#install.packages("matlib")
#install.packages("Ryacas")
#install.packages("MASS")
#install.packages("knitr")
#install.packages("xtable")

library(MASS)
library(matlib)
library(Ryacas)
## 
## Adjuntando el paquete: 'Ryacas'
## The following objects are masked from 'package:matlib':
## 
##     tr, vec
## The following object is masked from 'package:stats':
## 
##     integrate
## The following objects are masked from 'package:base':
## 
##     %*%, det, diag, diag<-, lower.tri, upper.tri
#primer punto desarrollado con el uso de matrix
#a
m1<-matrix(c(1,21,11,-12,-13,11,41,23,-11,14,13,2,-14,-25,13,23,18,21,-17,-15)
           ,nrow = 4
           ,byrow = TRUE)
m1
##      [,1] [,2] [,3] [,4] [,5]
## [1,]    1   21   11  -12  -13
## [2,]   11   41   23  -11   14
## [3,]   13    2  -14  -25   13
## [4,]   23   18   21  -17  -15
range(m1)
## [1] -25  41
#b
m2<-matrix(c(12,24,-23,18,10,20,10,-11,15,11,24,-31)
           ,nrow = 4
           ,byrow = TRUE)
m2
##      [,1] [,2] [,3]
## [1,]   12   24  -23
## [2,]   18   10   20
## [3,]   10  -11   15
## [4,]   11   24  -31
range(m2)
## [1] -31  24
#c
m3<-matrix(c(12,23,10,-11,27,-31,-24,36)
           ,nrow = 4
           ,byrow = TRUE)
m3
##      [,1] [,2]
## [1,]   12   23
## [2,]   10  -11
## [3,]   27  -31
## [4,]  -24   36
range(m3)
## [1] -31  36
#d
m4<-matrix(c(15,17,12,18,-20,13,21,10,14,-15,18,17)
           ,nrow = 4
           ,byrow = TRUE)
m4
##      [,1] [,2] [,3]
## [1,]   15   17   12
## [2,]   18  -20   13
## [3,]   21   10   14
## [4,]  -15   18   17
range(m4)
## [1] -20  21
#desarrollo del segundo punto
a<-matrix(c(41,22,-15,16,12,27,37,19,22)
          ,nrow = 3
          ,ncol = 3
          ,byrow = TRUE)
a
##      [,1] [,2] [,3]
## [1,]   41   22  -15
## [2,]   16   12   27
## [3,]   37   19   22
b<-matrix(c(12,13,-32,31,-17,32,21,-11,20)
          ,nrow = 3
          ,ncol = 3
          ,byrow = TRUE)
b
##      [,1] [,2] [,3]
## [1,]   12   13  -32
## [2,]   31  -17   32
## [3,]   21  -11   20
c<-matrix(c(12,23,-18,21,10,21,11,-21,17)
          ,nrow = 3
          ,ncol = 3
          ,byrow = TRUE)
c
##      [,1] [,2] [,3]
## [1,]   12   23  -18
## [2,]   21   10   21
## [3,]   11  -21   17
#traspuestas de las matrices
t(a)
##      [,1] [,2] [,3]
## [1,]   41   16   37
## [2,]   22   12   19
## [3,]  -15   27   22
t(b)
##      [,1] [,2] [,3]
## [1,]   12   31   21
## [2,]   13  -17  -11
## [3,]  -32   32   20
t(c)
##      [,1] [,2] [,3]
## [1,]   12   21   11
## [2,]   23   10  -21
## [3,]  -18   21   17
#inversa de las matrices
solve(a)
##             [,1]         [,2]        [,3]
## [1,] -0.04065306 -0.125551020  0.12636735
## [2,]  0.10563265  0.237877551 -0.21991837
## [3,] -0.02285714  0.005714286  0.02285714
solve(b)
##            [,1]      [,2]       [,3]
## [1,] 0.03896104 0.2987013 -0.4155844
## [2,] 0.16883117 2.9610390 -4.4675325
## [3,] 0.05194805 1.3149351 -1.9707792
solve(c)
##              [,1]          [,2]        [,3]
## [1,]  0.042572464 -0.0009057971  0.04619565
## [2,] -0.008779264  0.0280100334 -0.04389632
## [3,] -0.038391862  0.0351867336 -0.02529264
#por propiedad la multiplicacion de la inversa por su matriz original debe ser la matriz identidad
#(los valores de las matrices si corresponden a la matriz identidad solo que estos se encuentran en notacion cientifica)
solve(a)%*%a
##              [,1]         [,2]          [,3]
## [1,] 1.000000e+00 4.440892e-16 -8.881784e-16
## [2,] 0.000000e+00 1.000000e+00  1.776357e-15
## [3,] 1.110223e-16 1.110223e-16  1.000000e+00
solve(b)%*%b
##               [,1]         [,2]          [,3]
## [1,]  1.000000e+00 3.552714e-15 -7.105427e-15
## [2,] -1.421085e-14 1.000000e+00 -1.421085e-14
## [3,]  0.000000e+00 0.000000e+00  1.000000e+00
solve(c)%*%c
##               [,1]          [,2]         [,3]
## [1,]  1.000000e+00  2.220446e-16 0.000000e+00
## [2,]  0.000000e+00  1.000000e+00 1.110223e-16
## [3,] -1.665335e-16 -1.110223e-16 1.000000e+00
#adjunta de la matriz
adjoint(a)
##      [,1] [,2]  [,3]
## [1,] -249 -769   774
## [2,]  647 1457 -1347
## [3,] -140   35   140
adjoint(b)
##      [,1] [,2]  [,3]
## [1,]   12   92  -128
## [2,]   52  912 -1376
## [3,]   16  405  -607
adjoint(c)
##      [,1] [,2] [,3]
## [1,]  611  -13  663
## [2,] -126  402 -630
## [3,] -551  505 -363
#podemos utilizar la propiedad donde la inversa de la matriz es igual a la adjunta divida el determinante
solve(a)
##             [,1]         [,2]        [,3]
## [1,] -0.04065306 -0.125551020  0.12636735
## [2,]  0.10563265  0.237877551 -0.21991837
## [3,] -0.02285714  0.005714286  0.02285714
1/det(a)*adjoint(a)
##             [,1]         [,2]        [,3]
## [1,] -0.04065306 -0.125551020  0.12636735
## [2,]  0.10563265  0.237877551 -0.21991837
## [3,] -0.02285714  0.005714286  0.02285714
solve(b)
##            [,1]      [,2]       [,3]
## [1,] 0.03896104 0.2987013 -0.4155844
## [2,] 0.16883117 2.9610390 -4.4675325
## [3,] 0.05194805 1.3149351 -1.9707792
1/det(b)*adjoint(b)
##            [,1]      [,2]       [,3]
## [1,] 0.03896104 0.2987013 -0.4155844
## [2,] 0.16883117 2.9610390 -4.4675325
## [3,] 0.05194805 1.3149351 -1.9707792
solve(c)
##              [,1]          [,2]        [,3]
## [1,]  0.042572464 -0.0009057971  0.04619565
## [2,] -0.008779264  0.0280100334 -0.04389632
## [3,] -0.038391862  0.0351867336 -0.02529264
1/det(c)*adjoint(c)
##              [,1]          [,2]        [,3]
## [1,]  0.042572464 -0.0009057971  0.04619565
## [2,] -0.008779264  0.0280100334 -0.04389632
## [3,] -0.038391862  0.0351867336 -0.02529264
#resolvemos los punto posteriores
#1
det(a%*%b)
## [1] 1886500
det(a)*det(b)
## [1] 1886500
#2
det(a)
## [1] 6125
det(t(a))
## [1] 6125
#3
det(b%*%c)
## [1] 4420416
det(b)*det(c)
## [1] 4420416
#4
det(b)
## [1] 308
det(t(b))
## [1] 308
#5
#establecemos una matriz identidad para los ejersicios posteriores
i<-diag(1,3,3)
i
##      [,1] [,2] [,3]
## [1,]    1    0    0
## [2,]    0    1    0
## [3,]    0    0    1
adjoint(a)%*%a
##      [,1] [,2] [,3]
## [1,] 6125    0    0
## [2,]    0 6125    0
## [3,]    0    0 6125
det(a)*i
##      [,1] [,2] [,3]
## [1,] 6125    0    0
## [2,]    0 6125    0
## [3,]    0    0 6125
#6
adjoint(c)%*%c
##       [,1]  [,2]  [,3]
## [1,] 14352     0     0
## [2,]     0 14352     0
## [3,]     0     0 14352
det(c)*i
##       [,1]  [,2]  [,3]
## [1,] 14352     0     0
## [2,]     0 14352     0
## [3,]     0     0 14352
#desarrollo del tercer punto
#a
mo<-matrix(c(15,3,2,-7),nrow = 2,ncol = 2, byrow = TRUE)
mo
##      [,1] [,2]
## [1,]   15    3
## [2,]    2   -7
det(mo)
## [1] -111
#X y Y son iguales al determinante que se obtiene reemplazándolos por los terminos independientes
#dividido el determinante de la ecuación original
msx<-matrix(c(5,3,1,-7),nrow = 2,ncol = 2, byrow = TRUE)
msx
##      [,1] [,2]
## [1,]    5    3
## [2,]    1   -7
det(msx)
## [1] -38
det(msx)/det(mo)
## [1] 0.3423423
msy<-matrix(c(15,5,2,1),nrow = 2,ncol = 2, byrow = TRUE)
msy
##      [,1] [,2]
## [1,]   15    5
## [2,]    2    1
det(msy)
## [1] 5
det(msy)/det(mo)
## [1] -0.04504505
#b
mo2<-matrix(c(4,-1,7,2),nrow = 2,ncol = 2, byrow = TRUE)
mo2
##      [,1] [,2]
## [1,]    4   -1
## [2,]    7    2
det(mo2)
## [1] 15
msx2<-matrix(c(10,-1,3,2),nrow = 2,ncol = 2, byrow = TRUE)
msx2
##      [,1] [,2]
## [1,]   10   -1
## [2,]    3    2
det(msx2)
## [1] 23
det(msx2)/det(mo2)
## [1] 1.533333
msy2<-matrix(c(4,10,7,3),nrow = 2,ncol = 2, byrow = TRUE)
msy2
##      [,1] [,2]
## [1,]    4   10
## [2,]    7    3
det(msy2)
## [1] -58
det(msy2)/det(mo2)
## [1] -3.866667
#c
#en este caso buscamos a y b para despues hallar X y Y
mab<-matrix(c(1,-2,3,-5),nrow = 2,ncol = 2, byrow = TRUE)
mab
##      [,1] [,2]
## [1,]    1   -2
## [2,]    3   -5
det(mab)
## [1] 1
msa<-matrix(c(1,-2,2,-5),nrow = 2,ncol = 2, byrow = TRUE)
msa
##      [,1] [,2]
## [1,]    1   -2
## [2,]    2   -5
a<-det(msa)/det(mab)
a
## [1] -1
msb<-matrix(c(1,1,3,2),nrow = 2,ncol = 2, byrow = TRUE)
msb
##      [,1] [,2]
## [1,]    1    1
## [2,]    3    2
det(msb)
## [1] -1
b<-det(msb)/det(mab)
b
## [1] -1
#en este caso el sistema de ecuaciones tiene  infinitas porque tiene mas incognitas
#que ecuaciones y ademas a y b son iguales en el caso de que c=1

#d
mo3<-matrix(c(3,5,4,-2),nrow = 2,ncol = 2, byrow = TRUE)
mo3
##      [,1] [,2]
## [1,]    3    5
## [2,]    4   -2
det(mo3)
## [1] -26
msx3<-matrix(c(8,5,1,-2),nrow = 2,ncol = 2, byrow = TRUE)
msx3
##      [,1] [,2]
## [1,]    8    5
## [2,]    1   -2
det(msx3)
## [1] -21
det(msx3)/det(mo3)
## [1] 0.8076923
msy3<-matrix(c(3,8,4,1),nrow = 2,ncol = 2, byrow = TRUE)
msy3
##      [,1] [,2]
## [1,]    3    8
## [2,]    4    1
det(msy3)
## [1] -29
det(msy3)/det(mo3)
## [1] 1.115385
#e
mo4<-matrix(c(-7,-1,4,2),nrow = 2,ncol = 2, byrow = TRUE)
mo4
##      [,1] [,2]
## [1,]   -7   -1
## [2,]    4    2
det(mo4)
## [1] -10
msx4<-matrix(c(5,-1,-2,2),nrow = 2,ncol = 2, byrow = TRUE)
msx4
##      [,1] [,2]
## [1,]    5   -1
## [2,]   -2    2
det(msx4)
## [1] 8
det(msx4)/det(mo4)
## [1] -0.8
msy4<-matrix(c(-7,5,4,-2),nrow = 2,ncol = 2, byrow = TRUE)
msy4
##      [,1] [,2]
## [1,]   -7    5
## [2,]    4   -2
det(msy4)
## [1] -6
det(msy4)/det(mo4)
## [1] 0.6
#desarrollo del cuarto punto
#a
A<-matrix(c(13,21,33,14,-11,23,-12,-35,11),nrow = 3,ncol = 3, byrow = TRUE)
A
##      [,1] [,2] [,3]
## [1,]   13   21   33
## [2,]   14  -11   23
## [3,]  -12  -35   11
t(A)
##      [,1] [,2] [,3]
## [1,]   13   14  -12
## [2,]   21  -11  -35
## [3,]   33   23   11
det(A)
## [1] -20664
solve(A)
##             [,1]         [,2]         [,3]
## [1,] -0.03310105  0.067073171 -0.040940767
## [2,]  0.02080914 -0.026084011 -0.007888115
## [3,]  0.03010066 -0.009823848  0.021147890
adjoint(t(A))
##       [,1] [,2] [,3]
## [1,]   684 -430 -622
## [2,] -1386  539  203
## [3,]   846  163 -437
#b
B<-matrix(c(12,23,10,14,-22,-13,27,13,21),nrow = 3,ncol = 3, byrow = TRUE)
B
##      [,1] [,2] [,3]
## [1,]   12   23   10
## [2,]   14  -22  -13
## [3,]   27   13   21
t(B)
##      [,1] [,2] [,3]
## [1,]   12   14   27
## [2,]   23  -22   13
## [3,]   10  -13   21
det(B)
## [1] -10591
solve(B)
##             [,1]         [,2]         [,3]
## [1,]  0.02766500  0.033330186  0.007459163
## [2,]  0.06090076  0.001699556 -0.027948258
## [3,] -0.07326976 -0.043905203  0.055329997
adjoint(t(B))
##      [,1] [,2] [,3]
## [1,] -293 -645  776
## [2,] -353  -18  465
## [3,]  -79  296 -586
#c
C<-matrix(c(18,20,11,13,-12,-13,-21,-13,-17),nrow = 3,ncol = 3, byrow = TRUE)
C
##      [,1] [,2] [,3]
## [1,]   18   20   11
## [2,]   13  -12  -13
## [3,]  -21  -13  -17
t(C)
##      [,1] [,2] [,3]
## [1,]   18   13  -21
## [2,]   20  -12  -13
## [3,]   11  -13  -17
det(C)
## [1] 5879
solve(C)
##              [,1]        [,2]        [,3]
## [1,]  0.005953393  0.03350910 -0.02177241
## [2,]  0.084027896 -0.01275727  0.06412655
## [3,] -0.071610818 -0.03163803 -0.08096615
adjoint(t(C))
##      [,1] [,2] [,3]
## [1,]   35  494 -421
## [2,]  197  -75 -186
## [3,] -128  377 -476
#d
D<-matrix(c(21,10,20,19,-21,-34,14,25,21),nrow = 3,ncol = 3, byrow = TRUE)
D
##      [,1] [,2] [,3]
## [1,]   21   10   20
## [2,]   19  -21  -34
## [3,]   14   25   21
t(D)
##      [,1] [,2] [,3]
## [1,]   21   19   14
## [2,]   10  -21   25
## [3,]   20  -34   21
det(D)
## [1] 15219
solve(D)
##             [,1]        [,2]         [,3]
## [1,]  0.02687430  0.01905513  0.005256587
## [2,] -0.05749392  0.01057888  0.071883829
## [3,]  0.05052894 -0.02529733 -0.041461331
adjoint(t(D))
##      [,1] [,2] [,3]
## [1,]  409 -875  769
## [2,]  290  161 -385
## [3,]   80 1094 -631
#e
E<-matrix(c(-12,10,-21,21,10,17,14,22,17),nrow = 3,ncol = 3, byrow = TRUE)
E
##      [,1] [,2] [,3]
## [1,]  -12   10  -21
## [2,]   21   10   17
## [3,]   14   22   17
t(E)
##      [,1] [,2] [,3]
## [1,]  -12   21   14
## [2,]   10   10   22
## [3,]  -21   17   17
det(E)
## [1] -5504
solve(E)
##             [,1]        [,2]        [,3]
## [1,]  0.03706395  0.11482558 -0.06904070
## [2,]  0.02162064 -0.01635174  0.04305959
## [3,] -0.05850291 -0.07340116  0.05995640
adjoint(t(E))
##      [,1] [,2] [,3]
## [1,] -204 -119  322
## [2,] -632   90  404
## [3,]  380 -237 -330
#f
ys <- ysym
a <- ys("a")
b <- ys("b")
c <- ys("c")
col1<-c(a,c,b)
col2<-c(b,a,c)
col3<-c(c,b,a)
f<-cbind(col1,col2,col3)
f
## {{a, b, c},
##  {c, a, b},
##  {b, c, a}}
t(f)
## {{a, c, b},
##  {b, a, c},
##  {c, b, a}}
solve(f)
## {{1/a+(c*b)/(a^2*(a-(b*c)/a))+((((c-b^2/a)*c)/(a*(a-(b*c)/a))-b/a)*((b*(b-c^2/a))/((a-(b*c)/a)*a)-c/a))/(a-(c*b)/a-((b-c^2/a)*(c-b^2/a))/(a-(b*c)/a)),                      (-(((b*(b-c^2/a))/((a-(b*c)/a)*a)-c/a)*(c-b^2/a))/(a-(b*c)/a))/(a-(c*b)/a-((b-c^2/a)*(c-b^2/a))/(a-(b*c)/a))-b/(a*(a-(b*c)/a)),                                                                   ((b*(b-c^2/a))/((a-(b*c)/a)*a)-c/a)/(a-(c*b)/a-((b-c^2/a)*(c-b^2/a))/(a-(b*c)/a))},
##  {                     (-((((c-b^2/a)*c)/(a*(a-(b*c)/a))-b/a)*(b-c^2/a))/(a-(b*c)/a))/(a-(c*b)/a-((b-c^2/a)*(c-b^2/a))/(a-(b*c)/a))-c/(a*(a-(b*c)/a)),                                                   1/(a-(b*c)/a)+((c-b^2/a)*(b-c^2/a))/((a-(b*c)/a)^2*(a-(c*b)/a-((b-c^2/a)*(c-b^2/a))/(a-(b*c)/a))),                                                                              (-(b-c^2/a)/(a-(b*c)/a))/(a-(c*b)/a-((b-c^2/a)*(c-b^2/a))/(a-(b*c)/a))},
##  {                                                                  (((c-b^2/a)*c)/(a*(a-(b*c)/a))-b/a)/(a-(c*b)/a-((b-c^2/a)*(c-b^2/a))/(a-(b*c)/a)),                                                                              (-(c-b^2/a)/(a-(b*c)/a))/(a-(c*b)/a-((b-c^2/a)*(c-b^2/a))/(a-(b*c)/a)),                                                                                                     1/(a-(c*b)/a-((b-c^2/a)*(c-b^2/a))/(a-(b*c)/a))}}
det(f)
## y: a^3-a*b*c+c^3-b*c*a+b^3-c*a*b
adj_f<-det(f)%*%solve(f)
t(adj_f)
## {{a^3-a*b*c+c^3-b*c*a+b^3-c*a*b*(1/a+(c*b)/(a^2*(a-(b*c)/a))+((((c-b^2/a)*c)/(a*(a-(b*c)/a))-b/a)*((b*(b-c^2/a))/((a-(b*c)/a)*a)-c/a))/(a-(c*b)/a-((b-c^2/a)*(c-b^2/a))/(a-(b*c)/a))),                      a^3-a*b*c+c^3-b*c*a+b^3-c*a*b*((-((((c-b^2/a)*c)/(a*(a-(b*c)/a))-b/a)*(b-c^2/a))/(a-(b*c)/a))/(a-(c*b)/a-((b-c^2/a)*(c-b^2/a))/(a-(b*c)/a))-c/(a*(a-(b*c)/a))),                                                                   a^3-a*b*c+c^3-b*c*a+b^3-(c*a*b*(((c-b^2/a)*c)/(a*(a-(b*c)/a))-b/a))/(a-(c*b)/a-((b-c^2/a)*(c-b^2/a))/(a-(b*c)/a))},
##  {                     a^3-a*b*c+c^3-b*c*a+b^3-c*a*b*((-(((b*(b-c^2/a))/((a-(b*c)/a)*a)-c/a)*(c-b^2/a))/(a-(b*c)/a))/(a-(c*b)/a-((b-c^2/a)*(c-b^2/a))/(a-(b*c)/a))-b/(a*(a-(b*c)/a))),                                                   a^3-a*b*c+c^3-b*c*a+b^3-c*a*b*(1/(a-(b*c)/a)+((c-b^2/a)*(b-c^2/a))/((a-(b*c)/a)^2*(a-(c*b)/a-((b-c^2/a)*(c-b^2/a))/(a-(b*c)/a)))),                                                                              a^3-a*b*c+c^3-b*c*a+b^3-(-(c*a*b*(c-b^2/a))/(a-(b*c)/a))/(a-(c*b)/a-((b-c^2/a)*(c-b^2/a))/(a-(b*c)/a))},
##  {                                                                  a^3-a*b*c+c^3-b*c*a+b^3-(c*a*b*((b*(b-c^2/a))/((a-(b*c)/a)*a)-c/a))/(a-(c*b)/a-((b-c^2/a)*(c-b^2/a))/(a-(b*c)/a)),                                                                              a^3-a*b*c+c^3-b*c*a+b^3-(-(c*a*b*(b-c^2/a))/(a-(b*c)/a))/(a-(c*b)/a-((b-c^2/a)*(c-b^2/a))/(a-(b*c)/a)),                                                                                                       a^3-a*b*c+c^3-b*c*a+b^3-(c*a*b)/(a-(c*b)/a-((b-c^2/a)*(c-b^2/a))/(a-(b*c)/a))}}
#g
G<-matrix(c(13,17,-14,-23,10,-22,17,13,13),nrow = 3,ncol = 3,byrow = TRUE)
G
##      [,1] [,2] [,3]
## [1,]   13   17  -14
## [2,]  -23   10  -22
## [3,]   17   13   13
t(G)
##      [,1] [,2] [,3]
## [1,]   13  -23   17
## [2,]   17   10   13
## [3,]  -14  -22   13
det(G)
## [1] 10699
solve(G)
##              [,1]        [,2]        [,3]
## [1,]  0.038882139 -0.03766707 -0.02187120
## [2,] -0.007010001  0.03804094  0.05682774
## [3,] -0.043835873  0.01121600  0.04869614
adjoint(t(G))
##      [,1] [,2] [,3]
## [1,]  416  -75 -469
## [2,] -403  407  120
## [3,] -234  608  521
#h
H<-matrix(c(21,15,-17,-22,-12,-26,18,25,11,23,-11,22,-21,-16,28,13),
          nrow = 4,ncol = 4,byrow = TRUE)
H
##      [,1] [,2] [,3] [,4]
## [1,]   21   15  -17  -22
## [2,]  -12  -26   18   25
## [3,]   11   23  -11   22
## [4,]  -21  -16   28   13
t(H)
##      [,1] [,2] [,3] [,4]
## [1,]   21  -12   11  -21
## [2,]   15  -26   23  -16
## [3,]  -17   18  -11   28
## [4,]  -22   25   22   13
det(H)
## [1] 188874
solve(H)
##               [,1]        [,2]       [,3]         [,4]
## [1,]  0.1043870517  0.05619619 0.01982274  0.035039233
## [2,] -0.0007571185 -0.03890424 0.02349185  0.033779133
## [3,]  0.0825576840  0.01142561 0.01882207  0.085887946
## [4,] -0.0101231509  0.01828732 0.02039455 -0.009890191
adjoint(t(H))
##       [,1]  [,2]  [,3]  [,4]
## [1,] 19716  -143 15593 -1912
## [2,] 10614 -7348  2158  3454
## [3,]  3744  4437  3555  3852
## [4,]  6618  6380 16222 -1868
#i
I<-matrix(c(13,-27,-15,24,-15,22,17,-65,-12,24,10,-23,22,-13,-15,31),
          nrow = 4,ncol = 4,byrow = TRUE)
I
##      [,1] [,2] [,3] [,4]
## [1,]   13  -27  -15   24
## [2,]  -15   22   17  -65
## [3,]  -12   24   10  -23
## [4,]   22  -13  -15   31
t(I)
##      [,1] [,2] [,3] [,4]
## [1,]   13  -15  -12   22
## [2,]  -27   22   24  -13
## [3,]  -15   17   10  -15
## [4,]   24  -65  -23   31
det(I)
## [1] -61635
solve(I)
##             [,1]         [,2]        [,3]         [,4]
## [1,] -0.10732538  0.034071550 -0.11413969  0.069846678
## [2,]  0.01374219 -0.009653606  0.08233958  0.030210108
## [3,] -0.23618074  0.007706660 -0.27581731 -0.005629918
## [4,] -0.03235175 -0.024499067 -0.01792813 -0.007365945
adjoint(t(I))
##       [,1]  [,2]  [,3] [,4]
## [1,]  6615  -847 14557 1994
## [2,] -2100   595  -475 1510
## [3,]  7035 -5075 17000 1105
## [4,] -4305 -1862   347  454
#j
J<-matrix(c(11,22,17,22,16,14,31,15,18),nrow = 3,ncol = 3,byrow = TRUE)
J
##      [,1] [,2] [,3]
## [1,]   11   22   17
## [2,]   22   16   14
## [3,]   31   15   18
t(J)
##      [,1] [,2] [,3]
## [1,]   11   22   31
## [2,]   22   16   15
## [3,]   17   14   18
det(J)
## [1] -1128
solve(J)
##             [,1]       [,2]        [,3]
## [1,] -0.06914894  0.1250000 -0.03191489
## [2,] -0.03368794  0.2916667 -0.19503546
## [3,]  0.14716312 -0.4583333  0.27304965
adjoint(t(J))
##      [,1] [,2] [,3]
## [1,]   78   38 -166
## [2,] -141 -329  517
## [3,]   36  220 -308
#desarrollo del quinto punto
#a1
a1<-matrix(c(-15,22,11,32,-12,22,11,12,-35),nrow = 3,ncol = 3,byrow = TRUE)
a1
##      [,1] [,2] [,3]
## [1,]  -15   22   11
## [2,]   32  -12   22
## [3,]   11   12  -35
ai1<-Ginv(a1)

# Verificación de propiedades
av1 <- all.equal(a1 %*% ai1 %*% a1, a1)
bv1 <- all.equal(ai1 %*% a1 %*% ai1, ai1)
c_symv1 <- all.equal(a1 %*% ai1, t(a1 %*% ai1))
c_idempv1 <- all.equal((a1 %*% ai1)^2, a1 %*% ai1)
d_symv1 <- all.equal(ai1 %*% a1, t(ai1 %*% a1))
d_idempv1 <- all.equal((ai1 %*% a1)^2, ai1 %*% a1)
# verificaciones
#nota: para simetria e idempotencia se utiliza la definicion para verificar,donde
#simetria es a=a^t e idempotencia a=a^2
list(
  ai1 = ai1,
  Verificaciones = list(
    "AA^+A = A" = av1,
    "A^+AA^+ = A^+" = bv1,
    "AA^+ simétrica" = c_symv1,
    "AA^+ idempotente" = c_idempv1,
    "A^+A simétrica" = d_symv1,
    "A^+A idempotente" = d_idempv1
  )
)
## $ai1
##            [,1]       [,2]        [,3]
## [1,] 0.00468468 0.02708709  0.01849850
## [2,] 0.04090090 0.01213213  0.02048048
## [3,] 0.01549550 0.01267267 -0.01573574
## 
## $Verificaciones
## $Verificaciones$`AA^+A = A`
## [1] "Mean relative difference: 2.023256e-07"
## 
## $Verificaciones$`A^+AA^+ = A^+`
## [1] "Mean relative difference: 1.434456e-07"
## 
## $Verificaciones$`AA^+ simétrica`
## [1] "Mean relative difference: 1.2"
## 
## $Verificaciones$`AA^+ idempotente`
## [1] "Mean relative difference: 3.066666e-07"
## 
## $Verificaciones$`A^+A simétrica`
## [1] "Mean relative difference: 1.259259"
## 
## $Verificaciones$`A^+A idempotente`
## [1] "Mean relative difference: 4.299999e-07"
#a2
a2<-matrix(c(21,11,-11,31,10,-22),nrow = 2,ncol = 3,byrow = TRUE)
a2
##      [,1] [,2] [,3]
## [1,]   21   11  -11
## [2,]   31   10  -22
ai2<-ginv(a2)
# Verificación de propiedades
av2 <- all.equal(a2 %*% ai2 %*% a2, a2)
bv2 <- all.equal(ai2 %*% a2 %*% ai2, ai2)
c_symv2 <- all.equal(a2 %*% ai2, t(a2 %*% ai2))
c_idempv2 <- all.equal((a2 %*% ai2)^2, a2 %*% ai2)
d_symv2 <- all.equal(ai2 %*% a2, t(ai2 %*% a2))
d_idempv2 <- all.equal((ai2 %*% a2)^2, ai2 %*% a2)

# Resultados
list(
  ai2 = ai2,
  Verificaciones = list(
    "AA^+A = A" = av2,
    "A^+AA^+ = A^+" = bv2,
    "AA^+ simétrica" = c_symv2,
    "AA^+ idempotente" = c_idempv2,
    "A^+A simétrica" = d_symv2,
    "A^+A idempotente" = d_idempv2
  )
)
## $ai2
##            [,1]         [,2]
## [1,] 0.02746516  0.002234591
## [2,] 0.14149027 -0.085381709
## [3,] 0.10301467 -0.081115671
## 
## $Verificaciones
## $Verificaciones$`AA^+A = A`
## [1] TRUE
## 
## $Verificaciones$`A^+AA^+ = A^+`
## [1] TRUE
## 
## $Verificaciones$`AA^+ simétrica`
## [1] TRUE
## 
## $Verificaciones$`AA^+ idempotente`
## [1] TRUE
## 
## $Verificaciones$`A^+A simétrica`
## [1] TRUE
## 
## $Verificaciones$`A^+A idempotente`
## [1] "Mean relative difference: 1.244537"
#a3
a3<-matrix(c(11,20,13,12,-31,16),nrow = 2,ncol = 3,byrow = TRUE)
a3
##      [,1] [,2] [,3]
## [1,]   11   20   13
## [2,]   12  -31   16
(ai3<-Ginv(a3))
##            [,1]        [,2]
## [1,] 0.00000000  0.00000000
## [2,] 0.02213001 -0.01798063
## [3,] 0.04287690  0.02766252
# Verificación de propiedades
av3 <- all.equal(a3 %*% ai3 %*% a3, a3)
bv3 <- all.equal(ai3 %*% a3 %*% ai3, ai3)
c_symv3 <- all.equal(a3 %*% ai3, t(a3 %*% ai3))
c_idempv3 <- all.equal((a3 %*% ai3)^2, a3 %*% ai3)
d_symv3 <- all.equal(ai3 %*% a3, t(ai3 %*% a3))
d_idempv3 <- all.equal((ai3 %*% a3)^2, ai3 %*% a3)

# Resultados
list(
  ai3 = ai3,
  Verificaciones = list(
    "AA^+A = A" = av3,
    "A^+AA^+ = A^+" = bv3,
    "AA^+ simétrica" = c_symv3,
    "AA^+ idempotente" = c_idempv3,
    "A^+A simétrica" = d_symv3,
    "A^+A idempotente" = d_idempv3
  )
)
## $ai3
##            [,1]        [,2]
## [1,] 0.00000000  0.00000000
## [2,] 0.02213001 -0.01798063
## [3,] 0.04287690  0.02766252
## 
## $Verificaciones
## $Verificaciones$`AA^+A = A`
## [1] "Mean relative difference: 1.701942e-07"
## 
## $Verificaciones$`A^+AA^+ = A^+`
## [1] "Mean relative difference: 1.3175e-07"
## 
## $Verificaciones$`AA^+ simétrica`
## [1] "Mean relative difference: 0.56"
## 
## $Verificaciones$`AA^+ idempotente`
## [1] "Mean relative difference: 2.5e-07"
## 
## $Verificaciones$`A^+A simétrica`
## [1] "Mean relative difference: 2"
## 
## $Verificaciones$`A^+A idempotente`
## [1] "Mean relative difference: 0.06979973"
#a4
a4<-matrix(c(31,21,21,12,31,43),nrow = 3,ncol = 2,byrow = TRUE)
ai4<- ginv(a4)

# Verificación de propiedades
av4 <- all.equal(a4 %*% ai4 %*% a4, a)
bv4 <- all.equal(ai4 %*% a4 %*% ai4, ai4)
c_symv4 <- all.equal(a4 %*% ai4, t(a4 %*% ai4))
c_idempv4 <- all.equal((a4 %*% ai4)^2, a4 %*% ai4)
d_symv4 <- all.equal(ai4 %*% a4, t(ai4 %*% a4))
d_idempv4 <- all.equal((ai4 %*% a4)^2, ai4 %*% a4)

# Resultados
list(
  ai4 = ai4,
  Verificaciones = list(
    "AA^+A = A" = av4,
    "A^+AA^+ = A^+" = bv4,
    "AA^+ simétrica" = c_symv4,
    "AA^+ idempotente" = c_idempv4,
    "A^+A simétrica" = d_symv4,
    "A^+A idempotente" = d_idempv4
  )
)
## $ai4
##             [,1]        [,2]        [,3]
## [1,]  0.03790404  0.03229651 -0.02752425
## [2,] -0.02619286 -0.02473911  0.04295162
## 
## $Verificaciones
## $Verificaciones$`AA^+A = A`
## [1] "Modes: numeric, list"                                                
## [2] "Lengths: 6, 1"                                                       
## [3] "names for current but not for target"                                
## [4] "Attributes: < Names: 1 string mismatch >"                            
## [5] "Attributes: < Component 1: Modes: numeric, character >"              
## [6] "Attributes: < Component 1: target is numeric, current is character >"
## [7] "target is matrix, current is yac_symbol"                             
## 
## $Verificaciones$`A^+AA^+ = A^+`
## [1] TRUE
## 
## $Verificaciones$`AA^+ simétrica`
## [1] TRUE
## 
## $Verificaciones$`AA^+ idempotente`
## [1] "Mean relative difference: 0.6008275"
## 
## $Verificaciones$`A^+A simétrica`
## [1] TRUE
## 
## $Verificaciones$`A^+A idempotente`
## [1] TRUE
#a5
a5<-matrix(c(33,-11,24,21,-21,31,-15,-21,24,-25,22,10),nrow = 3,ncol = 4,
           byrow = TRUE)
a5
##      [,1] [,2] [,3] [,4]
## [1,]   33  -11   24   21
## [2,]  -21   31  -15  -21
## [3,]   24  -25   22   10
(ai5<-ginv(a5))
##             [,1]        [,2]         [,3]
## [1,] 0.021560191  0.01568767  0.007630095
## [2,] 0.035269347  0.02504892 -0.024144079
## [3,] 0.003987863  0.03452995  0.043480048
## [4,] 0.027655609 -0.05099398 -0.074328532
# Verificación de propiedades
av5 <- all.equal(a5 %*% ai5 %*% a5, a5)
bv5 <- all.equal(ai5 %*% a5 %*% ai5, ai5)
c_symv5 <- all.equal(a5 %*% ai5, t(a5 %*% ai5))
c_idempv5 <- all.equal((a5 %*% ai5)^2, a5 %*% ai5)
d_symv5 <- all.equal(ai5 %*% a5, t(ai5 %*% a5))
d_idempv5 <- all.equal((ai5 %*% a5)^2, ai5 %*% a5)

# Resultados
list(
  ai5 = ai5,
  Verificaciones = list(
    "AA^+A = A" = av5,
    "A^+AA^+ = A^+" = bv5,
    "AA^+ simétrica" = c_symv5,
    "AA^+ idempotente" = c_idempv5,
    "A^+A simétrica" = d_symv5,
    "A^+A idempotente" = d_idempv5
  )
)
## $ai5
##             [,1]        [,2]         [,3]
## [1,] 0.021560191  0.01568767  0.007630095
## [2,] 0.035269347  0.02504892 -0.024144079
## [3,] 0.003987863  0.03452995  0.043480048
## [4,] 0.027655609 -0.05099398 -0.074328532
## 
## $Verificaciones
## $Verificaciones$`AA^+A = A`
## [1] TRUE
## 
## $Verificaciones$`A^+AA^+ = A^+`
## [1] TRUE
## 
## $Verificaciones$`AA^+ simétrica`
## [1] TRUE
## 
## $Verificaciones$`AA^+ idempotente`
## [1] TRUE
## 
## $Verificaciones$`A^+A simétrica`
## [1] TRUE
## 
## $Verificaciones$`A^+A idempotente`
## [1] "Mean relative difference: 0.7306335"
#a6
a6<-matrix(c(21,22,34,43,13,-21,32,-22,15,-24,10,-27),nrow = 3,ncol = 4,
           byrow = TRUE)
a6
##      [,1] [,2] [,3] [,4]
## [1,]   21   22   34   43
## [2,]   13  -21   32  -22
## [3,]   15  -24   10  -27
(ai6<-ginv(a6))
##               [,1]         [,2]         [,3]
## [1,]  0.0234593646 -0.047420253  0.071009724
## [2,]  0.0011268116  0.003161384 -0.017137539
## [3,] -0.0006967407  0.043663229 -0.037514858
## [4,]  0.0117733179 -0.012983137  0.003751786
# Verificación de propiedades
av6 <- all.equal(a6 %*% ai6 %*% a6, a6)
bv6 <- all.equal(ai6 %*% a6 %*% ai6, ai6)
c_symv6 <- all.equal(a6 %*% ai6, t(a6 %*% ai6))
c_idempv6 <- all.equal((a6 %*% ai6)^2, a6 %*% ai6)
d_symv6 <- all.equal(ai6 %*% a6, t(ai6 %*% a6))
d_idempv6 <- all.equal((ai6 %*% a6)^2, ai6 %*% a6)

# Resultados
list(
  ai6 = ai6,
  Verificaciones = list(
    "AA^+A = A" = av6,
    "A^+AA^+ = A^+" = bv6,
    "AA^+ simétrica" = c_symv6,
    "AA^+ idempotente" = c_idempv6,
    "A^+A simétrica" = d_symv6,
    "A^+A idempotente" = d_idempv6
  )
)
## $ai6
##               [,1]         [,2]         [,3]
## [1,]  0.0234593646 -0.047420253  0.071009724
## [2,]  0.0011268116  0.003161384 -0.017137539
## [3,] -0.0006967407  0.043663229 -0.037514858
## [4,]  0.0117733179 -0.012983137  0.003751786
## 
## $Verificaciones
## $Verificaciones$`AA^+A = A`
## [1] TRUE
## 
## $Verificaciones$`A^+AA^+ = A^+`
## [1] TRUE
## 
## $Verificaciones$`AA^+ simétrica`
## [1] TRUE
## 
## $Verificaciones$`AA^+ idempotente`
## [1] TRUE
## 
## $Verificaciones$`A^+A simétrica`
## [1] TRUE
## 
## $Verificaciones$`A^+A idempotente`
## [1] "Mean relative difference: 0.6058805"
#a7
a7<-matrix(c(-21,10,31,22,
             -31,11,20,-41,
             20,-11,31,23,
             20,21,-41,-13,
             31,-21,30,11,
             21,10,-21,-22),nrow = 6,ncol = 4,byrow = TRUE)
a7
##      [,1] [,2] [,3] [,4]
## [1,]  -21   10   31   22
## [2,]  -31   11   20  -41
## [3,]   20  -11   31   23
## [4,]   20   21  -41  -13
## [5,]   31  -21   30   11
## [6,]   21   10  -21  -22
(ai7<-ginv(a7))
##             [,1]          [,2]        [,3]         [,4]         [,5]
## [1,] 0.001131089 -0.0003108506 0.010212388 0.0106853495  0.011292300
## [2,] 0.030303854  0.0066207549 0.011613980 0.0245308954 -0.005038925
## [3,] 0.010776442  0.0110700084 0.010055641 0.0006203432  0.008429429
## [4,] 0.010705712 -0.0155014731 0.002553451 0.0017203228 -0.006092993
##              [,6]
## [1,]  0.011719069
## [2,]  0.013092071
## [3,]  0.004506835
## [4,] -0.007253258
# Verificación de propiedades
av7 <- all.equal(a7 %*% ai7 %*% a7, a7)
bv7 <- all.equal(ai7 %*% a7 %*% ai7, ai7)
c_symv7 <- all.equal(a7 %*% ai7, t(a7 %*% ai7))
c_idempv7 <- all.equal((a7 %*% ai7)^2, a7 %*% ai7)
d_symv7 <- all.equal(ai7 %*% a7, t(ai7 %*% a7))
d_idempv7 <- all.equal((ai7 %*% a7)^2, ai7 %*% a7)

# Resultados
list(
  ai7 = ai7,
  Verificaciones = list(
    "AA^+A = A" = av7,
    "A^+AA^+ = A^+" = bv7,
    "AA^+ simétrica" = c_symv7,
    "AA^+ idempotente" = c_idempv7,
    "A^+A simétrica" = d_symv7,
    "A^+A idempotente" = d_idempv7
  )
)
## $ai7
##             [,1]          [,2]        [,3]         [,4]         [,5]
## [1,] 0.001131089 -0.0003108506 0.010212388 0.0106853495  0.011292300
## [2,] 0.030303854  0.0066207549 0.011613980 0.0245308954 -0.005038925
## [3,] 0.010776442  0.0110700084 0.010055641 0.0006203432  0.008429429
## [4,] 0.010705712 -0.0155014731 0.002553451 0.0017203228 -0.006092993
##              [,6]
## [1,]  0.011719069
## [2,]  0.013092071
## [3,]  0.004506835
## [4,] -0.007253258
## 
## $Verificaciones
## $Verificaciones$`AA^+A = A`
## [1] TRUE
## 
## $Verificaciones$`A^+AA^+ = A^+`
## [1] TRUE
## 
## $Verificaciones$`AA^+ simétrica`
## [1] TRUE
## 
## $Verificaciones$`AA^+ idempotente`
## [1] "Mean relative difference: 1.232263"
## 
## $Verificaciones$`A^+A simétrica`
## [1] TRUE
## 
## $Verificaciones$`A^+A idempotente`
## [1] TRUE
#a8
a8<-matrix(c(-16,22,-32,-13,23,-31,15,22,-13,21,33,-33),nrow = 3,ncol = 4,
           byrow = TRUE)
a8
##      [,1] [,2] [,3] [,4]
## [1,]  -16   22  -32  -13
## [2,]   23  -31   15   22
## [3,]  -13   21   33  -33
(ai8<-ginv(a8))
##             [,1]        [,2]        [,3]
## [1,]  0.09131997  0.10694295  0.03922986
## [2,] -0.05778614 -0.07416814 -0.02299418
## [3,] -0.06192659 -0.04847858 -0.00774403
## [4,] -0.13467412 -0.13780553 -0.06813391
# Verificación de propiedades
av8 <- all.equal(a8 %*% ai8 %*% a8, a8)
bv8 <- all.equal(ai8 %*% a8 %*% ai8, ai8)
c_symv8 <- all.equal(a8 %*% ai8, t(a8 %*% ai8))
c_idempv8 <- all.equal((a8 %*% ai8)^2, a8 %*% ai8)
d_symv8 <- all.equal(ai8 %*% a8, t(ai8 %*% a8))
d_idempv8 <- all.equal((ai8 %*% a8)^2, ai8 %*% a8)

# Resultados
list(
  ai8 = ai8,
  Verificaciones = list(
    "AA^+A = A" = av8,
    "A^+AA^+ = A^+" = bv8,
    "AA^+ simétrica" = c_symv8,
    "AA^+ idempotente" = c_idempv8,
    "A^+A simétrica" = d_symv8,
    "A^+A idempotente" = d_idempv8
  )
)
## $ai8
##             [,1]        [,2]        [,3]
## [1,]  0.09131997  0.10694295  0.03922986
## [2,] -0.05778614 -0.07416814 -0.02299418
## [3,] -0.06192659 -0.04847858 -0.00774403
## [4,] -0.13467412 -0.13780553 -0.06813391
## 
## $Verificaciones
## $Verificaciones$`AA^+A = A`
## [1] TRUE
## 
## $Verificaciones$`A^+AA^+ = A^+`
## [1] TRUE
## 
## $Verificaciones$`AA^+ simétrica`
## [1] TRUE
## 
## $Verificaciones$`AA^+ idempotente`
## [1] TRUE
## 
## $Verificaciones$`A^+A simétrica`
## [1] TRUE
## 
## $Verificaciones$`A^+A idempotente`
## [1] "Mean relative difference: 0.8767003"
#desarrollo del sexto punto

#establecer las matrices 
(ao<-matrix(c(15,22,14,14,-21,13),nrow = 2,ncol = 3,byrow = TRUE))
##      [,1] [,2] [,3]
## [1,]   15   22   14
## [2,]   14  -21   13
#(bo<-matrix(c(1327,31," " ,1,2,-6),nrow = 2,ncol = 3,byrow = TRUE))
(co<-matrix(c(31,13,21,10,22,-13,20,30,15),nrow = 3,ncol = 3,byrow = TRUE))
##      [,1] [,2] [,3]
## [1,]   31   13   21
## [2,]   10   22  -13
## [3,]   20   30   15
(do<-matrix(c(1,3,0,21,10,-24,10,21,13),nrow = 3,ncol = 3,byrow = TRUE))
##      [,1] [,2] [,3]
## [1,]    1    3    0
## [2,]   21   10  -24
## [3,]   10   21   13
(eo<-matrix(c(31,13,21,16,
              10,20,-13,7,
              10,20,15,23,
              14,18,22,21),nrow = 4,ncol = 4,byrow = TRUE))
##      [,1] [,2] [,3] [,4]
## [1,]   31   13   21   16
## [2,]   10   20  -13    7
## [3,]   10   20   15   23
## [4,]   14   18   22   21
(fo<-matrix(c(11,30,20,11,20,-14,20,21,13),nrow = 3,ncol = 3,byrow = TRUE))
##      [,1] [,2] [,3]
## [1,]   11   30   20
## [2,]   11   20  -14
## [3,]   20   21   13
(go<-matrix(c(21,13,10,22),nrow = 2,ncol = 2,byrow = TRUE))
##      [,1] [,2]
## [1,]   21   13
## [2,]   10   22
(ho<-matrix(c(10,10,30,12),nrow = 2,ncol = 2,byrow = TRUE))
##      [,1] [,2]
## [1,]   10   10
## [2,]   30   12
(io<-matrix(c(11,41,21,31),nrow = 2,ncol = 2,byrow = TRUE))
##      [,1] [,2]
## [1,]   11   41
## [2,]   21   31
#realizar las operaciones
#a
(t(ao)%*%ao)
##      [,1] [,2] [,3]
## [1,]  421   36  392
## [2,]   36  925   35
## [3,]  392   35  365
#b
#(t(bo)%*%bo)
#c
#(bo%*%t(bo))
#d
(t(co)%*%co)
##      [,1] [,2] [,3]
## [1,] 1461 1223  821
## [2,] 1223 1553  437
## [3,]  821  437  835
#e
#(t(ao)+t(bo))
#f
(t((3*do)+(2*fo))+t(co))
##      [,1] [,2] [,3]
## [1,]   56   95   90
## [2,]   82   92  135
## [3,]   61 -113   80
#g
(2*(eo^3)+3*(eo^2))
##       [,1]  [,2]  [,3]  [,4]
## [1,] 62465  4901 19845  8960
## [2,]  2300 17200 -3887   833
## [3,]  2300 17200  7425 25921
## [4,]  6076 12636 22748 19845
#h
(4*(go^4)+3*(ho))
##        [,1]   [,2]
## [1,] 777954 114274
## [2,]  40090 937060
#i
((ho^10)-50*(go))
##              [,1]        [,2]
## [1,] 9.999999e+09  9999999350
## [2,] 5.904900e+14 61917363124
#j
#(co%*%do)
(do%*%co)
##      [,1] [,2] [,3]
## [1,]   61   79  -18
## [2,]  271 -227  -49
## [3,]  780  982  132
(fo%*%do)
##      [,1] [,2] [,3]
## [1,]  841  753 -460
## [2,]  291  -61 -662
## [3,]  591  543 -335
(do%*%fo)
##      [,1] [,2] [,3]
## [1,]   44   90  -22
## [2,] -139  326  -32
## [3,]  601  993   75
(ao%*%co)
##      [,1] [,2] [,3]
## [1,]  965 1099  239
## [2,]  484  110  762
#(bo%*%co)
#k
(det(fo)*solve(fo)%*%t(fo))
##       [,1]   [,2]  [,3]
## [1,] -9406  18174  1050
## [2,] -4883 -15029 -8995
## [3,]  7011   7061  2939
#l
(t(solve(eo))%*%solve(t(eo)))
##              [,1]        [,2]        [,3]        [,4]
## [1,] -0.001683372  0.01195604  0.01217276 -0.01906905
## [2,]  0.004375682 -0.01056330 -0.01070762  0.01430471
## [3,] -0.020055824  0.07807279  0.06266882 -0.10558972
## [4,]  0.018768072 -0.07965531 -0.06647695  0.11164163
#las operaciones que incluyen la matriz B son imposibles de realizar debido a la
#falta de un valor numerico que complete la matriz

#desarrollo del septimo punto
#nota: los valores propios se pueden hallar al despejar la formula
#det(A - λI) = 0 para lambda que seria los valores propios y para los
#vectores propios se usa (A - λI)v = 0 dendo se busca v

#establecemos una funcion que halle tanto los valores como los vectores propios
#mediante la funcion eigen (funcion que genera la descomposicion espectral de una matriz)

valp_vecp<- function(M) {
  e <- eigen(M)
  list(
    valores_propios = e$values,
    vectores_propios = e$vectors
  )
}
#a
A7<-matrix(c(11,41,21,31),nrow=2,ncol=2,byrow = TRUE)
A7
##      [,1] [,2]
## [1,]   11   41
## [2,]   21   31
valp_vecp(A7)
## $valores_propios
## [1]  52 -10
## 
## $vectores_propios
##            [,1]       [,2]
## [1,] -0.7071068 -0.8900434
## [2,] -0.7071068  0.4558759
#b
B7<-matrix(c(-23,10,-21,-17,15,-21,-16,26,-12),nrow=3,ncol=3,byrow = TRUE)
B7
##      [,1] [,2] [,3]
## [1,]  -23   10  -21
## [2,]  -17   15  -21
## [3,]  -16   26  -12
valp_vecp(B7)
## $valores_propios
## [1] -20.4303436+ 0.00000i   0.2151718+11.82141i   0.2151718-11.82141i
## 
## $vectores_propios
##               [,1]                   [,2]                   [,3]
## [1,] -0.8626289+0i -0.33660708+0.4054648i -0.33660708-0.4054648i
## [2,] -0.4894952+0i  0.09650507+0.5433765i  0.09650507-0.5433765i
## [3,] -0.1275377+0i  0.64631469+0.0000000i  0.64631469+0.0000000i
#c
C7<-matrix(c(21,-21,12,-21),nrow=2,ncol=2,byrow = TRUE)
C7
##      [,1] [,2]
## [1,]   21  -21
## [2,]   12  -21
valp_vecp(C7)
## $valores_propios
## [1]  13.74773 -13.74773
## 
## $vectores_propios
##           [,1]      [,2]
## [1,] 0.9452218 0.5172344
## [2,] 0.3264289 0.8558438
#d
D7<-matrix(c(15,-21,31,13),nrow=2,ncol=2,byrow = TRUE)
D7
##      [,1] [,2]
## [1,]   15  -21
## [2,]   31   13
valp_vecp(D7)
## $valores_propios
## [1] 14+25.4951i 14-25.4951i
## 
## $vectores_propios
##                       [,1]                  [,2]
## [1,] 0.02490677+0.6350006i 0.02490677-0.6350006i
## [2,] 0.77211000+0.0000000i 0.77211000+0.0000000i
#e
E7<-matrix(c(13,-21,13,-23),nrow=2,ncol=2,byrow = TRUE)
E7
##      [,1] [,2]
## [1,]   13  -21
## [2,]   13  -23
valp_vecp(E7)
## $valores_propios
## [1] -12.141428   2.141428
## 
## $vectores_propios
##           [,1]      [,2]
## [1,] 0.6410633 0.8882780
## [2,] 0.7674880 0.4593062
#f
F7<-matrix(c(13,21,31,12,24,12,21,11,31),nrow=3,ncol=3,byrow = TRUE)
F7
##      [,1] [,2] [,3]
## [1,]   13   21   31
## [2,]   12   24   12
## [3,]   21   11   31
valp_vecp(F7)
## $valores_propios
## [1] 59.076106 15.556897 -6.633002
## 
## $vectores_propios
##           [,1]        [,2]       [,3]
## [1,] 0.6306581  0.01999518  0.8807580
## [2,] 0.4355098 -0.82698661 -0.1722118
## [3,] 0.6423408  0.56186595 -0.4411444
#g
G7<-matrix(c(21,31,20,31),nrow=2,ncol=2,byrow = TRUE)
G7
##      [,1] [,2]
## [1,]   21   31
## [2,]   20   31
valp_vecp(G7)
## $valores_propios
## [1] 51.3968502  0.6031498
## 
## $vectores_propios
##            [,1]       [,2]
## [1,] -0.7140188 -0.8353909
## [2,] -0.7001265  0.5496562
#h
H7<-matrix(c(1, 1i,0, 1i), nrow = 2, byrow = TRUE)
H7
##      [,1] [,2]
## [1,] 1+0i 0+1i
## [2,] 0+0i 0+1i
valp_vecp(H7)
## $valores_propios
## [1] 1+0i 0+1i
## 
## $vectores_propios
##      [,1]                 [,2]
## [1,] 1+0i 0.4082483-0.4082483i
## [2,] 0+0i 0.8164966+0.0000000i
#i
I7<-matrix(c(20,10,11,10,21,20,11,20,8),nrow=3,ncol=3,byrow = TRUE)
I7
##      [,1] [,2] [,3]
## [1,]   20   10   11
## [2,]   10   21   20
## [3,]   11   20    8
valp_vecp(I7)
## $valores_propios
## [1] 44.309919 11.635699 -6.945618
## 
## $vectores_propios
##           [,1]       [,2]       [,3]
## [1,] 0.5162737  0.8455259 -0.1361891
## [2,] 0.6743983 -0.4993862 -0.5438753
## [3,] 0.5278716 -0.1889428  0.8280412
#j
J7<-matrix(c(12,-13,17,-14),nrow=2,ncol=2,byrow = TRUE)
J7
##      [,1] [,2]
## [1,]   12  -13
## [2,]   17  -14
valp_vecp(J7)
## $valores_propios
## [1] -1+7.211103i -1-7.211103i
## 
## $vectores_propios
##                     [,1]                [,2]
## [1,] 0.5756497+0.319313i 0.5756497-0.319313i
## [2,] 0.7527727+0.000000i 0.7527727+0.000000i