# Load package
library(boot)
library(mice)
## Warning: package 'mice' was built under R version 4.4.3
##
## Attaching package: 'mice'
## The following object is masked from 'package:stats':
##
## filter
## The following objects are masked from 'package:base':
##
## cbind, rbind
library(broom)
library(ggplot2)
# Dataset Simulasi
set.seed(123)
n <- 100
x <- rnorm(n, mean = 10, sd = 2)
y <- 3 + 1.5 * x + rnorm(n, mean = 0, sd = 2)
data <- data.frame(x, y)
data[sample(1:n, 10), "x"] <- NA
head(data)
## x y
## 1 8.879049 14.89776
## 2 9.539645 17.82323
## 3 13.117417 22.18274
## 4 10.141017 17.51644
## 5 10.258575 16.48463
## 6 13.430130 23.05514
Penjelasan: - set.seed(123)
: menjamin
hasil random yang konsisten. - rnorm()
: menghasilkan data
dari distribusi normal. - Hubungan antara y dan x: \(y = 3 + 1.5x + error\) -
sample()
: memilih 10 baris secara acak untuk dijadikan
NA.
# Hapus baris yang mengandung NA
clean_data <- na.omit(data)
# Fungsi bootstrap regresi
boot_regression <- function(data, indices) {
d <- data[indices, ]
model <- lm(y ~ x, data = d)
return(coef(model))
}
# Jalankan bootstrap
boot_result <- boot(
data = clean_data,
statistic = boot_regression,
R = 1000
)
# Output hasil
boot_result
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = clean_data, statistic = boot_regression, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 3.581084 0.06067069 1.1482885
## t2* 1.412127 -0.00547455 0.1074228
plot(boot_result)
# Confidence Interval
boot.ci(boot_result, type = "perc", index = 2)
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = boot_result, type = "perc", index = 2)
##
## Intervals :
## Level Percentile
## 95% ( 1.176, 1.596 )
## Calculations and Intervals on Original Scale
Penjelasan: - na.omit()
: hapus data
yang mengandung NA. - boot()
: bootstrap 1000 kali. -
coef()
: ambil hasil estimasi koefisien model. -
boot.ci()
: hitung confidence interval.
mean_x <- mean(data$x, na.rm = TRUE)
data$ximp <- ifelse(is.na(data$x), mean_x, data$x)
model_imp <- lm(y ~ ximp, data = data)
summary(model_imp)
##
## Call:
## lm(formula = y ~ ximp, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1153 -1.4394 -0.0902 1.2053 6.5280
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.6538 1.2332 2.963 0.00383 **
## ximp 1.4121 0.1191 11.854 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.109 on 98 degrees of freedom
## Multiple R-squared: 0.5891, Adjusted R-squared: 0.5849
## F-statistic: 140.5 on 1 and 98 DF, p-value: < 2.2e-16
boot_imp <- function(data, indices) {
d <- data[indices, ]
model <- lm(y ~ ximp, data = d)
return(coef(model))
}
boot_result_imp <- boot(data = data, statistic = boot_imp, R = 1000)
boot_result_imp
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = data, statistic = boot_imp, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 3.653794 0.053055397 1.1350004
## t2* 1.412127 -0.005093136 0.1064137
plot(boot_result_imp)
boot.ci(boot_result_imp, type = "perc", index = 2)
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = boot_result_imp, type = "perc", index = 2)
##
## Intervals :
## Level Percentile
## 95% ( 1.188, 1.603 )
## Calculations and Intervals on Original Scale
Catatan: - mean(na.rm = TRUE)
:
menghitung mean tanpa NA. - ifelse()
: mengganti NA dengan
mean. - Bootstrap tetap dilakukan seperti sebelumnya, tetapi data sudah
diimputasi.
imp <- mice(data[ , c("x", "y")], m = 5, method = 'pmm', seed = 123)
##
## iter imp variable
## 1 1 x
## 1 2 x
## 1 3 x
## 1 4 x
## 1 5 x
## 2 1 x
## 2 2 x
## 2 3 x
## 2 4 x
## 2 5 x
## 3 1 x
## 3 2 x
## 3 3 x
## 3 4 x
## 3 5 x
## 4 1 x
## 4 2 x
## 4 3 x
## 4 4 x
## 4 5 x
## 5 1 x
## 5 2 x
## 5 3 x
## 5 4 x
## 5 5 x
imp_data <- complete(imp, "long")
model_mi <- with(imp, lm(y ~ x))
summary(pool(model_mi))
## term estimate std.error statistic df p.value
## 1 (Intercept) 3.619991 1.1112706 3.257524 78.99385 1.657655e-03
## 2 x 1.408248 0.1068028 13.185496 78.10532 1.472407e-21
Penjelasan: - mice()
: melakukan
multiple imputation (m = 5) dengan metode PMM. -
with() + pool()
: estimasi model dan gabungkan hasil
imputasi.
# Model Lengkap
model_clean <- lm(y ~ x, data = clean_data)
clean_summary <- tidy(model_clean, conf.int = TRUE)
# Model Mean Imputation
boot_ci <- boot.ci(boot_result_imp, type = "perc", index = 2)
boot_summary <- tidy(model_imp, conf.int = TRUE)
# Model MICE
model_mice <- with(imp, lm(y ~ x))
mice_summary <- summary(pool(model_mice), conf.int = TRUE)
# Gabung tabel hasil
results_table <- data.frame(
Metode = c("Data Lengkap", "Mean Imputation + Bootstrap", "MICE"),
Intercept = c(
clean_summary$estimate[1],
boot_summary$estimate[1],
mice_summary$estimate[1]
),
Slope = c(
clean_summary$estimate[2],
boot_summary$estimate[2],
mice_summary$estimate[2]
),
SE_Slope = c(
clean_summary$std.error[2],
boot_summary$std.error[2],
mice_summary$std.error[2]
),
CI_Slope = c(
sprintf("(%.3f, %.3f)", clean_summary$conf.low[2], clean_summary$conf.high[2]),
sprintf("(%.3f, %.3f)", boot_ci$percent[4], boot_ci$percent[5]),
sprintf("(%.3f, %.3f)", mice_summary$`2.5 %`[2], mice_summary$`97.5 %`[2])
),
stringsAsFactors = FALSE
)
print(results_table)
## Metode Intercept Slope SE_Slope CI_Slope
## 1 Data Lengkap 3.581084 1.412127 0.1079083 (1.198, 1.627)
## 2 Mean Imputation + Bootstrap 3.653794 1.412127 0.1191314 (1.188, 1.603)
## 3 MICE 3.619991 1.408248 0.1068028 (1.196, 1.621)
results <- data.frame(
Method = c("Data Lengkap", "Mean Imp + Bootstrap", "MICE"),
Slope = c(1.412127, 1.412127, 1.408248),
SE = c(0.1079083, 0.1191314, 0.1068028),
CI_lower = c(1.198, 1.188, 1.196),
CI_upper = c(1.627, 1.603, 1.621)
)
ggplot(results, aes(x = Method, y = Slope, color = Method)) +
geom_point(size = 3) +
geom_errorbar(aes(ymin = CI_lower, ymax = CI_upper), width = 0.2) +
labs(title = "Perbandingan Estimasi Slope dengan Berbagai Metode",
y = "Estimasi Slope (y ~ x)") +
theme_minimal()