assignment 4

Question 3

We now review k-fold cross-validation.

(a) Explain how k-fold cross-validation is implemented.

This approach involves randomly dividing the set of observations into k groups, or folds, of approximately equal size. The first fold is treated as a validation set, and the method is fit on the remaining k − 1 folds. The mean squared error, MSE1, is then computed on the observations in the held-out fold. This procedure is repeated k times; each time, a different group of observations is treated as a validation set. This process results in k estimates of the test error,. The k-fold CV estimate is computed by averaging these values

(b) What are the advantages and disadvantages of k-fold cross-validation relative to:

  1. The validation set approach?

Advantages:The validation set approach is conceptually simple and is easy to implement

Disadvantages: The validation MSE can be highly variable and Only a subset of observations are used to fit the model (training data).

  1. LOOCV?

Advantages: LOOCV have less bias. The validation approach produces different MSE when applied repeatedly due to randomness in the splitting process, while performing LOOCV multiple times will always yield the same results, because we split based on 1 obs. each time.

Disadvantage: LOOCV is computationally intensive.

Question 5

In Chapter 4, we used logistic regression to predict the probability of default using income and balance on the Default data set. We will now estimate the test error of this logistic regression model using the validation set approach. Do not forget to set a random seed before beginning your analysis.

(a) Fit a logistic regression model that uses income and balance to predict default.

library(ISLR2)
data("Default")
summary(Default)
 default    student       balance           income     
 No :9667   No :7056   Min.   :   0.0   Min.   :  772  
 Yes: 333   Yes:2944   1st Qu.: 481.7   1st Qu.:21340  
                       Median : 823.6   Median :34553  
                       Mean   : 835.4   Mean   :33517  
                       3rd Qu.:1166.3   3rd Qu.:43808  
                       Max.   :2654.3   Max.   :73554  
logmodel1 = glm(default ~ balance + income, data = Default, family = binomial)

summary(logmodel1)

Call:
glm(formula = default ~ balance + income, family = binomial, 
    data = Default)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept) -1.154e+01  4.348e-01 -26.545  < 2e-16 ***
balance      5.647e-03  2.274e-04  24.836  < 2e-16 ***
income       2.081e-05  4.985e-06   4.174 2.99e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 2920.6  on 9999  degrees of freedom
Residual deviance: 1579.0  on 9997  degrees of freedom
AIC: 1585

Number of Fisher Scoring iterations: 8

(b) Using the validation set approach, estimate the test error of this model. In order to do this, you must perform the following steps:

  1. Split the sample set into a training set and a validation set.
trainDefault = sample(dim(Default)[1], dim(Default)[1]*0.50)
testDefault = Default[-trainDefault, ]
  1. Fit a multiple logistic regression model using only the training observations.
LOGmodel2 = glm(default ~ balance + income, data = Default, family = binomial, subset = trainDefault)
  1. Obtain a prediction of default status for each individual in the validation set by computing the posterior probability of default for that individual, and classifying the individual to the default category if the posterior probability is greater than 0.5.
log.prob_def = predict(LOGmodel2, testDefault, type = "response")
log.pred_def = rep("No", dim(Default)[1]*0.50)
log.pred_def[log.prob_def > 0.5] = "Yes"
table(log.pred_def, testDefault$default)
            
log.pred_def   No  Yes
         No  4812  117
         Yes   18   53
  1. Compute the validation set error, which is the fraction of the observations in the validation set that are misclassified.
mean(log.pred_def !=testDefault$default)
[1] 0.027

(c) Repeat the process in (b) three times, using three different splits of the observations into a training set and a validation set. Comment on the results obtained.

#i
trainDefault = sample(dim(Default)[1], dim(Default)[1]*0.50)
testDefault = Default[-trainDefault, ]

#ii
LOGmodel2 = glm(default ~ balance + income, data = Default, family = binomial, subset = trainDefault)

#iii
log.prob_def = predict(LOGmodel2, testDefault, type = "response")
log.pred_def = rep("No", dim(Default)[1]*0.50)
log.pred_def[log.prob_def > 0.5] = "Yes"
table(log.pred_def, testDefault$default)
            
log.pred_def   No  Yes
         No  4821  106
         Yes   19   54
#iv
mean(log.pred_def !=testDefault$default)
[1] 0.025
#i
trainDefault = sample(dim(Default)[1], dim(Default)[1]*0.50)
testDefault = Default[-trainDefault, ]

#ii
LOGmodel2 = glm(default ~ balance + income, data = Default, family = binomial, subset = trainDefault)

#iii
log.prob_def = predict(LOGmodel2, testDefault, type = "response")
log.pred_def = rep("No", dim(Default)[1]*0.50)
log.pred_def[log.prob_def > 0.5] = "Yes"
table(log.pred_def, testDefault$default)
            
log.pred_def   No  Yes
         No  4819  101
         Yes   25   55
#iv
mean(log.pred_def !=testDefault$default)
[1] 0.0252
#i
trainDefault = sample(dim(Default)[1], dim(Default)[1]*0.50)
testDefault = Default[-trainDefault, ]

#ii
LOGmodel2 = glm(default ~ balance + income, data = Default, family = binomial, subset = trainDefault)

#iii
log.prob_def = predict(LOGmodel2, testDefault, type = "response")
log.pred_def = rep("No", dim(Default)[1]*0.50)
log.pred_def[log.prob_def > 0.5] = "Yes"
table(log.pred_def, testDefault$default)
            
log.pred_def   No  Yes
         No  4828  104
         Yes   24   44
#iv
mean(log.pred_def !=testDefault$default)
[1] 0.0256

(d) Now consider a logistic regression model that predicts the probability of default using income, balance, and a dummy variable for student. Estimate the test error for this model using the validation set approach. Comment on whether or not including a dummy variable for student leads to a reduction in the test error rate.

#i
trainDefault = sample(dim(Default)[1], dim(Default)[1]*0.50)
testDefault = Default[-trainDefault, ]

#ii
LOGmodel2 = glm(default ~ balance + income + student, data = Default, family = binomial, subset = trainDefault)

#iii
log.prob_def = predict(LOGmodel2, testDefault, type = "response")
log.pred_def = rep("No", dim(Default)[1]*0.50)
log.pred_def[log.prob_def > 0.5] = "Yes"
table(log.pred_def, testDefault$default)
            
log.pred_def   No  Yes
         No  4812  126
         Yes   14   48
#iv
mean(log.pred_def !=testDefault$default)
[1] 0.028

Question 6

We continue to consider the use of a logistic regression model to predict the probability of default using income and balance on the Default data set. In particular, we will now compute estimates for the standard errors of the income and balance logistic regression coefficients in two different ways: (1) using the bootstrap, and (2) using the standard formula for computing the standard errors in the sm.GLM() function. Do not forget to set a random seed before beginning your analysis.

(a) Using the summarize() and sm.GLM() functions, determine the estimated standard errors for the coefficients associated with income and balance in a multiple logistic regression model that uses both predictors.

LOGmodel3 = glm(default ~ balance + income, data = Default, family = binomial)

summary(LOGmodel3)

Call:
glm(formula = default ~ balance + income, family = binomial, 
    data = Default)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept) -1.154e+01  4.348e-01 -26.545  < 2e-16 ***
balance      5.647e-03  2.274e-04  24.836  < 2e-16 ***
income       2.081e-05  4.985e-06   4.174 2.99e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 2920.6  on 9999  degrees of freedom
Residual deviance: 1579.0  on 9997  degrees of freedom
AIC: 1585

Number of Fisher Scoring iterations: 8

(b) Write a function, boot_fn(), that takes as input the Default data set as well as an index of the observations, and that outputs the coefficient estimates for income and balance in the multiple logistic regression model.

boot.fn = function(data, index) return(coef(glm(default ~ balance + income, data = data, family = binomial, subset = index)))

(c) Following the bootstrap example in the lab, use your boot_fn() function to estimate the standard errors of the logistic regression coefficients for income and balance.

library(boot)

(d) Comment on the estimated standard errors obtained using the sm.GLM() function and using the bootstrap.

boot(Default, boot.fn, 100)

ORDINARY NONPARAMETRIC BOOTSTRAP


Call:
boot(data = Default, statistic = boot.fn, R = 100)


Bootstrap Statistics :
         original        bias     std. error
t1* -1.154047e+01 -3.348419e-02 4.578754e-01
t2*  5.647103e-03  2.626665e-05 2.507091e-04
t3*  2.080898e-05 -4.251706e-07 4.051833e-06

Question 9

We will now consider the Boston housing data set, from the ISLP library.

library(MASS)

Attaching package: 'MASS'
The following object is masked from 'package:ISLR2':

    Boston
data("Boston")
summary(Boston)
      crim                zn             indus            chas        
 Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
 1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
 Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
 Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
 3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
 Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
      nox               rm             age              dis        
 Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
 1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
 Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
 Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
 3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
 Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
      rad              tax           ptratio          black       
 Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
 1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
 Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
 Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
 3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
 Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
     lstat            medv      
 Min.   : 1.73   Min.   : 5.00  
 1st Qu.: 6.95   1st Qu.:17.02  
 Median :11.36   Median :21.20  
 Mean   :12.65   Mean   :22.53  
 3rd Qu.:16.95   3rd Qu.:25.00  
 Max.   :37.97   Max.   :50.00  

(a) Based on this data set, provide an estimate for the population mean of medv. Call this estimateˆµ.

attach(Boston)
mean.medv = mean(medv)
mean.medv
[1] 22.53281

(b) Provide an estimate of the standard error ofˆµ. Interpret this result.

Hint: We can compute the standard error of the sample mean by dividing the sample standard deviation by the square root of the number of observations.

stderr.mean = sd(medv)/sqrt(length(medv))
stderr.mean
[1] 0.4088611

(c) Now estimate the standard error ofˆµ using the bootstrap. How does this compare to your answer from (b)?

boot.fn2 = function(data, index) return(mean(data[index]))
boot2 = boot(medv, boot.fn2, 100)
boot2

ORDINARY NONPARAMETRIC BOOTSTRAP


Call:
boot(data = medv, statistic = boot.fn2, R = 100)


Bootstrap Statistics :
    original       bias    std. error
t1* 22.53281 0.0008003953   0.3785282

(d) Based on your bootstrap estimate from (c), provide a 95 % confidence interval for the mean of medv. Compare it to the results obtained by using Boston[‘medv’].std() and the two standard error rule (3.9).

Hint: You can approximate a 95 % confidence interval using the formula [ˆ µ− 2SE(ˆ µ), ˆµ + 2SE(ˆ µ)].

t.test(Boston$medv)

    One Sample t-test

data:  Boston$medv
t = 55.111, df = 505, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 21.72953 23.33608
sample estimates:
mean of x 
 22.53281 
CI.bos = c(22.53 - 2 * 0.4174872, 22.53 + 2 * 0.4174872)
CI.bos
[1] 21.69503 23.36497

(e) Based on this data set, provide an estimate,ˆµmed, for the median value of medv in the population.

median.medv = median(medv)
median.medv
[1] 21.2

(f) We now would like to estimate the standard error ofˆµmed. Unfortunately, there is no simple formula for computing the standard error of the median. Instead, estimate the standard error of the median using the bootstrap. Comment on your findings.

boot.fn3 = function(data, index) return(median(data[index]))
boot3 = boot(medv, boot.fn3, 1000)
boot3

ORDINARY NONPARAMETRIC BOOTSTRAP


Call:
boot(data = medv, statistic = boot.fn3, R = 1000)


Bootstrap Statistics :
    original   bias    std. error
t1*     21.2 -0.02835     0.37681

(g) Based on this data set, provide an estimate for the tenth percentile of medv in Boston census tracts. Call this quantityˆµ0.1. (You can use the np.percentile() function.)

tenth.medv = quantile(medv, c(0.1))
tenth.medv
  10% 
12.75 

(h) Use the bootstrap to estimate the standard error ofˆµ0.1. Comment on your findings.

boot.fn4 = function(data, index) return(quantile(data[index], c(0.1)))
boot4 = boot(medv, boot.fn4, 1000)
boot4

ORDINARY NONPARAMETRIC BOOTSTRAP


Call:
boot(data = medv, statistic = boot.fn4, R = 1000)


Bootstrap Statistics :
    original  bias    std. error
t1*    12.75 0.00865   0.5121083