library(ISLR2)
## Warning: package 'ISLR2' was built under R version 4.4.3
library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:ISLR2':
##
## Boston
library(e1071)
## Warning: package 'e1071' was built under R version 4.4.3
library(class)
This question should be answered using the Weekly data set, which is part of the ISLR2 package. This data is similar in nature to the Smarket data from this chapter’s lab, except that it contains 1, 089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.
data("Weekly")
summary(Weekly)
## Year Lag1 Lag2 Lag3
## Min. :1990 Min. :-18.1950 Min. :-18.1950 Min. :-18.1950
## 1st Qu.:1995 1st Qu.: -1.1540 1st Qu.: -1.1540 1st Qu.: -1.1580
## Median :2000 Median : 0.2410 Median : 0.2410 Median : 0.2410
## Mean :2000 Mean : 0.1506 Mean : 0.1511 Mean : 0.1472
## 3rd Qu.:2005 3rd Qu.: 1.4050 3rd Qu.: 1.4090 3rd Qu.: 1.4090
## Max. :2010 Max. : 12.0260 Max. : 12.0260 Max. : 12.0260
## Lag4 Lag5 Volume Today
## Min. :-18.1950 Min. :-18.1950 Min. :0.08747 Min. :-18.1950
## 1st Qu.: -1.1580 1st Qu.: -1.1660 1st Qu.:0.33202 1st Qu.: -1.1540
## Median : 0.2380 Median : 0.2340 Median :1.00268 Median : 0.2410
## Mean : 0.1458 Mean : 0.1399 Mean :1.57462 Mean : 0.1499
## 3rd Qu.: 1.4090 3rd Qu.: 1.4050 3rd Qu.:2.05373 3rd Qu.: 1.4050
## Max. : 12.0260 Max. : 12.0260 Max. :9.32821 Max. : 12.0260
## Direction
## Down:484
## Up :605
##
##
##
##
pairs(Weekly[, -9])
cor(Weekly[, -9])
## Year Lag1 Lag2 Lag3 Lag4
## Year 1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
## Lag1 -0.03228927 1.000000000 -0.07485305 0.05863568 -0.071273876
## Lag2 -0.03339001 -0.074853051 1.00000000 -0.07572091 0.058381535
## Lag3 -0.03000649 0.058635682 -0.07572091 1.00000000 -0.075395865
## Lag4 -0.03112792 -0.071273876 0.05838153 -0.07539587 1.000000000
## Lag5 -0.03051910 -0.008183096 -0.07249948 0.06065717 -0.075675027
## Volume 0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
## Today -0.03245989 -0.075031842 0.05916672 -0.07124364 -0.007825873
## Lag5 Volume Today
## Year -0.030519101 0.84194162 -0.032459894
## Lag1 -0.008183096 -0.06495131 -0.075031842
## Lag2 -0.072499482 -0.08551314 0.059166717
## Lag3 0.060657175 -0.06928771 -0.071243639
## Lag4 -0.075675027 -0.06107462 -0.007825873
## Lag5 1.000000000 -0.05851741 0.011012698
## Volume -0.058517414 1.00000000 -0.033077783
## Today 0.011012698 -0.03307778 1.000000000
Do there appear to be any patterns? Consistent increase in volume as time went on, presumably due to market growth
lr_model <- glm(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume, data = Weekly, family = binomial)
summary(lr_model)
##
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
## Volume, family = binomial, data = Weekly)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.26686 0.08593 3.106 0.0019 **
## Lag1 -0.04127 0.02641 -1.563 0.1181
## Lag2 0.05844 0.02686 2.175 0.0296 *
## Lag3 -0.01606 0.02666 -0.602 0.5469
## Lag4 -0.02779 0.02646 -1.050 0.2937
## Lag5 -0.01447 0.02638 -0.549 0.5833
## Volume -0.02274 0.03690 -0.616 0.5377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1496.2 on 1088 degrees of freedom
## Residual deviance: 1486.4 on 1082 degrees of freedom
## AIC: 1500.4
##
## Number of Fisher Scoring iterations: 4
Do any of the predictors appear to be statistically significant? If so, which ones? Yes – Lag2: p-value = 0.0296
lr_probs <- predict(lr_model, type = "response")
lr_pred <- ifelse(lr_probs > 0.5, "Up", "Down")
table(Predicted = lr_pred, Actual = Weekly$Direction)
## Actual
## Predicted Down Up
## Down 54 48
## Up 430 557
mean(lr_pred == Weekly$Direction)
## [1] 0.5610652
Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression. Overall logistic regression trends toward “Up” more often, thus generating a relatively high number of False Positives in this dataset (“Up” when “Down” ; 430 times). Regression accuracy: 0.5610652 or 56.1%
train <- Weekly$Year <= 2008
test <- Weekly$Year > 2008
lr2 <- glm(Direction ~ Lag2, data = Weekly, subset = train, family = binomial)
lr2_probs <- predict(lr2, newdata = Weekly[test, ], type = "response")
lr2_pred <- ifelse(lr2_probs > 0.5, "Up", "Down")
table(Predicted = lr2_pred, Actual = Weekly$Direction[test])
## Actual
## Predicted Down Up
## Down 9 5
## Up 34 56
mean(lr2_pred == Weekly$Direction[test])
## [1] 0.625
Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010). Training model was accurate in predicting market direction 62.5% of the time.
lda_model <- lda(Direction ~ Lag2, data = Weekly, subset = train)
lda_pred <- predict(lda_model, newdata = Weekly[test, ])
table(Predicted = lda_pred$class, Actual = Weekly$Direction[test])
## Actual
## Predicted Down Up
## Down 9 5
## Up 34 56
mean(lda_pred$class == Weekly$Direction[test])
## [1] 0.625
qda_model <- qda(Direction ~ Lag2, data = Weekly, subset = train)
qda_pred <- predict(qda_model, newdata = Weekly[test, ])
table(Predicted = qda_pred$class, Actual = Weekly$Direction[test])
## Actual
## Predicted Down Up
## Down 0 0
## Up 43 61
mean(qda_pred$class == Weekly$Direction[test])
## [1] 0.5865385
x_train <- as.matrix(Weekly[train, "Lag2"])
x_test <- as.matrix(Weekly[test, "Lag2"])
y_train <- Weekly$Direction[train]
y_test <- Weekly$Direction[test]
knn_pred <- knn(train = x_train, test = x_test, cl = y_train, k = 1)
table(Predicted = knn_pred, Actual = y_test)
## Actual
## Predicted Down Up
## Down 21 29
## Up 22 32
mean(knn_pred == y_test)
## [1] 0.5096154
nb_model <- naiveBayes(Direction ~ Lag2, data = Weekly, subset = train)
nb_pred <- predict(nb_model, newdata = Weekly[test, ])
table(Predicted = nb_pred, Actual = Weekly$Direction[test])
## Actual
## Predicted Down Up
## Down 0 0
## Up 43 61
mean(nb_pred == Weekly$Direction[test])
## [1] 0.5865385
13(e) – Logistic regression using LDA. Accuracy was the highest: 62.5%
lr3 <- glm(Direction ~ Lag1+Lag2, data = Weekly, subset = train, family = binomial)
lr3_probs <- predict(lr2, newdata = Weekly[test, ], type = "response")
lr3_pred <- ifelse(lr2_probs > 0.5, "Up", "Down")
table(Predicted = lr2_pred, Actual = Weekly$Direction[test])
## Actual
## Predicted Down Up
## Down 9 5
## Up 34 56
mean(lr2_pred == Weekly$Direction[test])
## [1] 0.625
lr4 <- glm(Direction ~ Lag1*Lag2, data = Weekly, subset = train, family = binomial)
lr4probs <- predict(lr2, newdata = Weekly[test, ], type = "response")
lr4_pred <- ifelse(lr2_probs > 0.5, "Up", "Down")
table(Predicted = lr2_pred, Actual = Weekly$Direction[test])
## Actual
## Predicted Down Up
## Down 9 5
## Up 34 56
mean(lr2_pred == Weekly$Direction[test])
## [1] 0.625
x_trainknnexp <- as.matrix(Weekly[train, c("Lag1","Lag2")])
x_testknnexp <- as.matrix(Weekly[test, c("Lag1","Lag2")])
y_trainknnexp <- Weekly$Direction[train]
y_testknnexp <- Weekly$Direction[test]
knn_predexp <- knn(train = x_trainknnexp, test = x_testknnexp, cl = y_trainknnexp, k = 1)
table(Predicted = knn_predexp, Actual = y_testknnexp)
## Actual
## Predicted Down Up
## Down 18 29
## Up 25 32
mean(knn_predexp == y_testknnexp)
## [1] 0.4807692
lda_model <- lda(Direction ~ Lag1+Lag2, data = Weekly, subset = train)
lda_pred <- predict(lda_model, newdata = Weekly[test, ])
table(Predicted = lda_pred$class, Actual = Weekly$Direction[test])
## Actual
## Predicted Down Up
## Down 7 8
## Up 36 53
mean(lda_pred$class == Weekly$Direction[test])
## [1] 0.5769231
qda_model <- qda(Direction ~Lag1+ Lag2, data = Weekly, subset = train)
qda_pred <- predict(qda_model, newdata = Weekly[test, ])
table(Predicted = qda_pred$class, Actual = Weekly$Direction[test])
## Actual
## Predicted Down Up
## Down 7 10
## Up 36 51
mean(qda_pred$class == Weekly$Direction[test])
## [1] 0.5576923
nb_model <- naiveBayes(Direction ~ Lag1+Lag2, data = Weekly, subset = train)
nb_pred <- predict(nb_model, newdata = Weekly[test, ])
table(Predicted = nb_pred, Actual = Weekly$Direction[test])
## Actual
## Predicted Down Up
## Down 3 8
## Up 40 53
mean(nb_pred == Weekly$Direction[test])
## [1] 0.5384615
Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Variables: Lag1 & Lag2 ; Method: Linear regression with Interaction & Linear regression using LDA; Confusion matrixes: - Linear regression using LDA: Actual Predicted Down Up Down 7 8 Up 36 53 - Linear regression w/ Interaction: Actual Predicted Down Up Down 7 8 Up 36 53
In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.
data("Auto")
Auto <- na.omit(Auto)
Auto$mpg01 <- ifelse(Auto$mpg > median(Auto$mpg), 1, 0)
boxplot(horsepower ~ mpg01, data = Auto)
boxplot(weight ~ mpg01, data = Auto)
boxplot(displacement ~ mpg01, data = Auto)
boxplot(acceleration ~ mpg01, data = Auto)
boxplot(cylinders ~ mpg01, data = Auto)
Describe your findings. Horsepower and weight are lower for vehicles
with high mpg rating ; acceleration is slightly lower, but comparable,
in vehicles with high mpg rating; Cylinders and displacement are
significantly higher in vehicles with low mpg rating
set.seed(1)
train_auto <- sample(1:nrow(Auto), 0.7 * nrow(Auto))
auto_train <- Auto[train_auto, ]
auto_test <- Auto[-train_auto, ]
lda_auto <- lda(mpg01 ~ horsepower + weight + cylinders + displacement, data = auto_train)
pred_lda <- predict(lda_auto, newdata = auto_test)
table(Predicted = pred_lda$class, Actual = auto_test$mpg01)
## Actual
## Predicted 0 1
## 0 50 3
## 1 11 54
mean(pred_lda$class == auto_test$mpg01)
## [1] 0.8813559
What is the test error of the model obtained? 88.14% accuracy
qda_auto <- qda(mpg01 ~ horsepower + weight + cylinders + displacement, data = auto_train)
pred_qda <- predict(qda_auto, newdata = auto_test)
table(Predicted = pred_qda$class, Actual = auto_test$mpg01)
## Actual
## Predicted 0 1
## 0 52 5
## 1 9 52
mean(pred_qda$class == auto_test$mpg01)
## [1] 0.8813559
What is the test error of the model obtained? 88.14% accuracy
log_auto <- glm(mpg01 ~ horsepower + weight + cylinders + displacement, data = auto_train, family = binomial)
log_probs <- predict(log_auto, newdata = auto_test, type = "response")
log_pred <- ifelse(log_probs > 0.5, 1, 0)
table(Predicted = log_pred, Actual = auto_test$mpg01)
## Actual
## Predicted 0 1
## 0 53 3
## 1 8 54
mean(log_pred == auto_test$mpg01)
## [1] 0.9067797
What is the test error of the model obtained? 90.68% accuracy
nb_auto <- naiveBayes(mpg01 ~ horsepower + weight + cylinders + displacement, data = auto_train)
nb_pred <- predict(nb_auto, newdata = auto_test)
table(Predicted = nb_pred, Actual = auto_test$mpg01)
## Actual
## Predicted 0 1
## 0 52 4
## 1 9 53
mean(nb_pred == auto_test$mpg01)
## [1] 0.8898305
What is the test error of the model obtained? 89.98% accuracy
X_train <- scale(auto_train[, c("horsepower", "weight", "cylinders", "displacement")])
X_test <- scale(auto_test[, c("horsepower", "weight", "cylinders", "displacement")])
y_train <- auto_train$mpg01
y_test <- auto_test$mpg01
What test errors do you obtain?
for (k in c(1, 3, 5, 10))
{set.seed(1)
knn_pred <- knn(train = X_train, test = X_test, cl = y_train, k = k)
cat("K =", k, "Accuracy:", mean(knn_pred == y_test), "\n")}
## K = 1 Accuracy: 0.8559322
## K = 3 Accuracy: 0.8559322
## K = 5 Accuracy: 0.8644068
## K = 10 Accuracy: 0.8644068
Which value of K seems to perform the best on this data set? 3
Using the Boston data set, fit classification models in order to predict whether a given census tract has a crime rate above or below the median. Explore logistic regression, LDA, naive Bayes, and KNN models using various subsets of the predictors.
data("Boston")
Boston$crim01 <- ifelse(Boston$crim > median(Boston$crim), 1, 0)
set.seed(1)
n <- nrow(Boston)
train_indices <- sample(1:n, size = round(0.7 * n))
boston_train <- Boston[train_indices, ]
boston_test <- Boston[-train_indices, ]
predictors <- c("nox", "rad", "dis", "lstat", "tax")
Logistic Regression
log_fit <- glm(crim01 ~ nox + rad + dis + lstat + tax, data = boston_train, family = binomial)
log_probs <- predict(log_fit, newdata = boston_test, type = "response")
log_pred <- ifelse(log_probs > 0.5, 1, 0)
table(Predicted = log_pred, Actual = boston_test$crim01)
## Actual
## Predicted 0 1
## 0 57 13
## 1 16 66
mean(log_pred == boston_test$crim01)
## [1] 0.8092105
LDA
lda_fit <- lda(crim01 ~ nox + rad + dis + lstat + tax, data = boston_train)
lda_pred <- predict(lda_fit, newdata = boston_test)
table(Predicted = lda_pred$class, Actual = boston_test$crim01)
## Actual
## Predicted 0 1
## 0 69 19
## 1 4 60
mean(lda_pred$class == boston_test$crim01)
## [1] 0.8486842
Naive Bayes
nb_fit <- naiveBayes(crim01 ~ nox + rad + dis + lstat + tax, data = boston_train)
nb_pred <- predict(nb_fit, newdata = boston_test)
table(Predicted = nb_pred, Actual = boston_test$crim01)
## Actual
## Predicted 0 1
## 0 67 19
## 1 6 60
mean(nb_pred == boston_test$crim01)
## [1] 0.8355263
KNN
X_train <- as.matrix(boston_train[, predictors])
X_test <- as.matrix(boston_test[, predictors])
y_train <- boston_train$crim01
y_test <- boston_test$crim01
for (k in c(1, 3, 5, 10))
{set.seed(1)
knn_pred <- knn(train = X_train, test = X_test, cl = y_train, k = k)
acc <- mean(knn_pred == y_test)
cat("K =", k, "\u2192 Accuracy:", round(acc, 4), "\n")}
## K = 1 → Accuracy: 0.9408
## K = 3 → Accuracy: 0.9013
## K = 5 → Accuracy: 0.9079
## K = 10 → Accuracy: 0.8947
best_k <- 1
knn_pred_best <- knn(train = X_train, test = X_test, cl = y_train, k = best_k)
table(Predicted = knn_pred_best, Actual = y_test)
## Actual
## Predicted 0 1
## 0 65 1
## 1 8 78
mean(knn_pred_best == y_test)
## [1] 0.9407895
Describe your findings. Radial highway access and nitrogen oxides tend to be higher in high-crime areas; lower status population percentage and property tax rate are significantly higher in high-crime areas; distance to employment centers are generally lower in high-crime areas