fb %>%
ggplot(aes(x = Status, y = S_ROS)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
labs(title = "Surface Fire Rate of Spread by Invasion Status",
x = "Status",
y = "Rate of Spread (m/min)")
## `geom_smooth()` using formula = 'y ~ x'
# Create plots for the surface fire rate of spread (Sur_ROS) and flame length (Sur_FL)
plot_ros <- ggplot(fb, aes(x = Status, y = S_ROS)) +
geom_boxplot() +
labs(title = "Surface Fire Rate of Spread", x = "Invasion Status", y = "Rate of Spread (m/min)") +
theme_classic()
plot_fl <- ggplot(fb, aes(x = Status, y = S_FL)) +
geom_boxplot() +
labs(title = "Flame Length", x = "Invasion Status", y = "Flame Length (m)") +
theme_classic()
# Print the plots
print(plot_ros)
print(plot_fl)
Can’t use Gamma or Lognormal because of zero values in the data.
## Family: student
## Links: mu = identity; sigma = identity; nu = identity
## Formula: S_ROS ~ Status * Live_Fuel_Moisture + Status * Dead_Fuel_Moisture + Status * Live_Biomass + Status * Dead_Biomass + Status * Litter_Biomass
## Data: fb (Number of observations: 1458)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI Rhat
## Intercept 2.51 0.02 2.47 2.55 1.00
## StatusInvaded 1.03 0.04 0.94 1.10 1.00
## Live_Fuel_MoistureHigh -0.51 0.02 -0.54 -0.48 1.00
## Live_Fuel_MoistureLow 0.71 0.02 0.68 0.74 1.00
## Dead_Fuel_MoistureHigh -0.46 0.02 -0.49 -0.42 1.00
## Dead_Fuel_MoistureLow 0.49 0.02 0.46 0.52 1.00
## Live_BiomassHigh -0.19 0.02 -0.22 -0.15 1.00
## Live_BiomassLow 0.26 0.02 0.23 0.29 1.00
## Dead_BiomassHigh 0.10 0.02 0.07 0.13 1.00
## Dead_BiomassLow -0.07 0.02 -0.10 -0.04 1.00
## Litter_BiomassHigh 0.30 0.02 0.27 0.33 1.00
## Litter_BiomassLow -0.69 0.02 -0.73 -0.66 1.00
## StatusInvaded:Live_Fuel_MoistureHigh 0.00 0.03 -0.07 0.07 1.00
## StatusInvaded:Live_Fuel_MoistureLow -0.24 0.04 -0.31 -0.17 1.00
## StatusInvaded:Dead_Fuel_MoistureHigh -0.65 0.05 -0.74 -0.56 1.00
## StatusInvaded:Dead_Fuel_MoistureLow 0.06 0.04 -0.01 0.13 1.00
## StatusInvaded:Live_BiomassHigh 0.22 0.04 0.14 0.30 1.00
## StatusInvaded:Live_BiomassLow -0.46 0.03 -0.53 -0.40 1.00
## StatusInvaded:Dead_BiomassHigh 0.65 0.04 0.57 0.72 1.00
## StatusInvaded:Dead_BiomassLow -0.48 0.04 -0.55 -0.40 1.00
## StatusInvaded:Litter_BiomassHigh 0.80 0.03 0.73 0.86 1.00
## StatusInvaded:Litter_BiomassLow -0.38 0.05 -0.49 -0.27 1.00
## Bulk_ESS Tail_ESS
## Intercept 3228 3057
## StatusInvaded 2577 2789
## Live_Fuel_MoistureHigh 3820 3163
## Live_Fuel_MoistureLow 4044 2938
## Dead_Fuel_MoistureHigh 3773 3206
## Dead_Fuel_MoistureLow 3884 2790
## Live_BiomassHigh 3238 2817
## Live_BiomassLow 3774 3248
## Dead_BiomassHigh 3806 3224
## Dead_BiomassLow 3847 2646
## Litter_BiomassHigh 4380 3263
## Litter_BiomassLow 3906 3091
## StatusInvaded:Live_Fuel_MoistureHigh 3226 2915
## StatusInvaded:Live_Fuel_MoistureLow 3539 2853
## StatusInvaded:Dead_Fuel_MoistureHigh 2497 2644
## StatusInvaded:Dead_Fuel_MoistureLow 2805 2395
## StatusInvaded:Live_BiomassHigh 3130 2915
## StatusInvaded:Live_BiomassLow 3374 3259
## StatusInvaded:Dead_BiomassHigh 3206 2996
## StatusInvaded:Dead_BiomassLow 2613 3043
## StatusInvaded:Litter_BiomassHigh 3398 3037
## StatusInvaded:Litter_BiomassLow 2819 3003
##
## Further Distributional Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.17 0.01 0.15 0.19 1.00 2391 2411
## nu 1.95 0.19 1.62 2.36 1.00 2363 2465
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
## ℹ Please use the `linewidth` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## Warning: Parts of the model have not converged (some Rhats are > 1.05). Be
## careful when analysing the results! We recommend running more iterations and/or
## setting stronger priors.
## Family: student
## Links: mu = identity; sigma = identity; nu = identity
## Formula: S_FL ~ Status * Live_Fuel_Moisture + Status * Dead_Fuel_Moisture + Status * Live_Biomass + Status * Dead_Biomass + Status * Litter_Biomass
## Data: fb (Number of observations: 1458)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI Rhat
## Intercept 1.57 0.01 1.54 1.60 1.10
## StatusInvaded 0.22 0.07 0.10 0.31 1.74
## Live_Fuel_MoistureLow 0.25 0.02 0.22 0.29 1.71
## Live_Fuel_MoistureHigh -0.19 0.02 -0.23 -0.16 1.60
## Dead_Fuel_MoistureLow 0.23 0.01 0.21 0.26 1.32
## Dead_Fuel_MoistureHigh -0.22 0.03 -0.27 -0.19 1.73
## Live_BiomassLow 0.06 0.01 0.04 0.09 1.09
## Live_BiomassHigh -0.04 0.01 -0.06 -0.02 1.08
## Dead_BiomassLow -0.04 0.01 -0.06 -0.02 1.11
## Dead_BiomassHigh 0.06 0.01 0.04 0.09 1.21
## Litter_BiomassLow -0.42 0.05 -0.48 -0.36 1.73
## Litter_BiomassHigh 0.19 0.01 0.17 0.21 1.10
## StatusInvaded:Live_Fuel_MoistureLow -0.11 0.02 -0.14 -0.07 1.09
## StatusInvaded:Live_Fuel_MoistureHigh 0.04 0.02 -0.01 0.07 1.25
## StatusInvaded:Dead_Fuel_MoistureLow 0.00 0.02 -0.03 0.05 1.44
## StatusInvaded:Dead_Fuel_MoistureHigh -0.13 0.06 -0.23 -0.05 1.73
## StatusInvaded:Live_BiomassLow -0.10 0.03 -0.14 -0.04 1.66
## StatusInvaded:Live_BiomassHigh 0.04 0.06 -0.06 0.12 1.74
## StatusInvaded:Dead_BiomassLow -0.22 0.04 -0.29 -0.16 1.73
## StatusInvaded:Dead_BiomassHigh 0.27 0.08 0.17 0.38 1.73
## StatusInvaded:Litter_BiomassLow -0.28 0.19 -0.50 -0.06 1.73
## StatusInvaded:Litter_BiomassHigh 0.33 0.08 0.24 0.44 1.73
## Bulk_ESS Tail_ESS
## Intercept 2530 251
## StatusInvaded 6 150
## Live_Fuel_MoistureLow 6 128
## Live_Fuel_MoistureHigh 7 151
## Dead_Fuel_MoistureLow 10 184
## Dead_Fuel_MoistureHigh 6 129
## Live_BiomassLow 30 176
## Live_BiomassHigh 37 163
## Dead_BiomassLow 79 211
## Dead_BiomassHigh 13 139
## Litter_BiomassLow 6 125
## Litter_BiomassHigh 95 180
## StatusInvaded:Live_Fuel_MoistureLow 51 189
## StatusInvaded:Live_Fuel_MoistureHigh 11 129
## StatusInvaded:Dead_Fuel_MoistureLow 8 170
## StatusInvaded:Dead_Fuel_MoistureHigh 6 136
## StatusInvaded:Live_BiomassLow 6 167
## StatusInvaded:Live_BiomassHigh 6 110
## StatusInvaded:Dead_BiomassLow 6 139
## StatusInvaded:Dead_BiomassHigh 6 131
## StatusInvaded:Litter_BiomassLow 6 145
## StatusInvaded:Litter_BiomassHigh 6 153
##
## Further Distributional Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.10 0.05 0.05 0.15 1.73 6 117
## nu 9.51 10.97 1.01 37.13 1.74 6 149
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## Family: student
## Links: mu = identity; sigma = identity; nu = identity
## Formula: S_Fin ~ Status * Live_Fuel_Moisture + Status * Dead_Fuel_Moisture + Status * Live_Biomass + Status * Dead_Biomass + Status * Litter_Biomass
## Data: fb (Number of observations: 1458)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI Rhat
## Intercept 700.91 6.18 688.81 713.16 1.00
## StatusInvaded 251.61 14.00 223.74 278.50 1.00
## Live_Fuel_MoistureLow 221.32 5.29 211.09 231.74 1.00
## Live_Fuel_MoistureHigh -160.62 4.35 -169.14 -152.11 1.00
## Dead_Fuel_MoistureLow 224.28 4.75 215.07 233.68 1.00
## Dead_Fuel_MoistureHigh -186.02 4.76 -195.30 -176.65 1.00
## Live_BiomassLow 51.29 4.66 42.26 60.18 1.00
## Live_BiomassHigh -35.50 4.63 -44.47 -26.48 1.00
## Dead_BiomassLow -36.20 4.80 -45.81 -27.02 1.00
## Dead_BiomassHigh 54.78 4.69 45.62 63.87 1.00
## Litter_BiomassLow -353.10 5.30 -363.79 -342.89 1.00
## Litter_BiomassHigh 183.34 4.45 174.54 192.21 1.00
## StatusInvaded:Live_Fuel_MoistureLow -43.80 9.94 -63.46 -24.35 1.00
## StatusInvaded:Live_Fuel_MoistureHigh -27.78 9.71 -47.30 -9.02 1.00
## StatusInvaded:Dead_Fuel_MoistureLow 56.95 10.00 36.90 76.21 1.00
## StatusInvaded:Dead_Fuel_MoistureHigh -283.85 10.77 -304.83 -262.77 1.00
## StatusInvaded:Live_BiomassLow -120.94 12.62 -145.70 -96.40 1.00
## StatusInvaded:Live_BiomassHigh 133.78 11.20 111.06 155.49 1.00
## StatusInvaded:Dead_BiomassLow -225.19 11.03 -247.64 -203.61 1.00
## StatusInvaded:Dead_BiomassHigh 373.66 9.81 354.38 393.28 1.00
## StatusInvaded:Litter_BiomassLow -131.35 13.18 -157.75 -105.77 1.00
## StatusInvaded:Litter_BiomassHigh 479.54 9.73 460.45 498.88 1.00
## Bulk_ESS Tail_ESS
## Intercept 3445 3174
## StatusInvaded 2420 2527
## Live_Fuel_MoistureLow 3908 3143
## Live_Fuel_MoistureHigh 4379 3397
## Dead_Fuel_MoistureLow 3701 3144
## Dead_Fuel_MoistureHigh 3703 2827
## Live_BiomassLow 4121 3451
## Live_BiomassHigh 4430 3298
## Dead_BiomassLow 4025 3238
## Dead_BiomassHigh 3818 2991
## Litter_BiomassLow 4341 3045
## Litter_BiomassHigh 4303 2988
## StatusInvaded:Live_Fuel_MoistureLow 3674 3152
## StatusInvaded:Live_Fuel_MoistureHigh 3500 3106
## StatusInvaded:Dead_Fuel_MoistureLow 2991 2987
## StatusInvaded:Dead_Fuel_MoistureHigh 3881 2987
## StatusInvaded:Live_BiomassLow 3090 3220
## StatusInvaded:Live_BiomassHigh 3528 3236
## StatusInvaded:Dead_BiomassLow 3579 3079
## StatusInvaded:Dead_BiomassHigh 3829 3100
## StatusInvaded:Litter_BiomassLow 3834 3318
## StatusInvaded:Litter_BiomassHigh 3553 3016
##
## Further Distributional Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 47.32 2.38 42.88 52.16 1.00 3320 2985
## nu 1.35 0.09 1.19 1.53 1.00 3235 2387
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## Family: student
## Links: mu = identity; sigma = identity; nu = identity
## Formula: C_TR ~ Status * Live_Fuel_Moisture + Status * Dead_Fuel_Moisture + Status * Live_Biomass + Status * Dead_Biomass + Status * Litter_Biomass + Status * TreeBH
## Data: fb (Number of observations: 1458)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI Rhat
## Intercept 0.61 0.02 0.58 0.64 1.00
## StatusInvaded -0.08 0.02 -0.13 -0.03 1.00
## Live_Fuel_MoistureLow 0.06 0.01 0.05 0.07 1.00
## Live_Fuel_MoistureHigh -0.04 0.01 -0.05 -0.03 1.00
## Dead_Fuel_MoistureLow 0.06 0.00 0.05 0.06 1.00
## Dead_Fuel_MoistureHigh -0.05 0.01 -0.06 -0.04 1.00
## Live_BiomassLow 0.01 0.01 0.00 0.02 1.00
## Live_BiomassHigh -0.01 0.01 -0.02 0.00 1.00
## Dead_BiomassLow -0.01 0.01 -0.02 -0.00 1.00
## Dead_BiomassHigh 0.01 0.01 0.01 0.02 1.00
## Litter_BiomassLow -0.10 0.01 -0.11 -0.09 1.00
## Litter_BiomassHigh 0.05 0.00 0.04 0.06 1.00
## TreeBH -0.05 0.00 -0.05 -0.05 1.00
## StatusInvaded:Live_Fuel_MoistureLow -0.02 0.01 -0.03 -0.00 1.00
## StatusInvaded:Live_Fuel_MoistureHigh 0.00 0.01 -0.02 0.02 1.00
## StatusInvaded:Dead_Fuel_MoistureLow 0.01 0.01 -0.01 0.02 1.00
## StatusInvaded:Dead_Fuel_MoistureHigh -0.07 0.01 -0.08 -0.05 1.00
## StatusInvaded:Live_BiomassLow -0.02 0.01 -0.04 -0.01 1.00
## StatusInvaded:Live_BiomassHigh -0.01 0.01 -0.02 0.01 1.00
## StatusInvaded:Dead_BiomassLow -0.06 0.01 -0.07 -0.04 1.00
## StatusInvaded:Dead_BiomassHigh 0.09 0.01 0.07 0.10 1.00
## StatusInvaded:Litter_BiomassLow -0.02 0.01 -0.03 -0.00 1.00
## StatusInvaded:Litter_BiomassHigh 0.11 0.01 0.10 0.13 1.00
## StatusInvaded:TreeBH 0.01 0.00 0.01 0.02 1.00
## Bulk_ESS Tail_ESS
## Intercept 2588 3224
## StatusInvaded 2730 2811
## Live_Fuel_MoistureLow 3240 3273
## Live_Fuel_MoistureHigh 3214 2703
## Dead_Fuel_MoistureLow 3449 2905
## Dead_Fuel_MoistureHigh 3201 3143
## Live_BiomassLow 3451 3089
## Live_BiomassHigh 3465 3305
## Dead_BiomassLow 3758 2960
## Dead_BiomassHigh 4026 3347
## Litter_BiomassLow 2668 2926
## Litter_BiomassHigh 3630 3274
## TreeBH 2807 2904
## StatusInvaded:Live_Fuel_MoistureLow 3134 3336
## StatusInvaded:Live_Fuel_MoistureHigh 2779 3031
## StatusInvaded:Dead_Fuel_MoistureLow 3563 2826
## StatusInvaded:Dead_Fuel_MoistureHigh 2996 2948
## StatusInvaded:Live_BiomassLow 3288 2866
## StatusInvaded:Live_BiomassHigh 3272 2871
## StatusInvaded:Dead_BiomassLow 3458 2918
## StatusInvaded:Dead_BiomassHigh 3711 3046
## StatusInvaded:Litter_BiomassLow 2904 3044
## StatusInvaded:Litter_BiomassHigh 3684 3391
## StatusInvaded:TreeBH 3224 2837
##
## Further Distributional Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.04 0.00 0.04 0.05 1.00 2665 2374
## nu 1.24 0.07 1.10 1.39 1.00 2484 2053
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## Warning: Parts of the model have not converged (some Rhats are > 1.05). Be
## careful when analysing the results! We recommend running more iterations and/or
## setting stronger priors.
## Family: student
## Links: mu = identity; sigma = identity; nu = identity
## Formula: C_AR ~ Status * Live_Fuel_Moisture + Status * Dead_Fuel_Moisture
## Data: fb (Number of observations: 1458)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI Rhat
## Intercept 0.12 0.01 0.11 0.12 1.74
## StatusInvaded -0.04 0.01 -0.04 -0.03 1.74
## Live_Fuel_MoistureLow 0.02 0.01 0.02 0.03 1.74
## Live_Fuel_MoistureHigh -0.03 0.01 -0.03 -0.02 1.74
## Dead_Fuel_MoistureLow 0.03 0.00 0.03 0.03 1.11
## Dead_Fuel_MoistureHigh -0.12 0.01 -0.12 -0.11 1.74
## StatusInvaded:Live_Fuel_MoistureLow -0.01 0.01 -0.02 -0.01 1.74
## StatusInvaded:Live_Fuel_MoistureHigh 0.02 0.01 0.01 0.02 1.74
## StatusInvaded:Dead_Fuel_MoistureLow 0.02 0.00 0.02 0.02 1.11
## StatusInvaded:Dead_Fuel_MoistureHigh 0.04 0.01 0.03 0.04 1.74
## Bulk_ESS Tail_ESS
## Intercept 6 57
## StatusInvaded 6 57
## Live_Fuel_MoistureLow 6 52
## Live_Fuel_MoistureHigh 6 59
## Dead_Fuel_MoistureLow 3264 140
## Dead_Fuel_MoistureHigh 6 52
## StatusInvaded:Live_Fuel_MoistureLow 6 46
## StatusInvaded:Live_Fuel_MoistureHigh 6 52
## StatusInvaded:Dead_Fuel_MoistureLow 3331 150
## StatusInvaded:Dead_Fuel_MoistureHigh 6 43
##
## Further Distributional Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.00 0.00 0.00 0.00 3.97 4 11
## nu 1.19 0.07 1.09 1.26 3.74 4 11
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## Warning: Parts of the model have not converged (some Rhats are > 1.05). Be
## careful when analysing the results! We recommend running more iterations and/or
## setting stronger priors.
## Family: student
## Links: mu = identity; sigma = identity; nu = identity
## Formula: C_ROS ~ Status * Live_Fuel_Moisture + Status * Dead_Fuel_Moisture
## Data: fb (Number of observations: 1458)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI Rhat
## Intercept 1.33 0.03 1.30 1.37 1.74
## StatusInvaded -0.42 0.02 -0.46 -0.40 1.74
## Live_Fuel_MoistureLow 0.32 0.08 0.22 0.40 1.74
## Live_Fuel_MoistureHigh -0.20 0.01 -0.22 -0.19 1.77
## Dead_Fuel_MoistureLow 0.40 0.01 0.38 0.41 1.77
## Dead_Fuel_MoistureHigh -1.33 0.03 -1.38 -1.30 1.74
## StatusInvaded:Live_Fuel_MoistureLow -0.25 0.15 -0.40 -0.08 1.74
## StatusInvaded:Live_Fuel_MoistureHigh 0.05 0.05 -0.00 0.13 1.73
## StatusInvaded:Dead_Fuel_MoistureLow 0.23 0.07 0.15 0.30 1.74
## StatusInvaded:Dead_Fuel_MoistureHigh 0.42 0.02 0.40 0.46 1.74
## Bulk_ESS Tail_ESS
## Intercept 6 50
## StatusInvaded 6 62
## Live_Fuel_MoistureLow 6 47
## Live_Fuel_MoistureHigh 1372 136
## Dead_Fuel_MoistureLow 2893 109
## Dead_Fuel_MoistureHigh 6 47
## StatusInvaded:Live_Fuel_MoistureLow 6 45
## StatusInvaded:Live_Fuel_MoistureHigh 6 93
## StatusInvaded:Dead_Fuel_MoistureLow 6 50
## StatusInvaded:Dead_Fuel_MoistureHigh 6 64
##
## Further Distributional Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.05 0.05 0.00 0.11 2.28 5 12
## nu 27.35 29.49 1.04 88.72 2.25 5 32
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_point()`).
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_line()`).
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## Family: student
## Links: mu = identity; sigma = identity; nu = identity
## Formula: C_Fin ~ Status * Live_Fuel_Moisture + Status * Dead_Fuel_Moisture + Status * Live_Biomass + Status * Dead_Biomass + Status * Litter_Biomass + Status * TreeBH
## Data: fb (Number of observations: 1458)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI Rhat
## Intercept 323.73 27.24 272.16 376.70 1.00
## StatusInvaded -158.47 39.60 -234.94 -80.50 1.00
## Live_Fuel_MoistureLow 398.76 14.43 370.09 426.22 1.00
## Live_Fuel_MoistureHigh -328.25 12.99 -352.60 -302.79 1.00
## Dead_Fuel_MoistureLow 468.98 12.19 444.44 492.98 1.00
## Dead_Fuel_MoistureHigh -1473.77 19.64 -1511.75 -1435.10 1.00
## Live_BiomassLow -10.54 13.32 -36.86 15.59 1.00
## Live_BiomassHigh 8.27 13.59 -18.17 34.95 1.00
## Dead_BiomassLow -13.23 13.26 -39.24 12.45 1.00
## Dead_BiomassHigh 17.27 13.00 -8.58 42.74 1.00
## Litter_BiomassLow -103.54 13.17 -129.18 -77.70 1.00
## Litter_BiomassHigh 50.60 13.47 24.02 77.23 1.00
## TreeBH 150.46 2.69 145.16 155.75 1.00
## StatusInvaded:Live_Fuel_MoistureLow -157.88 20.40 -198.27 -118.09 1.00
## StatusInvaded:Live_Fuel_MoistureHigh 153.19 19.58 114.83 191.60 1.00
## StatusInvaded:Dead_Fuel_MoistureLow 246.82 19.09 209.25 283.88 1.00
## StatusInvaded:Dead_Fuel_MoistureHigh 465.36 28.40 410.59 522.22 1.00
## StatusInvaded:Live_BiomassLow 16.69 20.10 -22.07 56.02 1.00
## StatusInvaded:Live_BiomassHigh -19.26 20.24 -59.55 20.46 1.00
## StatusInvaded:Dead_BiomassLow -41.80 19.71 -80.12 -2.80 1.00
## StatusInvaded:Dead_BiomassHigh 54.82 19.68 15.85 92.69 1.00
## StatusInvaded:Litter_BiomassLow -2.31 19.51 -40.30 36.52 1.00
## StatusInvaded:Litter_BiomassHigh 38.53 20.07 -2.17 77.21 1.00
## StatusInvaded:TreeBH -44.69 4.10 -52.95 -36.80 1.00
## Bulk_ESS Tail_ESS
## Intercept 2574 2658
## StatusInvaded 2520 2660
## Live_Fuel_MoistureLow 3864 3434
## Live_Fuel_MoistureHigh 4420 3257
## Dead_Fuel_MoistureLow 3592 3118
## Dead_Fuel_MoistureHigh 3466 3006
## Live_BiomassLow 3233 3316
## Live_BiomassHigh 3560 3107
## Dead_BiomassLow 3804 3349
## Dead_BiomassHigh 3699 3248
## Litter_BiomassLow 3684 3175
## Litter_BiomassHigh 3686 3266
## TreeBH 3014 2765
## StatusInvaded:Live_Fuel_MoistureLow 3788 3423
## StatusInvaded:Live_Fuel_MoistureHigh 3782 3321
## StatusInvaded:Dead_Fuel_MoistureLow 3783 3223
## StatusInvaded:Dead_Fuel_MoistureHigh 3863 2873
## StatusInvaded:Live_BiomassLow 3229 3443
## StatusInvaded:Live_BiomassHigh 3176 2804
## StatusInvaded:Dead_BiomassLow 3734 3177
## StatusInvaded:Dead_BiomassHigh 3799 3443
## StatusInvaded:Litter_BiomassLow 3569 3207
## StatusInvaded:Litter_BiomassHigh 3648 3452
## StatusInvaded:TreeBH 3205 3268
##
## Further Distributional Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 120.08 6.32 108.48 133.03 1.00 3039 2997
## nu 1.82 0.16 1.55 2.16 1.00 3402 2589
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_point()`).
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_line()`).
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## Family: student
## Links: mu = identity; sigma = identity; nu = identity
## Formula: C_FL ~ Status * Live_Fuel_Moisture + Status * Dead_Fuel_Moisture + Status * Live_Biomass + Status * Dead_Biomass + Status * Litter_Biomass + Status * TreeBH
## Data: fb (Number of observations: 1458)
## Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup draws = 4000
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI Rhat
## Intercept 1.60 0.03 1.54 1.67 1.00
## StatusInvaded -0.41 0.05 -0.51 -0.31 1.00
## Live_Fuel_MoistureLow 0.60 0.02 0.56 0.63 1.00
## Live_Fuel_MoistureHigh -0.51 0.02 -0.55 -0.48 1.00
## Dead_Fuel_MoistureLow 0.71 0.01 0.69 0.74 1.00
## Dead_Fuel_MoistureHigh -3.40 0.03 -3.47 -3.35 1.00
## Live_BiomassLow -0.01 0.02 -0.05 0.02 1.00
## Live_BiomassHigh 0.02 0.02 -0.01 0.05 1.00
## Dead_BiomassLow -0.02 0.02 -0.06 0.01 1.00
## Dead_BiomassHigh 0.03 0.02 -0.01 0.06 1.00
## Litter_BiomassLow -0.16 0.02 -0.19 -0.13 1.00
## Litter_BiomassHigh 0.08 0.02 0.05 0.12 1.00
## TreeBH 0.24 0.00 0.23 0.24 1.00
## StatusInvaded:Live_Fuel_MoistureLow -0.21 0.03 -0.26 -0.16 1.00
## StatusInvaded:Live_Fuel_MoistureHigh 0.19 0.03 0.14 0.25 1.00
## StatusInvaded:Dead_Fuel_MoistureLow 0.44 0.02 0.39 0.49 1.00
## StatusInvaded:Dead_Fuel_MoistureHigh 0.75 0.05 0.66 0.84 1.00
## StatusInvaded:Live_BiomassLow 0.03 0.03 -0.02 0.08 1.00
## StatusInvaded:Live_BiomassHigh -0.04 0.03 -0.09 0.01 1.00
## StatusInvaded:Dead_BiomassLow -0.08 0.03 -0.13 -0.03 1.00
## StatusInvaded:Dead_BiomassHigh 0.09 0.03 0.04 0.15 1.00
## StatusInvaded:Litter_BiomassLow -0.03 0.03 -0.08 0.03 1.00
## StatusInvaded:Litter_BiomassHigh 0.08 0.03 0.03 0.13 1.00
## StatusInvaded:TreeBH -0.05 0.01 -0.06 -0.04 1.00
## Bulk_ESS Tail_ESS
## Intercept 3077 2868
## StatusInvaded 2876 3084
## Live_Fuel_MoistureLow 4079 3424
## Live_Fuel_MoistureHigh 3849 3274
## Dead_Fuel_MoistureLow 4165 3608
## Dead_Fuel_MoistureHigh 3781 2999
## Live_BiomassLow 3337 3210
## Live_BiomassHigh 3466 3392
## Dead_BiomassLow 3571 2998
## Dead_BiomassHigh 3422 3267
## Litter_BiomassLow 3445 3331
## Litter_BiomassHigh 3513 3058
## TreeBH 4098 2723
## StatusInvaded:Live_Fuel_MoistureLow 4099 3421
## StatusInvaded:Live_Fuel_MoistureHigh 3527 3358
## StatusInvaded:Dead_Fuel_MoistureLow 3731 2976
## StatusInvaded:Dead_Fuel_MoistureHigh 3878 3051
## StatusInvaded:Live_BiomassLow 3586 3075
## StatusInvaded:Live_BiomassHigh 3355 2982
## StatusInvaded:Dead_BiomassLow 3130 3031
## StatusInvaded:Dead_BiomassHigh 2945 2515
## StatusInvaded:Litter_BiomassLow 3807 3251
## StatusInvaded:Litter_BiomassHigh 3496 2999
## StatusInvaded:TreeBH 3629 3058
##
## Further Distributional Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.15 0.01 0.14 0.17 1.00 3343 3056
## nu 1.48 0.10 1.30 1.71 1.00 3725 2927
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_point()`).
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_line()`).
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?