[1] "/home/sergiouribe/Insync/sergio.uribe@gmail.com/Google Drive/Research Drive/2025_Sindija_Baltic Survey of Empathy Levels Jefferson scale/analysis_jefferson"
Cronbach's alpha: 0.787 with 95% CI [ 0.742 , 0.827 ]
Visualization
Table
Item-Total Correlations (JSE-HPS, Latvian Version)
Cronbach's alpha = 0.79
Item
Item-Total Correlation
Threshold
Q_Norm_1
0.414
≥ 0.30
Q_Norm_2
0.393
≥ 0.30
Q_Norm_3
0.115
< 0.30
Q_Norm_4
0.263
< 0.30
Q_Norm_5
0.130
< 0.30
Q_Norm_6
0.052
< 0.30
Q_Norm_7
0.385
≥ 0.30
Q_Norm_8
0.353
≥ 0.30
Q_Norm_9
0.541
≥ 0.30
Q_Norm_10
0.402
≥ 0.30
Q_Norm_11
0.591
≥ 0.30
Q_Norm_12
0.398
≥ 0.30
Q_Norm_13
0.413
≥ 0.30
Q_Norm_14
0.459
≥ 0.30
Q_Norm_15
0.432
≥ 0.30
Q_Norm_16
0.546
≥ 0.30
Q_Norm_17
0.395
≥ 0.30
Q_Norm_18
0.161
< 0.30
Q_Norm_19
0.181
< 0.30
Q_Norm_20-
0.606
≥ 0.30
The item-total correlation (r.drop) indicates how well each item aligns with the overall scale. A high correlation (≥ 0.30) suggests that the item is consistent with the total empathy score and contributes meaningfully to internal consistency. A low correlation (< 0.30) indicates that the item may not be measuring the same underlying construct (empathy) or may have issues related to translation, comprehension, or cultural appropriateness.
Items near the top of the graph show strong alignment with the empathy construct. In contrast, items at the bottom display weak correlations.
These low-performing items may require review due to potential ambiguity, poor wording, conceptual mismatch with the rest of the scale, or reverse-coding problems.
Ordered table
Item-Total Correlations (JSE-HPS, Latvian Version)
Cronbach's alpha = 0.79
Item
Item-Total Correlation
Threshold
Q_Norm_20-
0.606
≥ 0.30
Q_Norm_11
0.591
≥ 0.30
Q_Norm_16
0.546
≥ 0.30
Q_Norm_9
0.541
≥ 0.30
Q_Norm_14
0.459
≥ 0.30
Q_Norm_15
0.432
≥ 0.30
Q_Norm_1
0.414
≥ 0.30
Q_Norm_13
0.413
≥ 0.30
Q_Norm_10
0.402
≥ 0.30
Q_Norm_12
0.398
≥ 0.30
Q_Norm_17
0.395
≥ 0.30
Q_Norm_2
0.393
≥ 0.30
Q_Norm_7
0.385
≥ 0.30
Q_Norm_8
0.353
≥ 0.30
Q_Norm_4
0.263
< 0.30
Q_Norm_19
0.181
< 0.30
Q_Norm_18
0.161
< 0.30
Q_Norm_5
0.130
< 0.30
Q_Norm_3
0.115
< 0.30
Q_Norm_6
0.052
< 0.30
Likert Plot with gglikert()
For the Methods section
Internal consistency of the Jefferson Scale of Empathy was assessed using Cronbach’s alpha, with item-total correlations examined for all 20 items. The 95% confidence interval for alpha was estimated using the Feldt method.
Source Code
---title: "UPDATED 2025_JeffersonEmpathyAnalysis_Sindija"author: "S Uribe"date: 2025-04-15date-modified: last-modifiedlanguage: title-block-published: "CREATED" title-block-modified: "UPDATED"format: html: toc: truetoc-expand: 3code-fold: truecode-tools: trueeditor: visualexecute: echo: false cache: false warning: false message: false---# Packages```{r}pacman::p_load(tidyverse, here, sjPlot, gt, # for the table psych, # for the crohnbach ggstats, # for the new likert gtsummary, irr) # for ICC``````{r}here::here()``````{r}theme_set(theme_minimal())```# Docs[Abstract ADEE](https://docs.google.com/document/d/1hdRnpvj2s_lVpJtQwfAJDkZES_H5vUdn/edit)[Manuscript](https://docs.google.com/document/d/18EtAMJm36GVRP5PKIuI_fwndDhnVS_lgfY2zpjZZBas/edit?tab=t.0#heading=h.suq8ocx8doy2)# Likert Analysis## DATA NOT NORMALIZED```{r}df_raw <-read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vQDqJVG3B4KNbXXZp3KeBSSHY8wfH0AXvJwN10uRPC6gh4tYzGspQLVDOCmVFqNDOXMH65Higi4QT9H/pub?gid=362257206&single=true&output=csv") |>select(Code, "1. Recognising patients’ emotions affects treatment outcomes.":"20. Empathy as a therapeutic tool.")``````{r}likert_items_raw <- df_raw %>%select(contains("."))``````{r}# Convert to factors with Likert levelslikert_items_raw <- likert_items_raw %>%mutate(across(everything(), ~factor(., levels =1:7, labels =c("1 Strongly Disagree", "2", "3", "4", "5", "6", "7 Strongly Agree"))))``````{r}plot_likert(likert_items_raw, values ="none") +labs(title ="Jefferson Scale of Empathy") +theme(plot.margin =margin(10, 10, 10, 10),axis.text.y =element_text(size =8) )``````{r}rm(likert_items_raw, df_raw)```## DATA NORMALIZED## Data```{r}df <-read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vQDqJVG3B4KNbXXZp3KeBSSHY8wfH0AXvJwN10uRPC6gh4tYzGspQLVDOCmVFqNDOXMH65Higi4QT9H/pub?gid=362257206&single=true&output=csv") |>select(Code, Q_Norm_1:Q_Norm_20) # the new normalized data``````{r}# glimpse(df)``````{r}likert_items <- df %>%select(starts_with("Q"))``````{r}# colnames(likert_items) <- paste0("Q", 1:20)``````{r}# Convert to factors with Likert levelslikert_items <- likert_items %>%mutate(across(everything(), ~factor(., levels =1:7, labels =c("1 Strongly Disagree", "2", "3", "4", "5", "6", "7 Strongly Agree"))))``````{r}plot_likert(likert_items, values ="none") +labs(title ="Jefferson Scale of Empathy – Latvian Version (n = 18)") +theme(plot.margin =margin(10, 10, 10, 10),axis.text.y =element_text(size =8) )```# **Cronbach's alpha**## Original```{r}# Select only the JSE items jse_items <- df %>%select(starts_with("Q"))``````{r}# Calculate Cronbach's alphaalpha_results <- psych::alpha(jse_items, check.keys=TRUE) # Some items were negatively correlated with the first principal component and probably should be reversed. To do this, run the function again with the 'check.keys=TRUE' option``````{r}# View Cronbach's alphaalpha_results$total$raw_alpha```## **Cronbach's alpha with Confidence Interval**```{r}# Extract 95% confidence intervalci_lower <- alpha_results$feldt$lower.ci$raw_alphaci_upper <- alpha_results$feldt$upper.ci$raw_alphaalpha_value <- alpha_results$total$raw_alphacat("Cronbach's alpha:", round(alpha_value, 3),"with 95% CI [", round(ci_lower, 3), ",", round(ci_upper, 3), "]")``````{r}rm(ci_lower, ci_upper, alpha_value )```## Visualization```{r}# Extract item-total correlations from item.statsitem_corrs <- alpha_results$item.stats %>%as.data.frame() %>%rownames_to_column("Item") %>%select(Item, r.drop)``````{r}item_corrs |>mutate(Q =paste0("Q", row_number())) |>ggplot(aes(x =reorder(Q, r.drop), y = r.drop)) +geom_col(fill ="steelblue") +geom_hline(yintercept =0.30, linetype ="dashed", color ="red") +coord_flip() +labs(title ="Item-Total Correlations (After Reverse-Scoring)",subtitle =paste("Cronbach's alpha =", round(alpha_results$total$raw_alpha, 2)),x ="Item",y ="Item-Total Correlation" ) +theme_minimal(base_size =12)```## Table```{r}item_corrs |>mutate(Category =ifelse(r.drop >=0.30, "≥ 0.30", "< 0.30")) |>gt() |>tab_header(title ="Item-Total Correlations (JSE-HPS, Latvian Version)",subtitle =paste("Cronbach's alpha =", round(alpha_results$total$raw_alpha, 2)) ) |>fmt_number(columns = r.drop, decimals =3) |>data_color(columns = r.drop,fn =function(x) ifelse(x >=0.30, "steelblue", "black") ) |>cols_label(Item ="Item",r.drop ="Item-Total Correlation",Category ="Threshold" )```The item-total correlation (r.drop) indicates how well each item aligns with the overall scale. **A high correlation (≥ 0.30)** suggests that the item is consistent with the total empathy score and contributes meaningfully to internal consistency. **A low correlation (\< 0.30)** indicates that the item may not be measuring the same underlying construct (empathy) or may have issues related to translation, comprehension, or cultural appropriateness.**Items near the top of the graph** show strong alignment with the empathy construct. In contrast, **items at the bottom** display weak correlations.These low-performing items may require review due to potential ambiguity, poor wording, conceptual mismatch with the rest of the scale, or reverse-coding problems.## Ordered table```{r}item_corrs |>mutate(Category =ifelse(r.drop >=0.30, "≥ 0.30", "< 0.30")) |>arrange(desc(r.drop)) |>gt() |>tab_header(title ="Item-Total Correlations (JSE-HPS, Latvian Version)",subtitle =paste("Cronbach's alpha =", round(alpha_results$total$raw_alpha, 2)) ) |>fmt_number(columns = r.drop, decimals =3) |>data_color(columns = r.drop,fn =function(x) ifelse(x >=0.30, "steelblue", "black") ) |>cols_label(Item ="Item",r.drop ="Item-Total Correlation",Category ="Threshold" )```# Likert Plot with gglikert()```{r}# Convert data to labeled Likert factorslikert_items_labels <- df |>select(starts_with("Q")) |>mutate(across(everything(), ~factor(.x,levels =1:7,labels =c("Strongly disagree", "Disagree", "Somewhat disagree","Somewhat agree", "Agree", "More than agree", "Strongly agree") )))``````{r}# Plot Likert responses using gglikertgglikert(likert_items_labels,sort ="descending",y_label_wrap =20,add_labels =TRUE,labels_size =3,reverse_likert =FALSE,totals_include_center =FALSE) +ggtitle("Distribution of Responses – Jefferson Scale of Empathy (Latvian Version)",subtitle ="Centered by response polarity (disagree vs agree)" ) +labs(caption ="Percentages at the right and left represent the total proportion of positive and negative responses,\nexcluding the central (neutral) category.") +scale_fill_brewer(palette ="RdYlBu") ``````{r}likert_items_collapsed <- likert_items_labels |>mutate(across(everything(), ~fct_collapse(.,Disagree =c("Strongly disagree", "Disagree", "Somewhat disagree"),Neutral =c("Somewhat agree"),Agree =c("Agree", "More than agree", "Strongly agree") )))``````{r}gglikert(likert_items_collapsed, sort ="descending",y_label_wrap =20,add_labels =TRUE,labels_size =3,reverse_likert =FALSE,totals_include_center =FALSE) +ggtitle("Distribution of Responses – Jefferson Scale of Empathy (Latvian Version)",subtitle ="Centered by response polarity (disagree vs agree)" ) +scale_fill_brewer(palette ="RdYlBu") ```## For the Methods sectionInternal consistency of the Jefferson Scale of Empathy was assessed using Cronbach’s alpha, with item-total correlations examined for all 20 items. The 95% confidence interval for alpha was estimated using the Feldt method.