Multilevel models Probl

m0 <- lmer(probl~1+(1|v2.idmen/id), data=alldat)
print(icc(m0, by_group = TRUE))
## # ICC by Group
## 
## Group       |   ICC
## -------------------
## id:v2.idmen | 0.041
## v2.idmen    | 0.277
m1 <- lmer(probl~relevel(cluster, ref="companionship")+sex+factor(wave)+length+(1|v2.idmen/id), data=alldat)
#m1b <- lmer(probl~relevel(cluster, ref="companionship")+sex+factor(wave)+factor(wave)*length+(1|v2.idmen/id), data=alldat)
#m1c <- lmer(probl~relevel(cluster, ref="companionship")+relevel(cluster, ref="companionship")*sex+factor(wave)+length+(1|v2.idmen/id), data=alldat)
m2 <- lmer(probl~relevel(cluster, ref="companionship")+sex+factor(wave)+length+educ+enf+activ+(1|v2.idmen/id), data=alldat)
#fm1 <- plm(probl~relevel(cluster, ref="companionship")+sex+factor(wave), index="id", model="within", data=alldat)
#fm2 <- plm(probl~relevel(cluster, ref="companionship")+sex+factor(wave)+length+educ+enf+activ, index="id", model="within", data=alldat)

#htmlreg(list("Multilevel 0"=m0, "Multilevel 1"=m1, "Multilevel 1b"=m1b,"Multilevel 1c"=m1c, "Multilevel 2"=m2, "Fixed-Effect 1"=fm1, "Fixed-Effect 2"=fm2))
htmlreg(list("Multilevel 0"=m0, "Multilevel 1"=m1, "Multilevel 2"=m2))
Statistical models
  Multilevel 0 Multilevel 1 Multilevel 2
(Intercept) 1.60*** 1.16** 0.58
  (0.07) (0.38) (0.44)
relevel(cluster, ref = “companionship”)cocoon   0.31 0.37
    (0.35) (0.36)
relevel(cluster, ref = “companionship”)bastion   0.49 0.55
    (0.38) (0.39)
relevel(cluster, ref = “companionship”)association   0.43*** 0.39**
    (0.13) (0.13)
relevel(cluster, ref = “companionship”)parallel   0.58*** 0.52***
    (0.14) (0.15)
sexh   -0.33*** -0.43***
    (0.08) (0.11)
factor(wave)2   1.36*** 1.43***
    (0.34) (0.35)
factor(wave)3   1.31*** 1.40***
    (0.34) (0.35)
length   -0.03*** -0.03***
    (0.01) (0.01)
educprof_school     0.03
      (0.11)
educuniversity     0.11
      (0.15)
enfenfants_oui     0.45*
      (0.21)
activ25-75%     0.08
      (0.12)
activ>=80%     0.20
      (0.12)
activretired     -0.05
      (0.19)
AIC 8713.47 8466.00 8381.13
BIC 8735.99 8533.55 8482.21
Log Likelihood -4352.74 -4221.00 -4172.56
Num. obs. 2058 2058 2030
Num. groups: id:v2.idmen 686 686 686
Num. groups: v2.idmen 343 343 343
Var: id:v2.idmen (Intercept) 0.19 0.31 0.33
Var: v2.idmen (Intercept) 1.28 1.17 1.18
Var: Residual 3.15 2.65 2.65
***p < 0.001; **p < 0.01; *p < 0.05

Multilevel models satisf

m0 <- lmer(satisf~1+(1|v2.idmen/id), data=alldat)
print(icc(m0, by_group = TRUE))
## # ICC by Group
## 
## Group       |   ICC
## -------------------
## id:v2.idmen | 0.088
## v2.idmen    | 0.310
m0g <- glmer(satisf~1+(1|v2.idmen/id), data=alldat, family=binomial, control = glmerControl(optimizer = "bobyqa"))
print(icc(m0g, by_group = TRUE))
## # ICC by Group
## 
## Group       |   ICC
## -------------------
## id:v2.idmen | 0.061
## v2.idmen    | 0.438
#m1 <- lmer(satisf~relevel(cluster, ref="companionship")+sex+factor(wave)+length+(1|v2.idmen/id), data=alldat)
#m1b <- lmer(satisf~relevel(cluster, ref="companionship")+sex+factor(wave)+factor(wave)*length+(1|v2.idmen/id), data=alldat)
#m1c <- lmer(satisf~relevel(cluster, ref="companionship")+relevel(cluster, ref="companionship")*sex+factor(wave)+length+(1|v2.idmen/id), data=alldat)
#m2 <- lmer(satisf~relevel(cluster, ref="companionship")+sex+factor(wave)+length+educ+enf+activ+(1|v2.idmen/id), data=alldat)

m1g <- glmer(satisf~relevel(cluster, ref="companionship")+sex+factor(wave)+length+(1|v2.idmen/id), data=alldat, family=binomial, control = glmerControl(optimizer = "bobyqa", 
                                                                  optCtrl = list(maxfun=100000)))
m2g <- glmer(satisf~relevel(cluster, ref="companionship")+sex+factor(wave)+length+educ+enf+activ+(1|v2.idmen/id), 
             data=alldat, family=binomial, control = glmerControl(optimizer = "bobyqa", 
                                                                  optCtrl = list(maxfun=100000)))
#fm1 <- plm(satisf~relevel(cluster, ref="companionship")+sex+factor(wave), index="id", model="within", data=alldat)
#fm2 <- plm(satisf~relevel(cluster, ref="companionship")+sex+factor(wave)+length+educ+enf+activ, index="id", model="within", data=alldat)

#htmlreg(list("Multilevel 0"=m0, "Multilevel 1"=m1, "Multilevel 1b"=m1b,"Multilevel 1c"=m1c, "Multilevel 2"=m2, "Fixed-Effect 1"=fm1, "Fixed-Effect 2"=fm2, "Logistic 0"=m0g, "Logistic 1"=m1g, "Logistic 2"=m2g))
htmlreg(list("Multilevel 0"=m0, "Logistic 0"=m0g, "Logistic 1"=m1g, "Logistic 2"=m2g))
Statistical models
  Multilevel 0 Logistic 0 Logistic 1 Logistic 2
(Intercept) 0.52*** 0.10 0.51 -0.13
  (0.02) (0.11) (0.58) (0.65)
relevel(cluster, ref = “companionship”)cocoon     -0.23 -0.22
      (0.53) (0.54)
relevel(cluster, ref = “companionship”)bastion     -0.58 -0.48
      (0.57) (0.58)
relevel(cluster, ref = “companionship”)association     0.40* 0.32
      (0.19) (0.19)
relevel(cluster, ref = “companionship”)parallel     0.39 0.34
      (0.22) (0.22)
sexh     -0.29* -0.26
      (0.12) (0.15)
factor(wave)2     -0.26 -0.21
      (0.52) (0.52)
factor(wave)3     -0.15 -0.17
      (0.51) (0.53)
length     -0.01 -0.01
      (0.01) (0.01)
educprof_school       -0.19
        (0.16)
educuniversity       -0.08
        (0.21)
enfenfants_oui       0.57
        (0.31)
activ25-75%       0.25
        (0.18)
activ>=80%       0.26
        (0.18)
activretired       0.52
        (0.28)
AIC 2598.46 2504.63 2501.99 2474.99
BIC 2620.97 2521.52 2563.91 2570.46
Log Likelihood -1295.23 -1249.32 -1240.00 -1220.49
Num. obs. 2057 2057 2057 2030
Num. groups: id:v2.idmen 686 686 686 686
Num. groups: v2.idmen 343 343 343 343
Var: id:v2.idmen (Intercept) 0.02 0.40 0.38 0.38
Var: v2.idmen (Intercept) 0.08 2.88 2.76 2.77
Var: Residual 0.15      
***p < 0.001; **p < 0.01; *p < 0.05

Multilevel models sep

m0 <- lmer(sep~1+(1|v2.idmen/id), data=alldat)
print(icc(m0, by_group = TRUE))
## # ICC by Group
## 
## Group       |   ICC
## -------------------
## id:v2.idmen | 0.163
## v2.idmen    | 0.309
m0g <- glmer(sep~1+(1|v2.idmen/id), data=alldat, family=binomial, control = glmerControl(optimizer = "bobyqa"))
print(icc(m0g, by_group = TRUE))
## # ICC by Group
## 
## Group       |   ICC
## -------------------
## id:v2.idmen | 0.169
## v2.idmen    | 0.483
#m1 <- lmer(sep~relevel(cluster, ref="companionship")+sex+factor(wave)+length+(1|v2.idmen/id), data=alldat)
#m1b <- lmer(sep~relevel(cluster, ref="companionship")+sex+factor(wave)+factor(wave)*length+(1|v2.idmen/id), data=alldat)
#m1c <- lmer(sep~relevel(cluster, ref="companionship")+relevel(cluster, ref="companionship")*sex+factor(wave)+length+(1|v2.idmen/id), data=alldat)
#m2 <- lmer(sep~relevel(cluster, ref="companionship")+sex+factor(wave)+length+educ+enf+activ+(1|v2.idmen/id), data=alldat)


m1g <- glmer(sep~relevel(cluster, ref="companionship")+sex+factor(wave)+length+(1|v2.idmen/id), data=alldat, family=binomial, control = glmerControl(optimizer = "bobyqa", 
                                                                  optCtrl = list(maxfun=100000)))
m2g <- glmer(sep~relevel(cluster, ref="companionship")+sex+factor(wave)+length+educ+enf+activ+(1|v2.idmen/id), 
             data=alldat, family=binomial, control = glmerControl(optimizer = "bobyqa", 
                                                                  optCtrl = list(maxfun=100000)))
#fm1 <- plm(sep~relevel(cluster, ref="companionship")+sex+factor(wave), index="id", model="within", data=alldat)
#fm2 <- plm(sep~relevel(cluster, ref="companionship")+sex+factor(wave)+length+educ+enf+activ, index="id", model="within", data=alldat)

#htmlreg(list("Multilevel 0"=m0, "Multilevel 1"=m1, "Multilevel 1b"=m1b,"Multilevel 1c"=m1c, "Multilevel 2"=m2, "Fixed-Effect 1"=fm1, "Fixed-Effect 2"=fm2, "Logistic 0"=m0g, "Logistic 1"=m1g, "Logistic 2"=m2g))
htmlreg(list("Multilevel 0"=m0, "Logistic 0"=m0g, "Logistic 1"=m1g, "Logistic 2"=m2g))
Statistical models
  Multilevel 0 Logistic 0 Logistic 1 Logistic 2
(Intercept) 0.26*** -2.05*** -1.04 -2.41**
  (0.02) (0.19) (0.69) (0.82)
relevel(cluster, ref = “companionship”)cocoon     -0.11 -0.23
      (0.60) (0.62)
relevel(cluster, ref = “companionship”)bastion     -0.70 -0.74
      (0.70) (0.73)
relevel(cluster, ref = “companionship”)association     0.56* 0.49*
      (0.24) (0.24)
relevel(cluster, ref = “companionship”)parallel     0.42 0.39
      (0.27) (0.27)
sexh     -0.96*** -1.06***
      (0.17) (0.22)
factor(wave)2     -0.14 -0.10
      (0.58) (0.60)
factor(wave)3     -0.05 0.06
      (0.58) (0.60)
length     -0.03 -0.02
      (0.02) (0.02)
educprof_school       0.09
        (0.21)
educuniversity       0.49
        (0.29)
enfenfants_oui       0.67
        (0.43)
activ25-75%       0.80***
        (0.24)
activ>=80%       0.72**
        (0.24)
activretired       0.20
        (0.36)
AIC 1968.98 1978.34 1946.87 1912.96
BIC 1991.50 1995.23 2008.78 2008.42
Log Likelihood -980.49 -986.17 -962.43 -939.48
Num. obs. 2056 2056 2056 2029
Num. groups: id:v2.idmen 686 686 686 686
Num. groups: v2.idmen 343 343 343 343
Var: id:v2.idmen (Intercept) 0.03 1.60 1.15 1.22
Var: v2.idmen (Intercept) 0.06 4.58 4.57 4.69
Var: Residual 0.10      
***p < 0.001; **p < 0.01; *p < 0.05


## R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see <http://rmarkdown.rstudio.com>.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:


```r
summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.