library(ChainLadder)
## Warning: package 'ChainLadder' was built under R version 4.3.3
## 
## Welcome to ChainLadder version 0.2.20
## 
## 
## To cite package 'ChainLadder' in publications use:
## 
##   Gesmann M, Murphy D, Zhang Y, Carrato A, Wuthrich M, Concina F, Dal
##   Moro E (2025). _ChainLadder: Statistical Methods and Models for
##   Claims Reserving in General Insurance_. R package version 0.2.20,
##   <https://CRAN.R-project.org/package=ChainLadder>.
## 
## To suppress this message use:
## suppressPackageStartupMessages(library(ChainLadder))
library(readxl)
## Warning: package 'readxl' was built under R version 4.3.3
data <-read_excel("F:/Mô hình rủi ro bảo hiểm/R.xlsx", 
    sheet = "Sheet1")
tri <- as.triangle(as.matrix(data))
dimnames(tri)=list(origin=1:nrow(tri), dev=1:ncol(tri))
units1 <- 1000
ylab1 <-  paste(units1)
title1 <- ""
plot(tri/units1, lattice=TRUE, ylab=ylab1, main=title1)

plot(tri/units1, ylab=ylab1, main=title1)

M <- MackChainLadder(tri, est.sigma="Mack")
M
## MackChainLadder(Triangle = tri, est.sigma = "Mack")
## 
##     Latest Dev.To.Date Ultimate     IBNR  Mack.S.E CV(IBNR)
## 1   78,075       1.000   78,075      0.0       0.0      NaN
## 2   91,494       1.000   91,494      0.0       0.0      NaN
## 3  105,560       1.000  105,560      0.0       0.0      NaN
## 4  107,322       1.000  107,322      0.0       0.0      NaN
## 5  110,110       1.000  110,110      0.0       0.0      NaN
## 6  111,369       1.000  111,369      0.0       0.0      NaN
## 7  117,974       1.000  117,974      0.0      41.7      Inf
## 8  102,474       1.000  102,456    -17.9     270.1  -15.102
## 9  107,949       0.999  108,038     89.3     298.4    3.343
## 10 149,899       0.999  150,077    177.6     581.6    3.275
## 11 149,890       0.998  150,223    332.6   1,238.7    3.724
## 12 152,682       0.994  153,667    985.3   1,534.5    1.557
## 13 131,972       0.989  133,428  1,456.1   1,660.1    1.140
## 14 152,883       0.983  155,516  2,632.9   2,318.7    0.881
## 15 128,232       0.972  131,987  3,755.3   4,605.3    1.226
## 16 129,970       0.940  138,220  8,249.7   6,406.2    0.777
## 17  86,382       0.653  132,315 45,933.4 114,578.1    2.494
## 
##                 Totals
## Latest:   2,014,237.00
## Dev:              0.97
## Ultimate: 2,077,831.37
## IBNR:        63,594.37
## Mack.S.E    114,999.65
## CV(IBNR):         1.81
plot(M)

plot(M, lattice=TRUE)

CDR(M)
##               IBNR  CDR(1)S.E.   Mack.S.E.
## 1          0.00000     0.00000     0.00000
## 2          0.00000     0.00000     0.00000
## 3          0.00000     0.00000     0.00000
## 4          0.00000     0.00000     0.00000
## 5          0.00000     0.00000     0.00000
## 6          0.00000     0.00000     0.00000
## 7          2.00000    42.31021    42.31021
## 8        -17.88253   269.18534   271.93787
## 9         89.26530   114.11982   300.77025
## 10       211.59783   464.02150   587.21092
## 11       365.64581  1100.25810  1244.92878
## 12      1022.26078   901.43653  1543.97166
## 13      1570.14827   875.54740  1667.63146
## 14      5453.87760  1485.66237  2338.48623
## 15      7939.30467  4104.66622  4621.75980
## 16     47804.69959  4348.00704  6419.38684
## 17    132298.44850 65979.02021 66274.71860
## Total 196739.36582 66390.73952 67022.23354
round(CDR(M, dev="all"),0)
##         IBNR CDR(1)S.E. CDR(2)S.E. CDR(3)S.E. CDR(4)S.E. CDR(5)S.E. CDR(6)S.E.
## 1          0          0          0          0          0          0          0
## 2          0          0          0          0          0          0          0
## 3          0          0          0          0          0          0          0
## 4          0          0          0          0          0          0          0
## 5          0          0          0          0          0          0          0
## 6          0          0          0          0          0          0          0
## 7          2         42          0          0          0          0          0
## 8        -18        269         39          0          0          0          0
## 9         89        114        275         39          0          0          0
## 10       212        464        137        329         47          0          0
## 11       366       1100        460        137        327         47          0
## 12      1022        901       1108        463        136        329         47
## 13      1570        876        828       1019        425        124        302
## 14      5454       1486        949        896       1104        461        133
## 15      7939       4105       1347        862        815       1006        419
## 16     47805       4348       4195       1375        880        832       1028
## 17    132298      65979       4239       4084       1339        856        810
## Total 196739      66391       6828       4883       2468       1860       1517
##       CDR(7)S.E. CDR(8)S.E. CDR(9)S.E. CDR(10)S.E. CDR(11)S.E. CDR(12)S.E.
## 1              0          0          0           0           0           0
## 2              0          0          0           0           0           0
## 3              0          0          0           0           0           0
## 4              0          0          0           0           0           0
## 5              0          0          0           0           0           0
## 6              0          0          0           0           0           0
## 7              0          0          0           0           0           0
## 8              0          0          0           0           0           0
## 9              0          0          0           0           0           0
## 10             0          0          0           0           0           0
## 11             0          0          0           0           0           0
## 12             0          0          0           0           0           0
## 13            43          0          0           0           0           0
## 14           327         47          0           0           0           0
## 15           121        298         43           0           0           0
## 16           428        123        305          44           0           0
## 17          1001        417        120         297          42           0
## Total       1184        560        352         300          42           0
##       Mack.S.E.
## 1             0
## 2             0
## 3             0
## 4             0
## 5             0
## 6             0
## 7            42
## 8           272
## 9           301
## 10          587
## 11         1245
## 12         1544
## 13         1668
## 14         2338
## 15         4622
## 16         6419
## 17        66275
## Total     67022

Áp dụng mô hình Mack Chain-Ladder

# Áp dụng mô hình Mack Chain-Ladder
library(ChainLadder)

M <- MackChainLadder(tri, est.sigma = "Mack")

# In kết quả mô hình
M
## MackChainLadder(Triangle = tri, est.sigma = "Mack")
## 
##     Latest Dev.To.Date Ultimate     IBNR  Mack.S.E CV(IBNR)
## 1   78,075       1.000   78,075      0.0       0.0      NaN
## 2   91,494       1.000   91,494      0.0       0.0      NaN
## 3  105,560       1.000  105,560      0.0       0.0      NaN
## 4  107,322       1.000  107,322      0.0       0.0      NaN
## 5  110,110       1.000  110,110      0.0       0.0      NaN
## 6  111,369       1.000  111,369      0.0       0.0      NaN
## 7  117,974       1.000  117,974      0.0      41.7      Inf
## 8  102,474       1.000  102,456    -17.9     270.1  -15.102
## 9  107,949       0.999  108,038     89.3     298.4    3.343
## 10 149,899       0.999  150,077    177.6     581.6    3.275
## 11 149,890       0.998  150,223    332.6   1,238.7    3.724
## 12 152,682       0.994  153,667    985.3   1,534.5    1.557
## 13 131,972       0.989  133,428  1,456.1   1,660.1    1.140
## 14 152,883       0.983  155,516  2,632.9   2,318.7    0.881
## 15 128,232       0.972  131,987  3,755.3   4,605.3    1.226
## 16 129,970       0.940  138,220  8,249.7   6,406.2    0.777
## 17  86,382       0.653  132,315 45,933.4 114,578.1    2.494
## 
##                 Totals
## Latest:   2,014,237.00
## Dev:              0.97
## Ultimate: 2,077,831.37
## IBNR:        63,594.37
## Mack.S.E    114,999.65
## CV(IBNR):         1.81

Rủi ro quy trình theo từng dòng tại cột cuối

# Xem rủi ro quy trình theo từng dòng (row) tại cột cuối
M$Mack.ProcessRisk[, ncol(tri)]
##            1            2            3            4            5            6 
##      0.00000      0.00000      0.00000      0.00000      0.00000      0.00000 
##            7            8            9           10           11           12 
##     38.69223    254.64834    280.76261    541.39817   1165.69864   1446.82290 
##           13           14           15           16           17 
##   1580.81539   2202.08981   4437.51504   6174.80020 108704.05971
# Xem tổng rủi ro quy trình (process risk) tại cột cuối
M$Total.ProcessRisk[ncol(tri)]
##       12 
## 109021.2

Xem rủi ro tham số theo từng dòng tại cột cuối

# Xem rủi ro tham số (parameter risk) theo từng dòng tại cột cuối
M$Mack.ParameterRisk[, ncol(tri)]
##           1           2           3           4           5           6 
##     0.00000     0.00000     0.00000     0.00000     0.00000     0.00000 
##           7           8           9          10          11          12 
##    15.63996    89.94580   100.98106   212.49129   419.02152   511.28334 
##          13          14          15          16          17 
##   506.89774   726.03489  1231.90672  1706.22206 36215.52128
# Xem tổng rủi ro tham số tại cột cuối
M$Total.ParameterRisk[ncol(tri)]
## [1] 36596.3

Biểu đồ trực quan hóa

# Vẽ đồ thị trực quan hóa
plot(M)

plot(M, lattice = TRUE)

LS0tDQp0aXRsZTogIk3DtCBow6xuaCBy4bunaSBybyBi4bqjbyBoaeG7g20gLSDEkeG7gSA0Ig0KYXV0aG9yOiAicG5taW5oY2hhdSINCmRhdGU6ICIyMDI1LTA3LTAyIg0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIGNvZGVfZG93bmxvYWQ6IHRydWUNCiAgICBjb2RlX2ZvbGRpbmc6IGhpZGUNCiAgICBudW1iZXJfc2VjdGlvbnM6IHllcw0KICAgIHRoZW06ICJkZWZhdWx0Ig0KICAgIHRvY19kZXB0aDogMw0KICAgIHRvYzogdHJ1ZQ0KICAgIHRvY19mbG9hdDogdHJ1ZQ0KLS0tDQoNCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQ0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFKQ0KYGBgDQoNCjxsaW5rIHJlbD0ic3R5bGVzaGVldCIgdHlwZT0idGV4dC9jc3MiIGhyZWY9InN0eWxlLmNzcyI+DQoNCg0KYGBge3J9DQpsaWJyYXJ5KENoYWluTGFkZGVyKQ0KbGlicmFyeShyZWFkeGwpDQpkYXRhIDwtcmVhZF9leGNlbCgiRjovTcO0IGjDrG5oIHLhu6dpIHJvIGLhuqNvIGhp4buDbS9SLnhsc3giLCANCiAgICBzaGVldCA9ICJTaGVldDEiKQ0KYGBgDQoNCmBgYHtyfQ0KdHJpIDwtIGFzLnRyaWFuZ2xlKGFzLm1hdHJpeChkYXRhKSkNCmBgYA0KDQoNCmBgYHtyfQ0KZGltbmFtZXModHJpKT1saXN0KG9yaWdpbj0xOm5yb3codHJpKSwgZGV2PTE6bmNvbCh0cmkpKQ0KYGBgDQoNCg0KYGBge3J9DQp1bml0czEgPC0gMTAwMA0KeWxhYjEgPC0gIHBhc3RlKHVuaXRzMSkNCnRpdGxlMSA8LSAiIg0KYGBgDQoNCg0KYGBge3J9DQpwbG90KHRyaS91bml0czEsIGxhdHRpY2U9VFJVRSwgeWxhYj15bGFiMSwgbWFpbj10aXRsZTEpDQpgYGANCg0KDQpgYGB7cn0NCnBsb3QodHJpL3VuaXRzMSwgeWxhYj15bGFiMSwgbWFpbj10aXRsZTEpDQpgYGANCg0KDQpgYGB7cn0NCk0gPC0gTWFja0NoYWluTGFkZGVyKHRyaSwgZXN0LnNpZ21hPSJNYWNrIikNCk0NCmBgYA0KDQoNCmBgYHtyfQ0KcGxvdChNKQ0KYGBgDQoNCg0KYGBge3J9DQpwbG90KE0sIGxhdHRpY2U9VFJVRSkNCmBgYA0KDQoNCmBgYHtyfQ0KQ0RSKE0pDQpyb3VuZChDRFIoTSwgZGV2PSJhbGwiKSwwKQ0KYGBgDQoNCioqw4FwIGThu6VuZyBtw7QgaMOsbmggTWFjayBDaGFpbi1MYWRkZXIqKiAgIA0KDQpgYGB7cn0NCiMgw4FwIGThu6VuZyBtw7QgaMOsbmggTWFjayBDaGFpbi1MYWRkZXINCmxpYnJhcnkoQ2hhaW5MYWRkZXIpDQoNCk0gPC0gTWFja0NoYWluTGFkZGVyKHRyaSwgZXN0LnNpZ21hID0gIk1hY2siKQ0KDQojIEluIGvhur90IHF14bqjIG3DtCBow6xuaA0KTQ0KYGBgDQoNCioqUuG7p2kgcm8gcXV5IHRyw6xuaCB0aGVvIHThu6tuZyBkw7JuZyB04bqhaSBj4buZdCBjdeG7kWkqKiAgIA0KDQpgYGB7cn0NCiMgWGVtIHLhu6dpIHJvIHF1eSB0csOsbmggdGhlbyB04burbmcgZMOybmcgKHJvdykgdOG6oWkgY+G7mXQgY3Xhu5FpDQpNJE1hY2suUHJvY2Vzc1Jpc2tbLCBuY29sKHRyaSldDQpgYGANCg0KDQpgYGB7cn0NCiMgWGVtIHThu5VuZyBy4bunaSBybyBxdXkgdHLDrG5oIChwcm9jZXNzIHJpc2spIHThuqFpIGPhu5l0IGN14buRaQ0KTSRUb3RhbC5Qcm9jZXNzUmlza1tuY29sKHRyaSldDQpgYGANCioqWGVtIHLhu6dpIHJvIHRoYW0gc+G7kSB0aGVvIHThu6tuZyBkw7JuZyB04bqhaSBj4buZdCBjdeG7kWkqKiAgIA0KDQpgYGB7cn0NCiMgWGVtIHLhu6dpIHJvIHRoYW0gc+G7kSAocGFyYW1ldGVyIHJpc2spIHRoZW8gdOG7q25nIGTDsm5nIHThuqFpIGPhu5l0IGN14buRaQ0KTSRNYWNrLlBhcmFtZXRlclJpc2tbLCBuY29sKHRyaSldDQpgYGANCg0KDQpgYGB7cn0NCiMgWGVtIHThu5VuZyBy4bunaSBybyB0aGFtIHPhu5EgdOG6oWkgY+G7mXQgY3Xhu5FpDQpNJFRvdGFsLlBhcmFtZXRlclJpc2tbbmNvbCh0cmkpXQ0KYGBgDQoqKkJp4buDdSDEkeG7kyB0cuG7sWMgcXVhbiBow7NhKiogICANCg0KYGBge3J9DQojIFbhur0gxJHhu5MgdGjhu4sgdHLhu7FjIHF1YW4gaMOzYQ0KcGxvdChNKQ0KcGxvdChNLCBsYXR0aWNlID0gVFJVRSkNCg0KYGBg