library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Print the structure of your dataset.
Sleep=read.csv("Sleep.csv")
str(Sleep)
## 'data.frame': 99 obs. of 13 variables:
## $ Person.ID : int 1 2 3 4 5 6 7 8 9 10 ...
## $ Gender : chr "Male" "Male" "Male" "Male" ...
## $ Age : int 27 28 28 28 28 28 29 29 29 29 ...
## $ Occupation : chr "Software Engineer" "Doctor" "Doctor" "Sales Representative" ...
## $ Sleep.Duration : num 6.1 6.2 6.2 5.9 5.9 5.9 6.3 7.8 7.8 7.8 ...
## $ Quality.of.Sleep : int 6 6 6 4 4 4 6 7 7 7 ...
## $ Physical.Activity.Level: int 42 60 60 30 30 30 40 75 75 75 ...
## $ Stress.Level : int 6 8 8 8 8 8 7 6 6 6 ...
## $ BMI.Category : chr "Overweight" "Normal" "Normal" "Obese" ...
## $ Blood.Pressure : chr "126/83" "125/80" "125/80" "140/90" ...
## $ Heart.Rate : int 77 75 75 85 85 85 82 70 70 70 ...
## $ Daily.Steps : int 4200 10000 10000 3000 3000 3000 3500 8000 8000 8000 ...
## $ Sleep.Disorder : chr "None" "None" "None" "Sleep Apnea" ...
List the variables in your dataset.
ls(Sleep)
## [1] "Age" "Blood.Pressure"
## [3] "BMI.Category" "Daily.Steps"
## [5] "Gender" "Heart.Rate"
## [7] "Occupation" "Person.ID"
## [9] "Physical.Activity.Level" "Quality.of.Sleep"
## [11] "Sleep.Disorder" "Sleep.Duration"
## [13] "Stress.Level"
Print the top 15 rows of your dataset.
head(Sleep, 15)
## Person.ID Gender Age Occupation Sleep.Duration Quality.of.Sleep
## 1 1 Male 27 Software Engineer 6.1 6
## 2 2 Male 28 Doctor 6.2 6
## 3 3 Male 28 Doctor 6.2 6
## 4 4 Male 28 Sales Representative 5.9 4
## 5 5 Male 28 Sales Representative 5.9 4
## 6 6 Male 28 Software Engineer 5.9 4
## 7 7 Male 29 Teacher 6.3 6
## 8 8 Male 29 Doctor 7.8 7
## 9 9 Male 29 Doctor 7.8 7
## 10 10 Male 29 Doctor 7.8 7
## 11 11 Male 29 Doctor 6.1 6
## 12 12 Male 29 Doctor 7.8 7
## 13 13 Male 29 Doctor 6.1 6
## 14 14 Male 29 Doctor 6.0 6
## 15 15 Male 29 Doctor 6.0 6
## Physical.Activity.Level Stress.Level BMI.Category Blood.Pressure Heart.Rate
## 1 42 6 Overweight 126/83 77
## 2 60 8 Normal 125/80 75
## 3 60 8 Normal 125/80 75
## 4 30 8 Obese 140/90 85
## 5 30 8 Obese 140/90 85
## 6 30 8 Obese 140/90 85
## 7 40 7 Obese 140/90 82
## 8 75 6 Normal 120/80 70
## 9 75 6 Normal 120/80 70
## 10 75 6 Normal 120/80 70
## 11 30 8 Normal 120/80 70
## 12 75 6 Normal 120/80 70
## 13 30 8 Normal 120/80 70
## 14 30 8 Normal 120/80 70
## 15 30 8 Normal 120/80 70
## Daily.Steps Sleep.Disorder
## 1 4200 None
## 2 10000 None
## 3 10000 None
## 4 3000 Sleep Apnea
## 5 3000 Sleep Apnea
## 6 3000 Insomnia
## 7 3500 Insomnia
## 8 8000 None
## 9 8000 None
## 10 8000 None
## 11 8000 None
## 12 8000 None
## 13 8000 None
## 14 8000 None
## 15 8000 None
Write a user defined function using any of the variables from the data set.?????????????
SleepEffectiveness=function(Duration,Quality){Duration*Quality}
SleepEffectiveness(7,6)
## [1] 42
Use data manipulation techniques and filter rows based on any logical criteria that exist in your dataset.
HealthyMale=Sleep %>% filter(Sleep.Duration>7,Quality.of.Sleep>6,Stress.Level>5,Gender=="Male")
HealthyMale
## Person.ID Gender Age Occupation Sleep.Duration Quality.of.Sleep
## 1 8 Male 29 Doctor 7.8 7
## 2 9 Male 29 Doctor 7.8 7
## 3 10 Male 29 Doctor 7.8 7
## 4 12 Male 29 Doctor 7.8 7
## 5 20 Male 30 Doctor 7.6 7
## 6 21 Male 30 Doctor 7.7 7
## 7 22 Male 30 Doctor 7.7 7
## 8 23 Male 30 Doctor 7.7 7
## 9 24 Male 30 Doctor 7.7 7
## 10 25 Male 30 Doctor 7.8 7
## 11 26 Male 30 Doctor 7.9 7
## 12 27 Male 30 Doctor 7.8 7
## 13 28 Male 30 Doctor 7.9 7
## 14 29 Male 30 Doctor 7.9 7
## 15 30 Male 30 Doctor 7.9 7
## 16 35 Male 31 Doctor 7.7 7
## 17 38 Male 31 Doctor 7.6 7
## 18 39 Male 31 Doctor 7.6 7
## 19 40 Male 31 Doctor 7.6 7
## 20 41 Male 31 Doctor 7.7 7
## 21 42 Male 31 Doctor 7.7 7
## 22 43 Male 31 Doctor 7.7 7
## 23 44 Male 31 Doctor 7.8 7
## 24 45 Male 31 Doctor 7.7 7
## 25 46 Male 31 Doctor 7.8 7
## 26 47 Male 31 Doctor 7.7 7
## 27 48 Male 31 Doctor 7.8 7
## 28 49 Male 31 Doctor 7.7 7
## 29 50 Male 31 Doctor 7.7 7
## 30 54 Male 32 Doctor 7.6 7
## 31 57 Male 32 Doctor 7.7 7
## 32 60 Male 32 Doctor 7.7 7
## 33 67 Male 32 Accountant 7.2 8
## Physical.Activity.Level Stress.Level BMI.Category Blood.Pressure Heart.Rate
## 1 75 6 Normal 120/80 70
## 2 75 6 Normal 120/80 70
## 3 75 6 Normal 120/80 70
## 4 75 6 Normal 120/80 70
## 5 75 6 Normal 120/80 70
## 6 75 6 Normal 120/80 70
## 7 75 6 Normal 120/80 70
## 8 75 6 Normal 120/80 70
## 9 75 6 Normal 120/80 70
## 10 75 6 Normal 120/80 70
## 11 75 6 Normal 120/80 70
## 12 75 6 Normal 120/80 70
## 13 75 6 Normal 120/80 70
## 14 75 6 Normal 120/80 70
## 15 75 6 Normal 120/80 70
## 16 75 6 Normal 120/80 70
## 17 75 6 Normal 120/80 70
## 18 75 6 Normal 120/80 70
## 19 75 6 Normal 120/80 70
## 20 75 6 Normal 120/80 70
## 21 75 6 Normal 120/80 70
## 22 75 6 Normal 120/80 70
## 23 75 6 Normal 120/80 70
## 24 75 6 Normal 120/80 70
## 25 75 6 Normal 120/80 70
## 26 75 6 Normal 120/80 70
## 27 75 6 Normal 120/80 70
## 28 75 6 Normal 120/80 70
## 29 75 6 Normal 120/80 70
## 30 75 6 Normal 120/80 70
## 31 75 6 Normal 120/80 70
## 32 75 6 Normal 120/80 70
## 33 50 6 Normal Weight 118/76 68
## Daily.Steps Sleep.Disorder
## 1 8000 None
## 2 8000 None
## 3 8000 None
## 4 8000 None
## 5 8000 None
## 6 8000 None
## 7 8000 None
## 8 8000 None
## 9 8000 None
## 10 8000 None
## 11 8000 None
## 12 8000 None
## 13 8000 None
## 14 8000 None
## 15 8000 None
## 16 8000 None
## 17 8000 None
## 18 8000 None
## 19 8000 None
## 20 8000 None
## 21 8000 None
## 22 8000 None
## 23 8000 None
## 24 8000 None
## 25 8000 None
## 26 8000 None
## 27 8000 None
## 28 8000 None
## 29 8000 Sleep Apnea
## 30 8000 None
## 31 8000 None
## 32 8000 None
## 33 7000 None
Identify the dependent & independent variables and use reshaping techniques and create a new data frame by joining those variables from your dataset.
ID=Sleep$Person.ID
Duration=Sleep$Sleep.Duration #independent variable
Stress=Sleep$Stress.Level #dependent variable
DurationStress=cbind(ID,Duration,Stress)
DurationStress=as.data.frame(DurationStress)
DurationStress
## ID Duration Stress
## 1 1 6.1 6
## 2 2 6.2 8
## 3 3 6.2 8
## 4 4 5.9 8
## 5 5 5.9 8
## 6 6 5.9 8
## 7 7 6.3 7
## 8 8 7.8 6
## 9 9 7.8 6
## 10 10 7.8 6
## 11 11 6.1 8
## 12 12 7.8 6
## 13 13 6.1 8
## 14 14 6.0 8
## 15 15 6.0 8
## 16 16 6.0 8
## 17 17 6.5 7
## 18 18 6.0 8
## 19 19 6.5 7
## 20 20 7.6 6
## 21 21 7.7 6
## 22 22 7.7 6
## 23 23 7.7 6
## 24 24 7.7 6
## 25 25 7.8 6
## 26 26 7.9 6
## 27 27 7.8 6
## 28 28 7.9 6
## 29 29 7.9 6
## 30 30 7.9 6
## 31 31 6.4 7
## 32 32 6.4 7
## 33 33 7.9 4
## 34 34 6.1 8
## 35 35 7.7 6
## 36 36 6.1 8
## 37 37 6.1 8
## 38 38 7.6 6
## 39 39 7.6 6
## 40 40 7.6 6
## 41 41 7.7 6
## 42 42 7.7 6
## 43 43 7.7 6
## 44 44 7.8 6
## 45 45 7.7 6
## 46 46 7.8 6
## 47 47 7.7 6
## 48 48 7.8 6
## 49 49 7.7 6
## 50 50 7.7 6
## 51 51 7.5 3
## 52 52 7.5 3
## 53 53 6.0 8
## 54 54 7.6 6
## 55 55 6.0 8
## 56 56 6.0 8
## 57 57 7.7 6
## 58 58 6.0 8
## 59 59 6.0 8
## 60 60 7.7 6
## 61 61 6.0 8
## 62 62 6.0 8
## 63 63 6.2 8
## 64 64 6.2 8
## 65 65 6.2 8
## 66 66 6.2 8
## 67 67 7.2 6
## 68 68 6.0 8
## 69 69 6.2 6
## 70 70 6.2 6
## 71 71 6.1 8
## 72 72 6.1 8
## 73 73 6.1 8
## 74 74 6.1 8
## 75 75 6.0 8
## 76 76 6.0 8
## 77 77 6.0 8
## 78 78 6.0 8
## 79 79 6.0 8
## 80 80 6.0 8
## 81 81 5.8 8
## 82 82 5.8 8
## 83 83 6.7 5
## 84 84 6.7 5
## 85 85 7.5 5
## 86 86 7.2 4
## 87 87 7.2 4
## 88 88 7.2 4
## 89 89 7.3 4
## 90 90 7.3 4
## 91 91 7.3 4
## 92 92 7.3 4
## 93 93 7.5 5
## 94 94 7.4 5
## 95 95 7.2 4
## 96 96 7.1 4
## 97 97 7.2 4
## 98 98 7.1 4
## 99 99 7.1 4
Remove missing values in your dataset.
RemovedDataset=na.omit(Sleep) #remove rows with missing values in dataset
RemovedDataset
## Person.ID Gender Age Occupation Sleep.Duration Quality.of.Sleep
## 1 1 Male 27 Software Engineer 6.1 6
## 2 2 Male 28 Doctor 6.2 6
## 3 3 Male 28 Doctor 6.2 6
## 4 4 Male 28 Sales Representative 5.9 4
## 5 5 Male 28 Sales Representative 5.9 4
## 6 6 Male 28 Software Engineer 5.9 4
## 7 7 Male 29 Teacher 6.3 6
## 8 8 Male 29 Doctor 7.8 7
## 9 9 Male 29 Doctor 7.8 7
## 10 10 Male 29 Doctor 7.8 7
## 11 11 Male 29 Doctor 6.1 6
## 12 12 Male 29 Doctor 7.8 7
## 13 13 Male 29 Doctor 6.1 6
## 14 14 Male 29 Doctor 6.0 6
## 15 15 Male 29 Doctor 6.0 6
## 16 16 Male 29 Doctor 6.0 6
## 17 17 Female 29 Nurse 6.5 5
## 18 18 Male 29 Doctor 6.0 6
## 19 19 Female 29 Nurse 6.5 5
## 20 20 Male 30 Doctor 7.6 7
## 21 21 Male 30 Doctor 7.7 7
## 22 22 Male 30 Doctor 7.7 7
## 23 23 Male 30 Doctor 7.7 7
## 24 24 Male 30 Doctor 7.7 7
## 25 25 Male 30 Doctor 7.8 7
## 26 26 Male 30 Doctor 7.9 7
## 27 27 Male 30 Doctor 7.8 7
## 28 28 Male 30 Doctor 7.9 7
## 29 29 Male 30 Doctor 7.9 7
## 30 30 Male 30 Doctor 7.9 7
## 31 31 Female 30 Nurse 6.4 5
## 32 32 Female 30 Nurse 6.4 5
## 33 33 Female 31 Nurse 7.9 8
## 34 34 Male 31 Doctor 6.1 6
## 35 35 Male 31 Doctor 7.7 7
## 36 36 Male 31 Doctor 6.1 6
## 37 37 Male 31 Doctor 6.1 6
## 38 38 Male 31 Doctor 7.6 7
## 39 39 Male 31 Doctor 7.6 7
## 40 40 Male 31 Doctor 7.6 7
## 41 41 Male 31 Doctor 7.7 7
## 42 42 Male 31 Doctor 7.7 7
## 43 43 Male 31 Doctor 7.7 7
## 44 44 Male 31 Doctor 7.8 7
## 45 45 Male 31 Doctor 7.7 7
## 46 46 Male 31 Doctor 7.8 7
## 47 47 Male 31 Doctor 7.7 7
## 48 48 Male 31 Doctor 7.8 7
## 49 49 Male 31 Doctor 7.7 7
## 50 50 Male 31 Doctor 7.7 7
## 51 51 Male 32 Engineer 7.5 8
## 52 52 Male 32 Engineer 7.5 8
## 53 53 Male 32 Doctor 6.0 6
## 54 54 Male 32 Doctor 7.6 7
## 55 55 Male 32 Doctor 6.0 6
## 56 56 Male 32 Doctor 6.0 6
## 57 57 Male 32 Doctor 7.7 7
## 58 58 Male 32 Doctor 6.0 6
## 59 59 Male 32 Doctor 6.0 6
## 60 60 Male 32 Doctor 7.7 7
## 61 61 Male 32 Doctor 6.0 6
## 62 62 Male 32 Doctor 6.0 6
## 63 63 Male 32 Doctor 6.2 6
## 64 64 Male 32 Doctor 6.2 6
## 65 65 Male 32 Doctor 6.2 6
## 66 66 Male 32 Doctor 6.2 6
## 67 67 Male 32 Accountant 7.2 8
## 68 68 Male 33 Doctor 6.0 6
## 69 69 Female 33 Scientist 6.2 6
## 70 70 Female 33 Scientist 6.2 6
## 71 71 Male 33 Doctor 6.1 6
## 72 72 Male 33 Doctor 6.1 6
## 73 73 Male 33 Doctor 6.1 6
## 74 74 Male 33 Doctor 6.1 6
## 75 75 Male 33 Doctor 6.0 6
## 76 76 Male 33 Doctor 6.0 6
## 77 77 Male 33 Doctor 6.0 6
## 78 78 Male 33 Doctor 6.0 6
## 79 79 Male 33 Doctor 6.0 6
## 80 80 Male 33 Doctor 6.0 6
## 81 81 Female 34 Scientist 5.8 4
## 82 82 Female 34 Scientist 5.8 4
## 83 83 Male 35 Teacher 6.7 7
## 84 84 Male 35 Teacher 6.7 7
## 85 85 Male 35 Software Engineer 7.5 8
## 86 86 Female 35 Accountant 7.2 8
## 87 87 Male 35 Engineer 7.2 8
## 88 88 Male 35 Engineer 7.2 8
## 89 89 Male 35 Engineer 7.3 8
## 90 90 Male 35 Engineer 7.3 8
## 91 91 Male 35 Engineer 7.3 8
## 92 92 Male 35 Engineer 7.3 8
## 93 93 Male 35 Software Engineer 7.5 8
## 94 94 Male 35 Lawyer 7.4 7
## 95 95 Female 36 Accountant 7.2 8
## 96 96 Female 36 Accountant 7.1 8
## 97 97 Female 36 Accountant 7.2 8
## 98 98 Female 36 Accountant 7.1 8
## 99 99 Female 36 Teacher 7.1 8
## Physical.Activity.Level Stress.Level BMI.Category Blood.Pressure Heart.Rate
## 1 42 6 Overweight 126/83 77
## 2 60 8 Normal 125/80 75
## 3 60 8 Normal 125/80 75
## 4 30 8 Obese 140/90 85
## 5 30 8 Obese 140/90 85
## 6 30 8 Obese 140/90 85
## 7 40 7 Obese 140/90 82
## 8 75 6 Normal 120/80 70
## 9 75 6 Normal 120/80 70
## 10 75 6 Normal 120/80 70
## 11 30 8 Normal 120/80 70
## 12 75 6 Normal 120/80 70
## 13 30 8 Normal 120/80 70
## 14 30 8 Normal 120/80 70
## 15 30 8 Normal 120/80 70
## 16 30 8 Normal 120/80 70
## 17 40 7 Normal Weight 132/87 80
## 18 30 8 Normal 120/80 70
## 19 40 7 Normal Weight 132/87 80
## 20 75 6 Normal 120/80 70
## 21 75 6 Normal 120/80 70
## 22 75 6 Normal 120/80 70
## 23 75 6 Normal 120/80 70
## 24 75 6 Normal 120/80 70
## 25 75 6 Normal 120/80 70
## 26 75 6 Normal 120/80 70
## 27 75 6 Normal 120/80 70
## 28 75 6 Normal 120/80 70
## 29 75 6 Normal 120/80 70
## 30 75 6 Normal 120/80 70
## 31 35 7 Normal Weight 130/86 78
## 32 35 7 Normal Weight 130/86 78
## 33 75 4 Normal Weight 117/76 69
## 34 30 8 Normal 125/80 72
## 35 75 6 Normal 120/80 70
## 36 30 8 Normal 125/80 72
## 37 30 8 Normal 125/80 72
## 38 75 6 Normal 120/80 70
## 39 75 6 Normal 120/80 70
## 40 75 6 Normal 120/80 70
## 41 75 6 Normal 120/80 70
## 42 75 6 Normal 120/80 70
## 43 75 6 Normal 120/80 70
## 44 75 6 Normal 120/80 70
## 45 75 6 Normal 120/80 70
## 46 75 6 Normal 120/80 70
## 47 75 6 Normal 120/80 70
## 48 75 6 Normal 120/80 70
## 49 75 6 Normal 120/80 70
## 50 75 6 Normal 120/80 70
## 51 45 3 Normal 120/80 70
## 52 45 3 Normal 120/80 70
## 53 30 8 Normal 125/80 72
## 54 75 6 Normal 120/80 70
## 55 30 8 Normal 125/80 72
## 56 30 8 Normal 125/80 72
## 57 75 6 Normal 120/80 70
## 58 30 8 Normal 125/80 72
## 59 30 8 Normal 125/80 72
## 60 75 6 Normal 120/80 70
## 61 30 8 Normal 125/80 72
## 62 30 8 Normal 125/80 72
## 63 30 8 Normal 125/80 72
## 64 30 8 Normal 125/80 72
## 65 30 8 Normal 125/80 72
## 66 30 8 Normal 125/80 72
## 67 50 6 Normal Weight 118/76 68
## 68 30 8 Normal 125/80 72
## 69 50 6 Overweight 128/85 76
## 70 50 6 Overweight 128/85 76
## 71 30 8 Normal 125/80 72
## 72 30 8 Normal 125/80 72
## 73 30 8 Normal 125/80 72
## 74 30 8 Normal 125/80 72
## 75 30 8 Normal 125/80 72
## 76 30 8 Normal 125/80 72
## 77 30 8 Normal 125/80 72
## 78 30 8 Normal 125/80 72
## 79 30 8 Normal 125/80 72
## 80 30 8 Normal 125/80 72
## 81 32 8 Overweight 131/86 81
## 82 32 8 Overweight 131/86 81
## 83 40 5 Overweight 128/84 70
## 84 40 5 Overweight 128/84 70
## 85 60 5 Normal Weight 120/80 70
## 86 60 4 Normal 115/75 68
## 87 60 4 Normal 125/80 65
## 88 60 4 Normal 125/80 65
## 89 60 4 Normal 125/80 65
## 90 60 4 Normal 125/80 65
## 91 60 4 Normal 125/80 65
## 92 60 4 Normal 125/80 65
## 93 60 5 Normal Weight 120/80 70
## 94 60 5 Obese 135/88 84
## 95 60 4 Normal 115/75 68
## 96 60 4 Normal 115/75 68
## 97 60 4 Normal 115/75 68
## 98 60 4 Normal 115/75 68
## 99 60 4 Normal 115/75 68
## Daily.Steps Sleep.Disorder
## 1 4200 None
## 2 10000 None
## 3 10000 None
## 4 3000 Sleep Apnea
## 5 3000 Sleep Apnea
## 6 3000 Insomnia
## 7 3500 Insomnia
## 8 8000 None
## 9 8000 None
## 10 8000 None
## 11 8000 None
## 12 8000 None
## 13 8000 None
## 14 8000 None
## 15 8000 None
## 16 8000 None
## 17 4000 Sleep Apnea
## 18 8000 Sleep Apnea
## 19 4000 Insomnia
## 20 8000 None
## 21 8000 None
## 22 8000 None
## 23 8000 None
## 24 8000 None
## 25 8000 None
## 26 8000 None
## 27 8000 None
## 28 8000 None
## 29 8000 None
## 30 8000 None
## 31 4100 Sleep Apnea
## 32 4100 Insomnia
## 33 6800 None
## 34 5000 None
## 35 8000 None
## 36 5000 None
## 37 5000 None
## 38 8000 None
## 39 8000 None
## 40 8000 None
## 41 8000 None
## 42 8000 None
## 43 8000 None
## 44 8000 None
## 45 8000 None
## 46 8000 None
## 47 8000 None
## 48 8000 None
## 49 8000 None
## 50 8000 Sleep Apnea
## 51 8000 None
## 52 8000 None
## 53 5000 None
## 54 8000 None
## 55 5000 None
## 56 5000 None
## 57 8000 None
## 58 5000 None
## 59 5000 None
## 60 8000 None
## 61 5000 None
## 62 5000 None
## 63 5000 None
## 64 5000 None
## 65 5000 None
## 66 5000 None
## 67 7000 None
## 68 5000 Insomnia
## 69 5500 None
## 70 5500 None
## 71 5000 None
## 72 5000 None
## 73 5000 None
## 74 5000 None
## 75 5000 None
## 76 5000 None
## 77 5000 None
## 78 5000 None
## 79 5000 None
## 80 5000 None
## 81 5200 Sleep Apnea
## 82 5200 Sleep Apnea
## 83 5600 None
## 84 5600 None
## 85 8000 None
## 86 7000 None
## 87 5000 None
## 88 5000 None
## 89 5000 None
## 90 5000 None
## 91 5000 None
## 92 5000 None
## 93 8000 None
## 94 3300 Sleep Apnea
## 95 7000 Insomnia
## 96 7000 None
## 97 7000 None
## 98 7000 None
## 99 7000 None
RemovedStress=Sleep %>% filter(!is.na(Stress.Level)) #remove rows with missing values under Stress.Level
RemovedStress
## Person.ID Gender Age Occupation Sleep.Duration Quality.of.Sleep
## 1 1 Male 27 Software Engineer 6.1 6
## 2 2 Male 28 Doctor 6.2 6
## 3 3 Male 28 Doctor 6.2 6
## 4 4 Male 28 Sales Representative 5.9 4
## 5 5 Male 28 Sales Representative 5.9 4
## 6 6 Male 28 Software Engineer 5.9 4
## 7 7 Male 29 Teacher 6.3 6
## 8 8 Male 29 Doctor 7.8 7
## 9 9 Male 29 Doctor 7.8 7
## 10 10 Male 29 Doctor 7.8 7
## 11 11 Male 29 Doctor 6.1 6
## 12 12 Male 29 Doctor 7.8 7
## 13 13 Male 29 Doctor 6.1 6
## 14 14 Male 29 Doctor 6.0 6
## 15 15 Male 29 Doctor 6.0 6
## 16 16 Male 29 Doctor 6.0 6
## 17 17 Female 29 Nurse 6.5 5
## 18 18 Male 29 Doctor 6.0 6
## 19 19 Female 29 Nurse 6.5 5
## 20 20 Male 30 Doctor 7.6 7
## 21 21 Male 30 Doctor 7.7 7
## 22 22 Male 30 Doctor 7.7 7
## 23 23 Male 30 Doctor 7.7 7
## 24 24 Male 30 Doctor 7.7 7
## 25 25 Male 30 Doctor 7.8 7
## 26 26 Male 30 Doctor 7.9 7
## 27 27 Male 30 Doctor 7.8 7
## 28 28 Male 30 Doctor 7.9 7
## 29 29 Male 30 Doctor 7.9 7
## 30 30 Male 30 Doctor 7.9 7
## 31 31 Female 30 Nurse 6.4 5
## 32 32 Female 30 Nurse 6.4 5
## 33 33 Female 31 Nurse 7.9 8
## 34 34 Male 31 Doctor 6.1 6
## 35 35 Male 31 Doctor 7.7 7
## 36 36 Male 31 Doctor 6.1 6
## 37 37 Male 31 Doctor 6.1 6
## 38 38 Male 31 Doctor 7.6 7
## 39 39 Male 31 Doctor 7.6 7
## 40 40 Male 31 Doctor 7.6 7
## 41 41 Male 31 Doctor 7.7 7
## 42 42 Male 31 Doctor 7.7 7
## 43 43 Male 31 Doctor 7.7 7
## 44 44 Male 31 Doctor 7.8 7
## 45 45 Male 31 Doctor 7.7 7
## 46 46 Male 31 Doctor 7.8 7
## 47 47 Male 31 Doctor 7.7 7
## 48 48 Male 31 Doctor 7.8 7
## 49 49 Male 31 Doctor 7.7 7
## 50 50 Male 31 Doctor 7.7 7
## 51 51 Male 32 Engineer 7.5 8
## 52 52 Male 32 Engineer 7.5 8
## 53 53 Male 32 Doctor 6.0 6
## 54 54 Male 32 Doctor 7.6 7
## 55 55 Male 32 Doctor 6.0 6
## 56 56 Male 32 Doctor 6.0 6
## 57 57 Male 32 Doctor 7.7 7
## 58 58 Male 32 Doctor 6.0 6
## 59 59 Male 32 Doctor 6.0 6
## 60 60 Male 32 Doctor 7.7 7
## 61 61 Male 32 Doctor 6.0 6
## 62 62 Male 32 Doctor 6.0 6
## 63 63 Male 32 Doctor 6.2 6
## 64 64 Male 32 Doctor 6.2 6
## 65 65 Male 32 Doctor 6.2 6
## 66 66 Male 32 Doctor 6.2 6
## 67 67 Male 32 Accountant 7.2 8
## 68 68 Male 33 Doctor 6.0 6
## 69 69 Female 33 Scientist 6.2 6
## 70 70 Female 33 Scientist 6.2 6
## 71 71 Male 33 Doctor 6.1 6
## 72 72 Male 33 Doctor 6.1 6
## 73 73 Male 33 Doctor 6.1 6
## 74 74 Male 33 Doctor 6.1 6
## 75 75 Male 33 Doctor 6.0 6
## 76 76 Male 33 Doctor 6.0 6
## 77 77 Male 33 Doctor 6.0 6
## 78 78 Male 33 Doctor 6.0 6
## 79 79 Male 33 Doctor 6.0 6
## 80 80 Male 33 Doctor 6.0 6
## 81 81 Female 34 Scientist 5.8 4
## 82 82 Female 34 Scientist 5.8 4
## 83 83 Male 35 Teacher 6.7 7
## 84 84 Male 35 Teacher 6.7 7
## 85 85 Male 35 Software Engineer 7.5 8
## 86 86 Female 35 Accountant 7.2 8
## 87 87 Male 35 Engineer 7.2 8
## 88 88 Male 35 Engineer 7.2 8
## 89 89 Male 35 Engineer 7.3 8
## 90 90 Male 35 Engineer 7.3 8
## 91 91 Male 35 Engineer 7.3 8
## 92 92 Male 35 Engineer 7.3 8
## 93 93 Male 35 Software Engineer 7.5 8
## 94 94 Male 35 Lawyer 7.4 7
## 95 95 Female 36 Accountant 7.2 8
## 96 96 Female 36 Accountant 7.1 8
## 97 97 Female 36 Accountant 7.2 8
## 98 98 Female 36 Accountant 7.1 8
## 99 99 Female 36 Teacher 7.1 8
## Physical.Activity.Level Stress.Level BMI.Category Blood.Pressure Heart.Rate
## 1 42 6 Overweight 126/83 77
## 2 60 8 Normal 125/80 75
## 3 60 8 Normal 125/80 75
## 4 30 8 Obese 140/90 85
## 5 30 8 Obese 140/90 85
## 6 30 8 Obese 140/90 85
## 7 40 7 Obese 140/90 82
## 8 75 6 Normal 120/80 70
## 9 75 6 Normal 120/80 70
## 10 75 6 Normal 120/80 70
## 11 30 8 Normal 120/80 70
## 12 75 6 Normal 120/80 70
## 13 30 8 Normal 120/80 70
## 14 30 8 Normal 120/80 70
## 15 30 8 Normal 120/80 70
## 16 30 8 Normal 120/80 70
## 17 40 7 Normal Weight 132/87 80
## 18 30 8 Normal 120/80 70
## 19 40 7 Normal Weight 132/87 80
## 20 75 6 Normal 120/80 70
## 21 75 6 Normal 120/80 70
## 22 75 6 Normal 120/80 70
## 23 75 6 Normal 120/80 70
## 24 75 6 Normal 120/80 70
## 25 75 6 Normal 120/80 70
## 26 75 6 Normal 120/80 70
## 27 75 6 Normal 120/80 70
## 28 75 6 Normal 120/80 70
## 29 75 6 Normal 120/80 70
## 30 75 6 Normal 120/80 70
## 31 35 7 Normal Weight 130/86 78
## 32 35 7 Normal Weight 130/86 78
## 33 75 4 Normal Weight 117/76 69
## 34 30 8 Normal 125/80 72
## 35 75 6 Normal 120/80 70
## 36 30 8 Normal 125/80 72
## 37 30 8 Normal 125/80 72
## 38 75 6 Normal 120/80 70
## 39 75 6 Normal 120/80 70
## 40 75 6 Normal 120/80 70
## 41 75 6 Normal 120/80 70
## 42 75 6 Normal 120/80 70
## 43 75 6 Normal 120/80 70
## 44 75 6 Normal 120/80 70
## 45 75 6 Normal 120/80 70
## 46 75 6 Normal 120/80 70
## 47 75 6 Normal 120/80 70
## 48 75 6 Normal 120/80 70
## 49 75 6 Normal 120/80 70
## 50 75 6 Normal 120/80 70
## 51 45 3 Normal 120/80 70
## 52 45 3 Normal 120/80 70
## 53 30 8 Normal 125/80 72
## 54 75 6 Normal 120/80 70
## 55 30 8 Normal 125/80 72
## 56 30 8 Normal 125/80 72
## 57 75 6 Normal 120/80 70
## 58 30 8 Normal 125/80 72
## 59 30 8 Normal 125/80 72
## 60 75 6 Normal 120/80 70
## 61 30 8 Normal 125/80 72
## 62 30 8 Normal 125/80 72
## 63 30 8 Normal 125/80 72
## 64 30 8 Normal 125/80 72
## 65 30 8 Normal 125/80 72
## 66 30 8 Normal 125/80 72
## 67 50 6 Normal Weight 118/76 68
## 68 30 8 Normal 125/80 72
## 69 50 6 Overweight 128/85 76
## 70 50 6 Overweight 128/85 76
## 71 30 8 Normal 125/80 72
## 72 30 8 Normal 125/80 72
## 73 30 8 Normal 125/80 72
## 74 30 8 Normal 125/80 72
## 75 30 8 Normal 125/80 72
## 76 30 8 Normal 125/80 72
## 77 30 8 Normal 125/80 72
## 78 30 8 Normal 125/80 72
## 79 30 8 Normal 125/80 72
## 80 30 8 Normal 125/80 72
## 81 32 8 Overweight 131/86 81
## 82 32 8 Overweight 131/86 81
## 83 40 5 Overweight 128/84 70
## 84 40 5 Overweight 128/84 70
## 85 60 5 Normal Weight 120/80 70
## 86 60 4 Normal 115/75 68
## 87 60 4 Normal 125/80 65
## 88 60 4 Normal 125/80 65
## 89 60 4 Normal 125/80 65
## 90 60 4 Normal 125/80 65
## 91 60 4 Normal 125/80 65
## 92 60 4 Normal 125/80 65
## 93 60 5 Normal Weight 120/80 70
## 94 60 5 Obese 135/88 84
## 95 60 4 Normal 115/75 68
## 96 60 4 Normal 115/75 68
## 97 60 4 Normal 115/75 68
## 98 60 4 Normal 115/75 68
## 99 60 4 Normal 115/75 68
## Daily.Steps Sleep.Disorder
## 1 4200 None
## 2 10000 None
## 3 10000 None
## 4 3000 Sleep Apnea
## 5 3000 Sleep Apnea
## 6 3000 Insomnia
## 7 3500 Insomnia
## 8 8000 None
## 9 8000 None
## 10 8000 None
## 11 8000 None
## 12 8000 None
## 13 8000 None
## 14 8000 None
## 15 8000 None
## 16 8000 None
## 17 4000 Sleep Apnea
## 18 8000 Sleep Apnea
## 19 4000 Insomnia
## 20 8000 None
## 21 8000 None
## 22 8000 None
## 23 8000 None
## 24 8000 None
## 25 8000 None
## 26 8000 None
## 27 8000 None
## 28 8000 None
## 29 8000 None
## 30 8000 None
## 31 4100 Sleep Apnea
## 32 4100 Insomnia
## 33 6800 None
## 34 5000 None
## 35 8000 None
## 36 5000 None
## 37 5000 None
## 38 8000 None
## 39 8000 None
## 40 8000 None
## 41 8000 None
## 42 8000 None
## 43 8000 None
## 44 8000 None
## 45 8000 None
## 46 8000 None
## 47 8000 None
## 48 8000 None
## 49 8000 None
## 50 8000 Sleep Apnea
## 51 8000 None
## 52 8000 None
## 53 5000 None
## 54 8000 None
## 55 5000 None
## 56 5000 None
## 57 8000 None
## 58 5000 None
## 59 5000 None
## 60 8000 None
## 61 5000 None
## 62 5000 None
## 63 5000 None
## 64 5000 None
## 65 5000 None
## 66 5000 None
## 67 7000 None
## 68 5000 Insomnia
## 69 5500 None
## 70 5500 None
## 71 5000 None
## 72 5000 None
## 73 5000 None
## 74 5000 None
## 75 5000 None
## 76 5000 None
## 77 5000 None
## 78 5000 None
## 79 5000 None
## 80 5000 None
## 81 5200 Sleep Apnea
## 82 5200 Sleep Apnea
## 83 5600 None
## 84 5600 None
## 85 8000 None
## 86 7000 None
## 87 5000 None
## 88 5000 None
## 89 5000 None
## 90 5000 None
## 91 5000 None
## 92 5000 None
## 93 8000 None
## 94 3300 Sleep Apnea
## 95 7000 Insomnia
## 96 7000 None
## 97 7000 None
## 98 7000 None
## 99 7000 None
Identify and remove duplicated data from your dataset.
duplicated(Sleep) #identify duplicated data
## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [97] FALSE FALSE FALSE
Sleep[!duplicated(Sleep), ] #remove duplicated data
## Person.ID Gender Age Occupation Sleep.Duration Quality.of.Sleep
## 1 1 Male 27 Software Engineer 6.1 6
## 2 2 Male 28 Doctor 6.2 6
## 3 3 Male 28 Doctor 6.2 6
## 4 4 Male 28 Sales Representative 5.9 4
## 5 5 Male 28 Sales Representative 5.9 4
## 6 6 Male 28 Software Engineer 5.9 4
## 7 7 Male 29 Teacher 6.3 6
## 8 8 Male 29 Doctor 7.8 7
## 9 9 Male 29 Doctor 7.8 7
## 10 10 Male 29 Doctor 7.8 7
## 11 11 Male 29 Doctor 6.1 6
## 12 12 Male 29 Doctor 7.8 7
## 13 13 Male 29 Doctor 6.1 6
## 14 14 Male 29 Doctor 6.0 6
## 15 15 Male 29 Doctor 6.0 6
## 16 16 Male 29 Doctor 6.0 6
## 17 17 Female 29 Nurse 6.5 5
## 18 18 Male 29 Doctor 6.0 6
## 19 19 Female 29 Nurse 6.5 5
## 20 20 Male 30 Doctor 7.6 7
## 21 21 Male 30 Doctor 7.7 7
## 22 22 Male 30 Doctor 7.7 7
## 23 23 Male 30 Doctor 7.7 7
## 24 24 Male 30 Doctor 7.7 7
## 25 25 Male 30 Doctor 7.8 7
## 26 26 Male 30 Doctor 7.9 7
## 27 27 Male 30 Doctor 7.8 7
## 28 28 Male 30 Doctor 7.9 7
## 29 29 Male 30 Doctor 7.9 7
## 30 30 Male 30 Doctor 7.9 7
## 31 31 Female 30 Nurse 6.4 5
## 32 32 Female 30 Nurse 6.4 5
## 33 33 Female 31 Nurse 7.9 8
## 34 34 Male 31 Doctor 6.1 6
## 35 35 Male 31 Doctor 7.7 7
## 36 36 Male 31 Doctor 6.1 6
## 37 37 Male 31 Doctor 6.1 6
## 38 38 Male 31 Doctor 7.6 7
## 39 39 Male 31 Doctor 7.6 7
## 40 40 Male 31 Doctor 7.6 7
## 41 41 Male 31 Doctor 7.7 7
## 42 42 Male 31 Doctor 7.7 7
## 43 43 Male 31 Doctor 7.7 7
## 44 44 Male 31 Doctor 7.8 7
## 45 45 Male 31 Doctor 7.7 7
## 46 46 Male 31 Doctor 7.8 7
## 47 47 Male 31 Doctor 7.7 7
## 48 48 Male 31 Doctor 7.8 7
## 49 49 Male 31 Doctor 7.7 7
## 50 50 Male 31 Doctor 7.7 7
## 51 51 Male 32 Engineer 7.5 8
## 52 52 Male 32 Engineer 7.5 8
## 53 53 Male 32 Doctor 6.0 6
## 54 54 Male 32 Doctor 7.6 7
## 55 55 Male 32 Doctor 6.0 6
## 56 56 Male 32 Doctor 6.0 6
## 57 57 Male 32 Doctor 7.7 7
## 58 58 Male 32 Doctor 6.0 6
## 59 59 Male 32 Doctor 6.0 6
## 60 60 Male 32 Doctor 7.7 7
## 61 61 Male 32 Doctor 6.0 6
## 62 62 Male 32 Doctor 6.0 6
## 63 63 Male 32 Doctor 6.2 6
## 64 64 Male 32 Doctor 6.2 6
## 65 65 Male 32 Doctor 6.2 6
## 66 66 Male 32 Doctor 6.2 6
## 67 67 Male 32 Accountant 7.2 8
## 68 68 Male 33 Doctor 6.0 6
## 69 69 Female 33 Scientist 6.2 6
## 70 70 Female 33 Scientist 6.2 6
## 71 71 Male 33 Doctor 6.1 6
## 72 72 Male 33 Doctor 6.1 6
## 73 73 Male 33 Doctor 6.1 6
## 74 74 Male 33 Doctor 6.1 6
## 75 75 Male 33 Doctor 6.0 6
## 76 76 Male 33 Doctor 6.0 6
## 77 77 Male 33 Doctor 6.0 6
## 78 78 Male 33 Doctor 6.0 6
## 79 79 Male 33 Doctor 6.0 6
## 80 80 Male 33 Doctor 6.0 6
## 81 81 Female 34 Scientist 5.8 4
## 82 82 Female 34 Scientist 5.8 4
## 83 83 Male 35 Teacher 6.7 7
## 84 84 Male 35 Teacher 6.7 7
## 85 85 Male 35 Software Engineer 7.5 8
## 86 86 Female 35 Accountant 7.2 8
## 87 87 Male 35 Engineer 7.2 8
## 88 88 Male 35 Engineer 7.2 8
## 89 89 Male 35 Engineer 7.3 8
## 90 90 Male 35 Engineer 7.3 8
## 91 91 Male 35 Engineer 7.3 8
## 92 92 Male 35 Engineer 7.3 8
## 93 93 Male 35 Software Engineer 7.5 8
## 94 94 Male 35 Lawyer 7.4 7
## 95 95 Female 36 Accountant 7.2 8
## 96 96 Female 36 Accountant 7.1 8
## 97 97 Female 36 Accountant 7.2 8
## 98 98 Female 36 Accountant 7.1 8
## 99 99 Female 36 Teacher 7.1 8
## Physical.Activity.Level Stress.Level BMI.Category Blood.Pressure Heart.Rate
## 1 42 6 Overweight 126/83 77
## 2 60 8 Normal 125/80 75
## 3 60 8 Normal 125/80 75
## 4 30 8 Obese 140/90 85
## 5 30 8 Obese 140/90 85
## 6 30 8 Obese 140/90 85
## 7 40 7 Obese 140/90 82
## 8 75 6 Normal 120/80 70
## 9 75 6 Normal 120/80 70
## 10 75 6 Normal 120/80 70
## 11 30 8 Normal 120/80 70
## 12 75 6 Normal 120/80 70
## 13 30 8 Normal 120/80 70
## 14 30 8 Normal 120/80 70
## 15 30 8 Normal 120/80 70
## 16 30 8 Normal 120/80 70
## 17 40 7 Normal Weight 132/87 80
## 18 30 8 Normal 120/80 70
## 19 40 7 Normal Weight 132/87 80
## 20 75 6 Normal 120/80 70
## 21 75 6 Normal 120/80 70
## 22 75 6 Normal 120/80 70
## 23 75 6 Normal 120/80 70
## 24 75 6 Normal 120/80 70
## 25 75 6 Normal 120/80 70
## 26 75 6 Normal 120/80 70
## 27 75 6 Normal 120/80 70
## 28 75 6 Normal 120/80 70
## 29 75 6 Normal 120/80 70
## 30 75 6 Normal 120/80 70
## 31 35 7 Normal Weight 130/86 78
## 32 35 7 Normal Weight 130/86 78
## 33 75 4 Normal Weight 117/76 69
## 34 30 8 Normal 125/80 72
## 35 75 6 Normal 120/80 70
## 36 30 8 Normal 125/80 72
## 37 30 8 Normal 125/80 72
## 38 75 6 Normal 120/80 70
## 39 75 6 Normal 120/80 70
## 40 75 6 Normal 120/80 70
## 41 75 6 Normal 120/80 70
## 42 75 6 Normal 120/80 70
## 43 75 6 Normal 120/80 70
## 44 75 6 Normal 120/80 70
## 45 75 6 Normal 120/80 70
## 46 75 6 Normal 120/80 70
## 47 75 6 Normal 120/80 70
## 48 75 6 Normal 120/80 70
## 49 75 6 Normal 120/80 70
## 50 75 6 Normal 120/80 70
## 51 45 3 Normal 120/80 70
## 52 45 3 Normal 120/80 70
## 53 30 8 Normal 125/80 72
## 54 75 6 Normal 120/80 70
## 55 30 8 Normal 125/80 72
## 56 30 8 Normal 125/80 72
## 57 75 6 Normal 120/80 70
## 58 30 8 Normal 125/80 72
## 59 30 8 Normal 125/80 72
## 60 75 6 Normal 120/80 70
## 61 30 8 Normal 125/80 72
## 62 30 8 Normal 125/80 72
## 63 30 8 Normal 125/80 72
## 64 30 8 Normal 125/80 72
## 65 30 8 Normal 125/80 72
## 66 30 8 Normal 125/80 72
## 67 50 6 Normal Weight 118/76 68
## 68 30 8 Normal 125/80 72
## 69 50 6 Overweight 128/85 76
## 70 50 6 Overweight 128/85 76
## 71 30 8 Normal 125/80 72
## 72 30 8 Normal 125/80 72
## 73 30 8 Normal 125/80 72
## 74 30 8 Normal 125/80 72
## 75 30 8 Normal 125/80 72
## 76 30 8 Normal 125/80 72
## 77 30 8 Normal 125/80 72
## 78 30 8 Normal 125/80 72
## 79 30 8 Normal 125/80 72
## 80 30 8 Normal 125/80 72
## 81 32 8 Overweight 131/86 81
## 82 32 8 Overweight 131/86 81
## 83 40 5 Overweight 128/84 70
## 84 40 5 Overweight 128/84 70
## 85 60 5 Normal Weight 120/80 70
## 86 60 4 Normal 115/75 68
## 87 60 4 Normal 125/80 65
## 88 60 4 Normal 125/80 65
## 89 60 4 Normal 125/80 65
## 90 60 4 Normal 125/80 65
## 91 60 4 Normal 125/80 65
## 92 60 4 Normal 125/80 65
## 93 60 5 Normal Weight 120/80 70
## 94 60 5 Obese 135/88 84
## 95 60 4 Normal 115/75 68
## 96 60 4 Normal 115/75 68
## 97 60 4 Normal 115/75 68
## 98 60 4 Normal 115/75 68
## 99 60 4 Normal 115/75 68
## Daily.Steps Sleep.Disorder
## 1 4200 None
## 2 10000 None
## 3 10000 None
## 4 3000 Sleep Apnea
## 5 3000 Sleep Apnea
## 6 3000 Insomnia
## 7 3500 Insomnia
## 8 8000 None
## 9 8000 None
## 10 8000 None
## 11 8000 None
## 12 8000 None
## 13 8000 None
## 14 8000 None
## 15 8000 None
## 16 8000 None
## 17 4000 Sleep Apnea
## 18 8000 Sleep Apnea
## 19 4000 Insomnia
## 20 8000 None
## 21 8000 None
## 22 8000 None
## 23 8000 None
## 24 8000 None
## 25 8000 None
## 26 8000 None
## 27 8000 None
## 28 8000 None
## 29 8000 None
## 30 8000 None
## 31 4100 Sleep Apnea
## 32 4100 Insomnia
## 33 6800 None
## 34 5000 None
## 35 8000 None
## 36 5000 None
## 37 5000 None
## 38 8000 None
## 39 8000 None
## 40 8000 None
## 41 8000 None
## 42 8000 None
## 43 8000 None
## 44 8000 None
## 45 8000 None
## 46 8000 None
## 47 8000 None
## 48 8000 None
## 49 8000 None
## 50 8000 Sleep Apnea
## 51 8000 None
## 52 8000 None
## 53 5000 None
## 54 8000 None
## 55 5000 None
## 56 5000 None
## 57 8000 None
## 58 5000 None
## 59 5000 None
## 60 8000 None
## 61 5000 None
## 62 5000 None
## 63 5000 None
## 64 5000 None
## 65 5000 None
## 66 5000 None
## 67 7000 None
## 68 5000 Insomnia
## 69 5500 None
## 70 5500 None
## 71 5000 None
## 72 5000 None
## 73 5000 None
## 74 5000 None
## 75 5000 None
## 76 5000 None
## 77 5000 None
## 78 5000 None
## 79 5000 None
## 80 5000 None
## 81 5200 Sleep Apnea
## 82 5200 Sleep Apnea
## 83 5600 None
## 84 5600 None
## 85 8000 None
## 86 7000 None
## 87 5000 None
## 88 5000 None
## 89 5000 None
## 90 5000 None
## 91 5000 None
## 92 5000 None
## 93 8000 None
## 94 3300 Sleep Apnea
## 95 7000 Insomnia
## 96 7000 None
## 97 7000 None
## 98 7000 None
## 99 7000 None
Reorder multiple rows in descending order.
DesOrder=Sleep %>% arrange(desc(Person.ID))
DesOrder
## Person.ID Gender Age Occupation Sleep.Duration Quality.of.Sleep
## 1 99 Female 36 Teacher 7.1 8
## 2 98 Female 36 Accountant 7.1 8
## 3 97 Female 36 Accountant 7.2 8
## 4 96 Female 36 Accountant 7.1 8
## 5 95 Female 36 Accountant 7.2 8
## 6 94 Male 35 Lawyer 7.4 7
## 7 93 Male 35 Software Engineer 7.5 8
## 8 92 Male 35 Engineer 7.3 8
## 9 91 Male 35 Engineer 7.3 8
## 10 90 Male 35 Engineer 7.3 8
## 11 89 Male 35 Engineer 7.3 8
## 12 88 Male 35 Engineer 7.2 8
## 13 87 Male 35 Engineer 7.2 8
## 14 86 Female 35 Accountant 7.2 8
## 15 85 Male 35 Software Engineer 7.5 8
## 16 84 Male 35 Teacher 6.7 7
## 17 83 Male 35 Teacher 6.7 7
## 18 82 Female 34 Scientist 5.8 4
## 19 81 Female 34 Scientist 5.8 4
## 20 80 Male 33 Doctor 6.0 6
## 21 79 Male 33 Doctor 6.0 6
## 22 78 Male 33 Doctor 6.0 6
## 23 77 Male 33 Doctor 6.0 6
## 24 76 Male 33 Doctor 6.0 6
## 25 75 Male 33 Doctor 6.0 6
## 26 74 Male 33 Doctor 6.1 6
## 27 73 Male 33 Doctor 6.1 6
## 28 72 Male 33 Doctor 6.1 6
## 29 71 Male 33 Doctor 6.1 6
## 30 70 Female 33 Scientist 6.2 6
## 31 69 Female 33 Scientist 6.2 6
## 32 68 Male 33 Doctor 6.0 6
## 33 67 Male 32 Accountant 7.2 8
## 34 66 Male 32 Doctor 6.2 6
## 35 65 Male 32 Doctor 6.2 6
## 36 64 Male 32 Doctor 6.2 6
## 37 63 Male 32 Doctor 6.2 6
## 38 62 Male 32 Doctor 6.0 6
## 39 61 Male 32 Doctor 6.0 6
## 40 60 Male 32 Doctor 7.7 7
## 41 59 Male 32 Doctor 6.0 6
## 42 58 Male 32 Doctor 6.0 6
## 43 57 Male 32 Doctor 7.7 7
## 44 56 Male 32 Doctor 6.0 6
## 45 55 Male 32 Doctor 6.0 6
## 46 54 Male 32 Doctor 7.6 7
## 47 53 Male 32 Doctor 6.0 6
## 48 52 Male 32 Engineer 7.5 8
## 49 51 Male 32 Engineer 7.5 8
## 50 50 Male 31 Doctor 7.7 7
## 51 49 Male 31 Doctor 7.7 7
## 52 48 Male 31 Doctor 7.8 7
## 53 47 Male 31 Doctor 7.7 7
## 54 46 Male 31 Doctor 7.8 7
## 55 45 Male 31 Doctor 7.7 7
## 56 44 Male 31 Doctor 7.8 7
## 57 43 Male 31 Doctor 7.7 7
## 58 42 Male 31 Doctor 7.7 7
## 59 41 Male 31 Doctor 7.7 7
## 60 40 Male 31 Doctor 7.6 7
## 61 39 Male 31 Doctor 7.6 7
## 62 38 Male 31 Doctor 7.6 7
## 63 37 Male 31 Doctor 6.1 6
## 64 36 Male 31 Doctor 6.1 6
## 65 35 Male 31 Doctor 7.7 7
## 66 34 Male 31 Doctor 6.1 6
## 67 33 Female 31 Nurse 7.9 8
## 68 32 Female 30 Nurse 6.4 5
## 69 31 Female 30 Nurse 6.4 5
## 70 30 Male 30 Doctor 7.9 7
## 71 29 Male 30 Doctor 7.9 7
## 72 28 Male 30 Doctor 7.9 7
## 73 27 Male 30 Doctor 7.8 7
## 74 26 Male 30 Doctor 7.9 7
## 75 25 Male 30 Doctor 7.8 7
## 76 24 Male 30 Doctor 7.7 7
## 77 23 Male 30 Doctor 7.7 7
## 78 22 Male 30 Doctor 7.7 7
## 79 21 Male 30 Doctor 7.7 7
## 80 20 Male 30 Doctor 7.6 7
## 81 19 Female 29 Nurse 6.5 5
## 82 18 Male 29 Doctor 6.0 6
## 83 17 Female 29 Nurse 6.5 5
## 84 16 Male 29 Doctor 6.0 6
## 85 15 Male 29 Doctor 6.0 6
## 86 14 Male 29 Doctor 6.0 6
## 87 13 Male 29 Doctor 6.1 6
## 88 12 Male 29 Doctor 7.8 7
## 89 11 Male 29 Doctor 6.1 6
## 90 10 Male 29 Doctor 7.8 7
## 91 9 Male 29 Doctor 7.8 7
## 92 8 Male 29 Doctor 7.8 7
## 93 7 Male 29 Teacher 6.3 6
## 94 6 Male 28 Software Engineer 5.9 4
## 95 5 Male 28 Sales Representative 5.9 4
## 96 4 Male 28 Sales Representative 5.9 4
## 97 3 Male 28 Doctor 6.2 6
## 98 2 Male 28 Doctor 6.2 6
## 99 1 Male 27 Software Engineer 6.1 6
## Physical.Activity.Level Stress.Level BMI.Category Blood.Pressure Heart.Rate
## 1 60 4 Normal 115/75 68
## 2 60 4 Normal 115/75 68
## 3 60 4 Normal 115/75 68
## 4 60 4 Normal 115/75 68
## 5 60 4 Normal 115/75 68
## 6 60 5 Obese 135/88 84
## 7 60 5 Normal Weight 120/80 70
## 8 60 4 Normal 125/80 65
## 9 60 4 Normal 125/80 65
## 10 60 4 Normal 125/80 65
## 11 60 4 Normal 125/80 65
## 12 60 4 Normal 125/80 65
## 13 60 4 Normal 125/80 65
## 14 60 4 Normal 115/75 68
## 15 60 5 Normal Weight 120/80 70
## 16 40 5 Overweight 128/84 70
## 17 40 5 Overweight 128/84 70
## 18 32 8 Overweight 131/86 81
## 19 32 8 Overweight 131/86 81
## 20 30 8 Normal 125/80 72
## 21 30 8 Normal 125/80 72
## 22 30 8 Normal 125/80 72
## 23 30 8 Normal 125/80 72
## 24 30 8 Normal 125/80 72
## 25 30 8 Normal 125/80 72
## 26 30 8 Normal 125/80 72
## 27 30 8 Normal 125/80 72
## 28 30 8 Normal 125/80 72
## 29 30 8 Normal 125/80 72
## 30 50 6 Overweight 128/85 76
## 31 50 6 Overweight 128/85 76
## 32 30 8 Normal 125/80 72
## 33 50 6 Normal Weight 118/76 68
## 34 30 8 Normal 125/80 72
## 35 30 8 Normal 125/80 72
## 36 30 8 Normal 125/80 72
## 37 30 8 Normal 125/80 72
## 38 30 8 Normal 125/80 72
## 39 30 8 Normal 125/80 72
## 40 75 6 Normal 120/80 70
## 41 30 8 Normal 125/80 72
## 42 30 8 Normal 125/80 72
## 43 75 6 Normal 120/80 70
## 44 30 8 Normal 125/80 72
## 45 30 8 Normal 125/80 72
## 46 75 6 Normal 120/80 70
## 47 30 8 Normal 125/80 72
## 48 45 3 Normal 120/80 70
## 49 45 3 Normal 120/80 70
## 50 75 6 Normal 120/80 70
## 51 75 6 Normal 120/80 70
## 52 75 6 Normal 120/80 70
## 53 75 6 Normal 120/80 70
## 54 75 6 Normal 120/80 70
## 55 75 6 Normal 120/80 70
## 56 75 6 Normal 120/80 70
## 57 75 6 Normal 120/80 70
## 58 75 6 Normal 120/80 70
## 59 75 6 Normal 120/80 70
## 60 75 6 Normal 120/80 70
## 61 75 6 Normal 120/80 70
## 62 75 6 Normal 120/80 70
## 63 30 8 Normal 125/80 72
## 64 30 8 Normal 125/80 72
## 65 75 6 Normal 120/80 70
## 66 30 8 Normal 125/80 72
## 67 75 4 Normal Weight 117/76 69
## 68 35 7 Normal Weight 130/86 78
## 69 35 7 Normal Weight 130/86 78
## 70 75 6 Normal 120/80 70
## 71 75 6 Normal 120/80 70
## 72 75 6 Normal 120/80 70
## 73 75 6 Normal 120/80 70
## 74 75 6 Normal 120/80 70
## 75 75 6 Normal 120/80 70
## 76 75 6 Normal 120/80 70
## 77 75 6 Normal 120/80 70
## 78 75 6 Normal 120/80 70
## 79 75 6 Normal 120/80 70
## 80 75 6 Normal 120/80 70
## 81 40 7 Normal Weight 132/87 80
## 82 30 8 Normal 120/80 70
## 83 40 7 Normal Weight 132/87 80
## 84 30 8 Normal 120/80 70
## 85 30 8 Normal 120/80 70
## 86 30 8 Normal 120/80 70
## 87 30 8 Normal 120/80 70
## 88 75 6 Normal 120/80 70
## 89 30 8 Normal 120/80 70
## 90 75 6 Normal 120/80 70
## 91 75 6 Normal 120/80 70
## 92 75 6 Normal 120/80 70
## 93 40 7 Obese 140/90 82
## 94 30 8 Obese 140/90 85
## 95 30 8 Obese 140/90 85
## 96 30 8 Obese 140/90 85
## 97 60 8 Normal 125/80 75
## 98 60 8 Normal 125/80 75
## 99 42 6 Overweight 126/83 77
## Daily.Steps Sleep.Disorder
## 1 7000 None
## 2 7000 None
## 3 7000 None
## 4 7000 None
## 5 7000 Insomnia
## 6 3300 Sleep Apnea
## 7 8000 None
## 8 5000 None
## 9 5000 None
## 10 5000 None
## 11 5000 None
## 12 5000 None
## 13 5000 None
## 14 7000 None
## 15 8000 None
## 16 5600 None
## 17 5600 None
## 18 5200 Sleep Apnea
## 19 5200 Sleep Apnea
## 20 5000 None
## 21 5000 None
## 22 5000 None
## 23 5000 None
## 24 5000 None
## 25 5000 None
## 26 5000 None
## 27 5000 None
## 28 5000 None
## 29 5000 None
## 30 5500 None
## 31 5500 None
## 32 5000 Insomnia
## 33 7000 None
## 34 5000 None
## 35 5000 None
## 36 5000 None
## 37 5000 None
## 38 5000 None
## 39 5000 None
## 40 8000 None
## 41 5000 None
## 42 5000 None
## 43 8000 None
## 44 5000 None
## 45 5000 None
## 46 8000 None
## 47 5000 None
## 48 8000 None
## 49 8000 None
## 50 8000 Sleep Apnea
## 51 8000 None
## 52 8000 None
## 53 8000 None
## 54 8000 None
## 55 8000 None
## 56 8000 None
## 57 8000 None
## 58 8000 None
## 59 8000 None
## 60 8000 None
## 61 8000 None
## 62 8000 None
## 63 5000 None
## 64 5000 None
## 65 8000 None
## 66 5000 None
## 67 6800 None
## 68 4100 Insomnia
## 69 4100 Sleep Apnea
## 70 8000 None
## 71 8000 None
## 72 8000 None
## 73 8000 None
## 74 8000 None
## 75 8000 None
## 76 8000 None
## 77 8000 None
## 78 8000 None
## 79 8000 None
## 80 8000 None
## 81 4000 Insomnia
## 82 8000 Sleep Apnea
## 83 4000 Sleep Apnea
## 84 8000 None
## 85 8000 None
## 86 8000 None
## 87 8000 None
## 88 8000 None
## 89 8000 None
## 90 8000 None
## 91 8000 None
## 92 8000 None
## 93 3500 Insomnia
## 94 3000 Insomnia
## 95 3000 Sleep Apnea
## 96 3000 Sleep Apnea
## 97 10000 None
## 98 10000 None
## 99 4200 None
Rename some of the column names in your dataset.
names(Sleep)[names(Sleep) == "Person.ID"] = "Patient.ID"
names(Sleep)[names(Sleep) == "Stress.Level"] = "Stress"
head(Sleep,10) #view changed column name
## Patient.ID Gender Age Occupation Sleep.Duration Quality.of.Sleep
## 1 1 Male 27 Software Engineer 6.1 6
## 2 2 Male 28 Doctor 6.2 6
## 3 3 Male 28 Doctor 6.2 6
## 4 4 Male 28 Sales Representative 5.9 4
## 5 5 Male 28 Sales Representative 5.9 4
## 6 6 Male 28 Software Engineer 5.9 4
## 7 7 Male 29 Teacher 6.3 6
## 8 8 Male 29 Doctor 7.8 7
## 9 9 Male 29 Doctor 7.8 7
## 10 10 Male 29 Doctor 7.8 7
## Physical.Activity.Level Stress BMI.Category Blood.Pressure Heart.Rate
## 1 42 6 Overweight 126/83 77
## 2 60 8 Normal 125/80 75
## 3 60 8 Normal 125/80 75
## 4 30 8 Obese 140/90 85
## 5 30 8 Obese 140/90 85
## 6 30 8 Obese 140/90 85
## 7 40 7 Obese 140/90 82
## 8 75 6 Normal 120/80 70
## 9 75 6 Normal 120/80 70
## 10 75 6 Normal 120/80 70
## Daily.Steps Sleep.Disorder
## 1 4200 None
## 2 10000 None
## 3 10000 None
## 4 3000 Sleep Apnea
## 5 3000 Sleep Apnea
## 6 3000 Insomnia
## 7 3500 Insomnia
## 8 8000 None
## 9 8000 None
## 10 8000 None
Add new variables in your data frame by using a mathematical function.
Sleep$Stress2=Sleep$Stress * 2
head(Sleep,10) #view new column
## Patient.ID Gender Age Occupation Sleep.Duration Quality.of.Sleep
## 1 1 Male 27 Software Engineer 6.1 6
## 2 2 Male 28 Doctor 6.2 6
## 3 3 Male 28 Doctor 6.2 6
## 4 4 Male 28 Sales Representative 5.9 4
## 5 5 Male 28 Sales Representative 5.9 4
## 6 6 Male 28 Software Engineer 5.9 4
## 7 7 Male 29 Teacher 6.3 6
## 8 8 Male 29 Doctor 7.8 7
## 9 9 Male 29 Doctor 7.8 7
## 10 10 Male 29 Doctor 7.8 7
## Physical.Activity.Level Stress BMI.Category Blood.Pressure Heart.Rate
## 1 42 6 Overweight 126/83 77
## 2 60 8 Normal 125/80 75
## 3 60 8 Normal 125/80 75
## 4 30 8 Obese 140/90 85
## 5 30 8 Obese 140/90 85
## 6 30 8 Obese 140/90 85
## 7 40 7 Obese 140/90 82
## 8 75 6 Normal 120/80 70
## 9 75 6 Normal 120/80 70
## 10 75 6 Normal 120/80 70
## Daily.Steps Sleep.Disorder Stress2
## 1 4200 None 12
## 2 10000 None 16
## 3 10000 None 16
## 4 3000 Sleep Apnea 16
## 5 3000 Sleep Apnea 16
## 6 3000 Insomnia 16
## 7 3500 Insomnia 14
## 8 8000 None 12
## 9 8000 None 12
## 10 8000 None 12
Create a training set using a random number generator engine.
set.seed(1234)
Training.Set=Sleep %>% sample_n(5, replace = FALSE)
Training.Set
## Patient.ID Gender Age Occupation Sleep.Duration Quality.of.Sleep
## 1 28 Male 30 Doctor 7.9 7
## 2 80 Male 33 Doctor 6.0 6
## 3 22 Male 30 Doctor 7.7 7
## 4 9 Male 29 Doctor 7.8 7
## 5 5 Male 28 Sales Representative 5.9 4
## Physical.Activity.Level Stress BMI.Category Blood.Pressure Heart.Rate
## 1 75 6 Normal 120/80 70
## 2 30 8 Normal 125/80 72
## 3 75 6 Normal 120/80 70
## 4 75 6 Normal 120/80 70
## 5 30 8 Obese 140/90 85
## Daily.Steps Sleep.Disorder Stress2
## 1 8000 None 12
## 2 5000 None 16
## 3 8000 None 12
## 4 8000 None 12
## 5 3000 Sleep Apnea 16
Print the summary statistics of your dataset.
Sleep %>% group_by(Gender) %>% summarise(mean(Quality.of.Sleep))
## # A tibble: 2 × 2
## Gender `mean(Quality.of.Sleep)`
## <chr> <dbl>
## 1 Female 6.4
## 2 Male 6.61
Use any of the numerical variables from the dataset and perform the following statistical functions.
mean(Sleep$Sleep.Duration)
## [1] 6.868687
median(Sleep$Quality.of.Sleep)
## [1] 7
mode(Sleep$Physical.Activity.Level)
## [1] "numeric"
range(Sleep$Stress)
## [1] 3 8
Plot a scatter plot for any 2 variables in your dataset.
ggplot(Sleep, aes(x = Stress, y = Sleep.Duration)) +
geom_point(color = "steelblue") +
labs(title = "Sleep Duration vs. Stress Level",
x = "Stress Level",
y = "Sleep Duration (hours)")
Plot a bar plot for any 2 variables in your dataset.
ggplot(Sleep,aes(y = Sleep.Duration, fill=Blood.Pressure))+geom_bar()
Find the correlation between any 2 variables by applying least square linear regression model.
Y = Sleep$Stress
X = Sleep$Sleep.Duration
cor(Y,X, method="pearson")
## [1] -0.7279217