Three datasets (A, B, C) were created for each form (ABC, CSHQ, RBS, SSP). The nature of the datasets is as follows:

For all datasets, the following transformations were performed:

#Looking for items with only 1 level

one_level <- names(which(sapply(abc.A, function(x) {
  if (is.factor(x) || is.ordered(x)) length(levels(x)) == 1 else FALSE
})))

print(one_level)
## [1] "ABC_2"  "ABC_27" "ABC_50" "ABC_52" "ABC_53"

CFA of ABC

#install.packages("lavaan", dependencies = TRUE)
library(lavaan)

#set A has all of the ABC items still in it
# removing "ABC_2"  "ABC_27" "ABC_50" "ABC_52" "ABC_53" which only have 1 level

#make model with the 5 known domains 
#F1 = Irritability
#F2 = Social Withdrawal
#F3  = Hyperactivity 
#F4 = Stereotypy 
#F5 = Inappropriate Speech

#needed to make a dataframe not a list
class(abc.A)
## [1] "tbl_df"     "tbl"        "data.frame"
abc.A <- as.data.frame(abc.A)

abc.A[] <- lapply(abc.A, function(x) {
  if (is.factor(x)) ordered(x) else x
})



CFA.model <- '  Irritability =~ ABC_4 + ABC_8 + ABC_10 + ABC_14 + ABC_19 + ABC_25 + ABC_29 + ABC_34 + ABC_36 + ABC_41 + ABC_47 + ABC_57

   Social_Withdrawal =~ ABC_3 + ABC_5 + ABC_12 + ABC_16 + ABC_20 + ABC_23 + ABC_26 + ABC_30 + ABC_32 + ABC_37 + ABC_40 + ABC_42 + ABC_43  + ABC_55 + ABC_58
  
  Hyperactivity =~ ABC_1 + ABC_7 + ABC_13 + ABC_15 + ABC_18 + ABC_21 + ABC_24 + ABC_28 + ABC_31 + ABC_38 + ABC_39 + ABC_44 + ABC_48 + ABC_51 + ABC_54 + ABC_56 
  
  Stereotypy =~ ABC_6 + ABC_11 + ABC_17  + ABC_35 + ABC_45 + ABC_49
  
  Inappropriate_Speech =~ ABC_9 + ABC_22 + ABC_33 + ABC_46'

#run CFA model 
fit <- cfa(CFA.model, data = abc.A)
summary(fit, fit.measures = TRUE)
## lavaan 0.6-19 ended normally after 127 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                       169
## 
##   Number of observations                           147
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              3028.161    2147.112
##   Degrees of freedom                              1315        1315
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  2.608
##   Shift parameter                                          986.229
##     simple second-order correction                                
## 
## Model Test Baseline Model:
## 
##   Test statistic                             45144.573    9453.480
##   Degrees of freedom                              1378        1378
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  5.420
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.961       0.897
##   Tucker-Lewis Index (TLI)                       0.959       0.892
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.094       0.066
##   90 Percent confidence interval - lower         0.090       0.061
##   90 Percent confidence interval - upper         0.099       0.071
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    1.000       0.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
##   P-value H_0: Robust RMSEA <= 0.050                            NA
##   P-value H_0: Robust RMSEA >= 0.080                            NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.141       0.141
## 
## Parameter Estimates:
## 
##   Parameterization                               Delta
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                           Estimate  Std.Err  z-value  P(>|z|)
##   Irritability =~                                            
##     ABC_4                    1.000                           
##     ABC_8                    1.646    0.294    5.606    0.000
##     ABC_10                   1.292    0.241    5.369    0.000
##     ABC_14                   1.397    0.282    4.953    0.000
##     ABC_19                   1.771    0.330    5.368    0.000
##     ABC_25                   0.928    0.285    3.261    0.001
##     ABC_29                   1.448    0.268    5.397    0.000
##     ABC_34                   0.837    0.268    3.127    0.002
##     ABC_36                   1.495    0.295    5.075    0.000
##     ABC_41                   1.413    0.277    5.098    0.000
##     ABC_47                   0.833    0.238    3.501    0.000
##     ABC_57                   1.370    0.250    5.477    0.000
##   Social_Withdrawal =~                                       
##     ABC_3                    1.000                           
##     ABC_5                    2.485    0.747    3.327    0.001
##     ABC_12                   1.890    0.561    3.367    0.001
##     ABC_16                   2.472    0.723    3.419    0.001
##     ABC_20                   2.255    0.691    3.261    0.001
##     ABC_23                   0.079    0.362    0.219    0.827
##     ABC_26                   2.782    0.839    3.318    0.001
##     ABC_30                   2.698    0.796    3.388    0.001
##     ABC_32                   1.094    0.507    2.157    0.031
##     ABC_37                   2.363    0.697    3.390    0.001
##     ABC_40                   2.808    0.830    3.384    0.001
##     ABC_42                   2.372    0.716    3.312    0.001
##     ABC_43                   1.811    0.582    3.114    0.002
##     ABC_55                   2.795    0.849    3.290    0.001
##     ABC_58                   2.547    0.774    3.289    0.001
##   Hyperactivity =~                                           
##     ABC_1                    1.000                           
##     ABC_7                    0.937    0.053   17.555    0.000
##     ABC_13                   0.961    0.050   19.397    0.000
##     ABC_15                   1.105    0.040   27.819    0.000
##     ABC_18                   1.008    0.049   20.542    0.000
##     ABC_21                   0.932    0.047   19.647    0.000
##     ABC_24                   0.935    0.051   18.314    0.000
##     ABC_28                   0.935    0.064   14.702    0.000
##     ABC_31                   0.977    0.049   20.025    0.000
##     ABC_38                   1.072    0.041   25.952    0.000
##     ABC_39                   1.026    0.035   29.017    0.000
##     ABC_44                   0.816    0.058   14.165    0.000
##     ABC_48                   0.870    0.057   15.195    0.000
##     ABC_51                   0.933    0.057   16.460    0.000
##     ABC_54                   1.077    0.035   30.361    0.000
##     ABC_56                   0.680    0.091    7.492    0.000
##   Stereotypy =~                                              
##     ABC_6                    1.000                           
##     ABC_11                   1.069    0.065   16.565    0.000
##     ABC_17                   1.175    0.072   16.332    0.000
##     ABC_35                   0.963    0.063   15.275    0.000
##     ABC_45                   0.791    0.087    9.052    0.000
##     ABC_49                   0.560    0.122    4.601    0.000
##   Inappropriate_Speech =~                                    
##     ABC_9                    1.000                           
##     ABC_22                   1.256    0.188    6.696    0.000
##     ABC_33                   1.100    0.214    5.131    0.000
##     ABC_46                   1.407    0.209    6.724    0.000
## 
## Covariances:
##                        Estimate  Std.Err  z-value  P(>|z|)
##   Irritability ~~                                         
##     Social_Wthdrwl        0.072    0.031    2.317    0.020
##     Hyperactivity         0.263    0.057    4.653    0.000
##     Stereotypy            0.169    0.050    3.379    0.001
##     Inapprprt_Spch        0.201    0.061    3.287    0.001
##   Social_Withdrawal ~~                                    
##     Hyperactivity         0.170    0.051    3.327    0.001
##     Stereotypy            0.173    0.056    3.086    0.002
##     Inapprprt_Spch        0.055    0.029    1.877    0.060
##   Hyperactivity ~~                                        
##     Stereotypy            0.510    0.048   10.518    0.000
##     Inapprprt_Spch        0.230    0.058    3.972    0.000
##   Stereotypy ~~                                           
##     Inapprprt_Spch        0.088    0.062    1.413    0.158
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     ABC_4|t1          0.303    0.105    2.873    0.004
##     ABC_8|t1         -0.026    0.104   -0.247    0.805
##     ABC_8|t2          0.803    0.117    6.875    0.000
##     ABC_10|t1         0.111    0.104    1.068    0.285
##     ABC_10|t2         1.068    0.128    8.318    0.000
##     ABC_14|t1         0.111    0.104    1.068    0.285
##     ABC_14|t2         1.038    0.127    8.184    0.000
##     ABC_19|t1         0.060    0.104    0.575    0.565
##     ABC_19|t2         0.780    0.116    6.722    0.000
##     ABC_25|t1         0.901    0.121    7.475    0.000
##     ABC_29|t1        -0.339    0.106   -3.200    0.001
##     ABC_29|t2         0.691    0.113    6.099    0.000
##     ABC_34|t1         0.901    0.121    7.475    0.000
##     ABC_36|t1         0.060    0.104    0.575    0.565
##     ABC_36|t2         0.981    0.124    7.908    0.000
##     ABC_41|t1         0.394    0.107    3.689    0.000
##     ABC_47|t1         0.488    0.108    4.501    0.000
##     ABC_57|t1        -0.009    0.104   -0.082    0.934
##     ABC_57|t2         0.851    0.119    7.178    0.000
##     ABC_3|t1          0.180    0.104    1.725    0.084
##     ABC_3|t2          1.130    0.132    8.575    0.000
##     ABC_5|t1          0.394    0.107    3.689    0.000
##     ABC_12|t1        -0.250    0.105   -2.381    0.017
##     ABC_12|t2         0.981    0.124    7.908    0.000
##     ABC_16|t1         0.215    0.105    2.053    0.040
##     ABC_20|t1         0.215    0.105    2.053    0.040
##     ABC_23|t1         0.627    0.111    5.625    0.000
##     ABC_26|t1         0.851    0.119    7.178    0.000
##     ABC_30|t1         0.450    0.108    4.177    0.000
##     ABC_32|t1         0.851    0.119    7.178    0.000
##     ABC_37|t1        -0.111    0.104   -1.068    0.285
##     ABC_37|t2         0.606    0.111    5.465    0.000
##     ABC_37|t3         1.270    0.141    9.029    0.000
##     ABC_40|t1        -0.412    0.107   -3.852    0.000
##     ABC_40|t2         0.488    0.108    4.501    0.000
##     ABC_40|t3         1.068    0.128    8.318    0.000
##     ABC_42|t1         0.468    0.108    4.339    0.000
##     ABC_43|t1        -0.009    0.104   -0.082    0.934
##     ABC_43|t2         0.507    0.109    4.662    0.000
##     ABC_43|t3         0.851    0.119    7.178    0.000
##     ABC_55|t1         0.827    0.118    7.027    0.000
##     ABC_58|t1        -0.321    0.106   -3.036    0.002
##     ABC_58|t2         0.669    0.113    5.942    0.000
##     ABC_58|t3         1.233    0.138    8.925    0.000
##     ABC_1|t1         -0.526    0.109   -4.824    0.000
##     ABC_1|t2          0.128    0.104    1.233    0.218
##     ABC_1|t3          0.901    0.121    7.475    0.000
##     ABC_7|t1         -0.163    0.104   -1.561    0.118
##     ABC_7|t2          0.526    0.109    4.824    0.000
##     ABC_13|t1        -0.669    0.113   -5.942    0.000
##     ABC_13|t2         0.094    0.104    0.904    0.366
##     ABC_13|t3         0.780    0.116    6.722    0.000
##     ABC_15|t1        -0.712    0.114   -6.256    0.000
##     ABC_15|t2         0.009    0.104    0.082    0.934
##     ABC_15|t3         0.648    0.112    5.783    0.000
##     ABC_18|t1        -0.232    0.105   -2.217    0.027
##     ABC_18|t2         0.450    0.108    4.177    0.000
##     ABC_21|t1        -0.412    0.107   -3.852    0.000
##     ABC_21|t2         0.468    0.108    4.339    0.000
##     ABC_21|t3         1.233    0.138    8.925    0.000
##     ABC_24|t1        -0.285    0.105   -2.709    0.007
##     ABC_24|t2         0.757    0.115    6.567    0.000
##     ABC_28|t1        -0.735    0.115   -6.412    0.000
##     ABC_28|t2         0.321    0.106    3.036    0.002
##     ABC_28|t3         0.954    0.123    7.765    0.000
##     ABC_31|t1        -0.250    0.105   -2.381    0.017
##     ABC_31|t2         0.691    0.113    6.099    0.000
##     ABC_38|t1        -0.546    0.110   -4.985    0.000
##     ABC_38|t2        -0.060    0.104   -0.575    0.565
##     ABC_38|t3         0.712    0.114    6.256    0.000
##     ABC_39|t1        -0.375    0.106   -3.526    0.000
##     ABC_39|t2         0.128    0.104    1.233    0.218
##     ABC_39|t3         0.735    0.115    6.412    0.000
##     ABC_44|t1        -0.712    0.114   -6.256    0.000
##     ABC_44|t2         0.145    0.104    1.397    0.162
##     ABC_44|t3         0.803    0.117    6.875    0.000
##     ABC_48|t1         0.215    0.105    2.053    0.040
##     ABC_48|t2         0.735    0.115    6.412    0.000
##     ABC_51|t1        -0.526    0.109   -4.824    0.000
##     ABC_51|t2         0.546    0.110    4.985    0.000
##     ABC_51|t3         1.197    0.136    8.814    0.000
##     ABC_54|t1        -0.285    0.105   -2.709    0.007
##     ABC_54|t2         0.250    0.105    2.381    0.017
##     ABC_54|t3         0.876    0.120    7.327    0.000
##     ABC_56|t1         0.009    0.104    0.082    0.934
##     ABC_6|t1         -0.128    0.104   -1.233    0.218
##     ABC_6|t2          0.712    0.114    6.256    0.000
##     ABC_11|t1        -0.375    0.106   -3.526    0.000
##     ABC_11|t2         0.546    0.110    4.985    0.000
##     ABC_11|t3         1.163    0.134    8.697    0.000
##     ABC_17|t1        -0.043    0.104   -0.411    0.681
##     ABC_17|t2         0.803    0.117    6.875    0.000
##     ABC_35|t1        -0.060    0.104   -0.575    0.565
##     ABC_35|t2         0.691    0.113    6.099    0.000
##     ABC_35|t3         1.130    0.132    8.575    0.000
##     ABC_45|t1         0.303    0.105    2.873    0.004
##     ABC_45|t2         0.876    0.120    7.327    0.000
##     ABC_49|t1         0.757    0.115    6.567    0.000
##     ABC_9|t1          0.627    0.111    5.625    0.000
##     ABC_9|t2          1.068    0.128    8.318    0.000
##     ABC_22|t1         0.145    0.104    1.397    0.162
##     ABC_22|t2         0.586    0.110    5.306    0.000
##     ABC_22|t3         1.009    0.125    8.047    0.000
##     ABC_33|t1         0.627    0.111    5.625    0.000
##     ABC_46|t1         0.321    0.106    3.036    0.002
##     ABC_46|t2         0.803    0.117    6.875    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .ABC_4             0.713                           
##    .ABC_8             0.224                           
##    .ABC_10            0.521                           
##    .ABC_14            0.440                           
##    .ABC_19            0.101                           
##    .ABC_25            0.753                           
##    .ABC_29            0.399                           
##    .ABC_34            0.799                           
##    .ABC_36            0.359                           
##    .ABC_41            0.428                           
##    .ABC_47            0.801                           
##    .ABC_57            0.462                           
##    .ABC_3             0.895                           
##    .ABC_5             0.351                           
##    .ABC_12            0.625                           
##    .ABC_16            0.357                           
##    .ABC_20            0.466                           
##    .ABC_23            0.999                           
##    .ABC_26            0.186                           
##    .ABC_30            0.235                           
##    .ABC_32            0.874                           
##    .ABC_37            0.413                           
##    .ABC_40            0.171                           
##    .ABC_42            0.409                           
##    .ABC_43            0.655                           
##    .ABC_55            0.179                           
##    .ABC_58            0.318                           
##    .ABC_1             0.295                           
##    .ABC_7             0.382                           
##    .ABC_13            0.350                           
##    .ABC_15            0.140                           
##    .ABC_18            0.284                           
##    .ABC_21            0.388                           
##    .ABC_24            0.384                           
##    .ABC_28            0.384                           
##    .ABC_31            0.327                           
##    .ABC_38            0.190                           
##    .ABC_39            0.258                           
##    .ABC_44            0.531                           
##    .ABC_48            0.467                           
##    .ABC_51            0.387                           
##    .ABC_54            0.182                           
##    .ABC_56            0.674                           
##    .ABC_6             0.261                           
##    .ABC_11            0.155                           
##    .ABC_17           -0.020                           
##    .ABC_35            0.314                           
##    .ABC_45            0.537                           
##    .ABC_49            0.768                           
##    .ABC_9             0.498                           
##    .ABC_22            0.208                           
##    .ABC_33            0.393                           
##    .ABC_46            0.006                           
##     Irritability      0.287    0.102    2.823    0.005
##     Social_Wthdrwl    0.105    0.063    1.671    0.095
##     Hyperactivity     0.705    0.049   14.351    0.000
##     Stereotypy        0.739    0.072   10.332    0.000
##     Inapprprt_Spch    0.502    0.138    3.642    0.000
#ESEM

#fitA <- cfa(model, data = abc.A)
#summary(fitA, fit.measures = TRUE, standardized = TRUE)

Use lavaan to conduct an ESEM of the ABC prespecified factor structure. Make sure to use the correct estimation procedures for ordinal data, which you do by telling lavaan that the data are ordered (it’s the “ordered = TRUE” argument). I don’t know how much the rotation will matter, but the most common one is geomin (rotation = “geomin”). We’ll want to output the fit statistics and review the standardized factor loadings. I think you can request modificaiton indices by submitting the model object to the function modindices().