>% filter(Species %in% c("versicolor","virginica"))
head(iris2)
##   Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 1          7.0         3.2          4.7         1.4 versicolor
## 2          6.4         3.2          4.5         1.5 versicolor
## 3          6.9         3.1          4.9         1.5 versicolor
## 4          5.5         2.3          4.0         1.3 versicolor
## 5          6.5         2.8          4.6         1.5 versicolor
## 6          5.7         2.8          4.5         1.3 versicolor
iris2$S.coded <- ifelse(iris2$Species == "versicolor",1,0)
table(iris2$S.coded)
## 
##  0  1 
## 50 50

iris2 <- iris[iris\(Species == "versicolor"|iris\)Species == “virginica”,] #lấy tất cả cột và chỉ lấy những hàng có Species là versicolor và virginica.

model <- glm(S.coded ~ Sepal.Length + Sepal.Width, data = iris2,family = binomial(link="logit"))
model
## 
## Call:  glm(formula = S.coded ~ Sepal.Length + Sepal.Width, family = binomial(link = "logit"), 
##     data = iris2)
## 
## Coefficients:
##  (Intercept)  Sepal.Length   Sepal.Width  
##      13.0460       -1.9024       -0.4047  
## 
## Degrees of Freedom: 99 Total (i.e. Null);  97 Residual
## Null Deviance:       138.6 
## Residual Deviance: 110.3     AIC: 116.3

\(log(p/(1-p)) = 45.272-5.755*Sepal.Length-10.447*Sepal.Width\)
* Biến Species nhận 2 giá trị “versicolor” và “virginica”.
\(\text{p = P(Species =" ")}\)

new_flower <- data.frame(Sepal.Length = 5.1, Sepal.Width = 1.8)
# dự báo
predict(model,newdata = new_flower, type="response")
##         1 
## 0.9318543

“response”: trả về p
“link”:trả về \(log(p/(1-p))\)
“terms”: trả về số quy ước( 1: virginica, 0: versicolor).

probit: hàm ngược của CDF phân phối chuẩn.
* probit ? cloglog ? * random: poisson ~ (link = “log”), gaussian ~ (link = “identity”)

2 Đánh giá mô hình

LS0tDQp0aXRsZTogIkjhu5NpIHF1eSBsb2dpc3RpY3MiDQphdXRob3I6ICJwbm1pbmhjaGF1Ig0KZGF0ZTogIjIwMjUtMDctMDciDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6DQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KICAgIGNvZGVfZm9sZGluZzogaGlkZQ0KICAgIG51bWJlcl9zZWN0aW9uczogeWVzDQogICAgdGhlbTogImRlZmF1bHQiDQogICAgdG9jX2RlcHRoOiAzDQogICAgdG9jOiB0cnVlDQogICAgdG9jX2Zsb2F0OiB0cnVlDQotLS0NCg0KYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9DQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpDQpgYGANCg0KPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiB0eXBlPSJ0ZXh0L2NzcyIgaHJlZj0ic3R5bGUuY3NzIj4NCg0KYGBge3IsZWNobz1GQUxTRX0NCmxpYnJhcnkoRFQpDQpsaWJyYXJ5KGRwbHlyKQ0KbGlicmFyeShnZ3Bsb3QyKQ0KbGlicmFyeShzdGF0cykNCmxpYnJhcnkocHN5Y2gpDQpsaWJyYXJ5KERlc2NUb29scykNCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeShzY2FsZXMpDQpsaWJyYXJ5KGVwaXRvb2xzKQ0KbGlicmFyeShBRVIpDQpsaWJyYXJ5KGRhdGFyaXVtKQ0KbGlicmFyeShFY2RhdCkNCmxpYnJhcnkoSVNMUikNCmBgYA0KDQoNCiMgSOG7k2kgcXV5IGxvZ2lzdGljcyANCg0KYGBge3IsZWNobz1UUlVFfQ0KaXJpcw0KIyBM4buNYyBk4buvIGxp4buHdSwgbG/huqFpIGLhu48gc2V0b3NhLg0KaXJpczIgPC0gaXJpcyAlPiUgZmlsdGVyKFNwZWNpZXMgJWluJSBjKCJ2ZXJzaWNvbG9yIiwidmlyZ2luaWNhIikpDQpoZWFkKGlyaXMyKQ0KaXJpczIkUy5jb2RlZCA8LSBpZmVsc2UoaXJpczIkU3BlY2llcyA9PSAidmVyc2ljb2xvciIsMSwwKQ0KdGFibGUoaXJpczIkUy5jb2RlZCkNCmBgYA0KDQoNCioqKmlyaXMyIDwtIGlyaXNbaXJpcyRTcGVjaWVzID09ICJ2ZXJzaWNvbG9yInxpcmlzJFNwZWNpZXMgPT0gInZpcmdpbmljYSIsXSoqICNs4bqleSB04bqldCBj4bqjIGPhu5l0IHbDoCBjaOG7iSBs4bqleSBuaOG7r25nIGjDoG5nIGPDsyBTcGVjaWVzIGzDoCB2ZXJzaWNvbG9yIHbDoCB2aXJnaW5pY2EuKiAgIA0KDQoNCg0KDQpgYGB7cixlY2hvPVRSVUV9DQoNCm1vZGVsIDwtIGdsbShTLmNvZGVkIH4gU2VwYWwuTGVuZ3RoICsgU2VwYWwuV2lkdGgsIGRhdGEgPSBpcmlzMixmYW1pbHkgPSBiaW5vbWlhbChsaW5rPSJsb2dpdCIpKQ0KbW9kZWwNCg0KDQoNCmBgYA0KJGxvZyhwLygxLXApKSA9IDQ1LjI3Mi01Ljc1NSpTZXBhbC5MZW5ndGgtMTAuNDQ3KlNlcGFsLldpZHRoJCAgIA0KKiBCaeG6v24gU3BlY2llcyBuaOG6rW4gMiBnacOhIHRy4buLICJ2ZXJzaWNvbG9yIiB2w6AgInZpcmdpbmljYSIuICAgDQokXHRleHR7cCA9IFAoU3BlY2llcyA9IiAgIil9JA0KDQoNCmBgYHtyLGVjaG89VFJVRX0NCm5ld19mbG93ZXIgPC0gZGF0YS5mcmFtZShTZXBhbC5MZW5ndGggPSA1LjEsIFNlcGFsLldpZHRoID0gMS44KQ0KIyBk4buxIGLDoW8NCnByZWRpY3QobW9kZWwsbmV3ZGF0YSA9IG5ld19mbG93ZXIsIHR5cGU9InJlc3BvbnNlIikNCg0KYGBgDQoicmVzcG9uc2UiOiB0cuG6oyB24buBIHAgICAgICANCiJsaW5rIjp0cuG6oyB24buBICRsb2cocC8oMS1wKSkkICAgIA0KInRlcm1zIjogdHLhuqMgduG7gSBz4buRIHF1eSDGsOG7m2MoIDE6IHZpcmdpbmljYSwgMDogdmVyc2ljb2xvcikuICAgIA0KDQoqKnByb2JpdCoqOiBow6BtIG5nxrDhu6NjIGPhu6dhIENERiBwaMOibiBwaOG7kWkgY2h14bqpbi4gICANCiogcHJvYml0ID8gY2xvZ2xvZyA/DQoqIHJhbmRvbTogcG9pc3NvbiB+IChsaW5rID0gImxvZyIpLCBnYXVzc2lhbiB+IChsaW5rID0gImlkZW50aXR5IikNCg0KIyDEkMOhbmggZ2nDoSBtw7QgaMOsbmggICANCg0KYGBge3IsZWNobz1UUlVFfQ0KDQoNCg0KYGBgDQoNCg0KYGBge3IsZWNobz1UUlVFfQ0KDQoNCg0KYGBgDQoNCg0KYGBge3IsZWNobz1UUlVFfQ0KDQoNCg0KYGBgDQoNCg0KYGBge3IsZWNobz1UUlVFfQ0KDQoNCg0KYGBgDQoNCg0KYGBge3IsZWNobz1UUlVFfQ0KDQoNCg0KYGBgDQoNCg0KYGBge3IsZWNobz1UUlVFfQ0KDQoNCg0KYGBgDQoNCg0KYGBge3IsZWNobz1UUlVFfQ0KDQoNCg0KYGBgDQoNCg0KYGBge3IsZWNobz1UUlVFfQ0KDQoNCg0KYGBgDQoNCg0KYGBge3IsZWNobz1UUlVFfQ0KDQoNCg0KYGBgDQoNCg0KYGBge3IsZWNobz1UUlVFfQ0KDQoNCg0KYGBg