Healthy Cities GIS Assignment

Author

Ike Charistan

Load the libraries and set the working directory

library(tidyverse)
library(tidyr)
library(webshot2)
setwd("~/Desktop/Data 110")
cities500 <- read_csv("500CitiesLocalHealthIndicators.cdc.csv")
data(cities500)

The GeoLocation variable has (lat, long) format

Split GeoLocation (lat, long) into two columns: lat and long

latlong <- cities500|>
  mutate(GeoLocation = str_replace_all(GeoLocation, "[()]", ""))|>
  separate(GeoLocation, into = c("lat", "long"), sep = ",", convert = TRUE)
head(latlong)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName  GeographicLevel DataSource Category      
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>      <chr>         
1  2017 CA        California Hawthorne Census Tract    BRFSS      Health Outcom…
2  2017 CA        California Hawthorne City            BRFSS      Unhealthy Beh…
3  2017 CA        California Hayward   City            BRFSS      Health Outcom…
4  2017 CA        California Hayward   City            BRFSS      Unhealthy Beh…
5  2017 CA        California Hemet     City            BRFSS      Prevention    
6  2017 CA        California Indio     Census Tract    BRFSS      Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

Filter the dataset

Remove the StateDesc that includes the United Sates, select Prevention as the category (of interest), filter for only measuring crude prevalence and select only 2017.

latlong_clean <- latlong |>
  filter(StateDesc != "United States") |>
  filter(Data_Value_Type == "Crude prevalence") |>
  filter(Year == 2017) |>
  filter(StateAbbr == "CT") |>
  filter(Category == "Unhealthy Behaviors")
head(latlong_clean)
# A tibble: 6 × 25
   Year StateAbbr StateDesc   CityName   GeographicLevel DataSource Category    
  <dbl> <chr>     <chr>       <chr>      <chr>           <chr>      <chr>       
1  2017 CT        Connecticut Bridgeport Census Tract    BRFSS      Unhealthy B…
2  2017 CT        Connecticut Danbury    City            BRFSS      Unhealthy B…
3  2017 CT        Connecticut Norwalk    Census Tract    BRFSS      Unhealthy B…
4  2017 CT        Connecticut Bridgeport Census Tract    BRFSS      Unhealthy B…
5  2017 CT        Connecticut Hartford   Census Tract    BRFSS      Unhealthy B…
6  2017 CT        Connecticut Waterbury  Census Tract    BRFSS      Unhealthy B…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

What variables are included? (can any of them be removed?)

names(latlong_clean)
 [1] "Year"                       "StateAbbr"                 
 [3] "StateDesc"                  "CityName"                  
 [5] "GeographicLevel"            "DataSource"                
 [7] "Category"                   "UniqueID"                  
 [9] "Measure"                    "Data_Value_Unit"           
[11] "DataValueTypeID"            "Data_Value_Type"           
[13] "Data_Value"                 "Low_Confidence_Limit"      
[15] "High_Confidence_Limit"      "Data_Value_Footnote_Symbol"
[17] "Data_Value_Footnote"        "PopulationCount"           
[19] "lat"                        "long"                      
[21] "CategoryID"                 "MeasureId"                 
[23] "CityFIPS"                   "TractFIPS"                 
[25] "Short_Question_Text"       

Remove the variables that will not be used in the assignment

latlong_clean2 <- latlong_clean |>
  select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)
head(latlong_clean2)
# A tibble: 6 × 18
   Year StateAbbr StateDesc   CityName GeographicLevel Category UniqueID Measure
  <dbl> <chr>     <chr>       <chr>    <chr>           <chr>    <chr>    <chr>  
1  2017 CT        Connecticut Bridgep… Census Tract    Unhealt… 0908000… Obesit…
2  2017 CT        Connecticut Danbury  City            Unhealt… 918430   Obesit…
3  2017 CT        Connecticut Norwalk  Census Tract    Unhealt… 0955990… Obesit…
4  2017 CT        Connecticut Bridgep… Census Tract    Unhealt… 0908000… Curren…
5  2017 CT        Connecticut Hartford Census Tract    Unhealt… 0937000… Obesit…
6  2017 CT        Connecticut Waterbu… Census Tract    Unhealt… 0980000… Obesit…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

The new dataset “Prevention” is a manageable dataset now.

For your assignment, work with a cleaned dataset.

1. Once you run the above code and learn how to filter this complicated dataset, perform your own investigation by filtering this dataset however you choose so that you have a subset with no more than 900 observations.

Filter chunk here (you may need multiple chunks)

 subset_data <- latlong_clean2 %>%
  filter(StateAbbr == "CT" & Short_Question_Text == "Binge Drinking") 
 subset_data
# A tibble: 228 × 18
    Year StateAbbr StateDesc  CityName GeographicLevel Category UniqueID Measure
   <dbl> <chr>     <chr>      <chr>    <chr>           <chr>    <chr>    <chr>  
 1  2017 CT        Connectic… Waterbu… Census Tract    Unhealt… 0980000… Binge …
 2  2017 CT        Connectic… Norwalk  Census Tract    Unhealt… 0955990… Binge …
 3  2017 CT        Connectic… Stamford Census Tract    Unhealt… 0973000… Binge …
 4  2017 CT        Connectic… Danbury  Census Tract    Unhealt… 0918430… Binge …
 5  2017 CT        Connectic… Bridgep… Census Tract    Unhealt… 0908000… Binge …
 6  2017 CT        Connectic… Stamford Census Tract    Unhealt… 0973000… Binge …
 7  2017 CT        Connectic… Danbury  Census Tract    Unhealt… 0918430… Binge …
 8  2017 CT        Connectic… Stamford City            Unhealt… 973000   Binge …
 9  2017 CT        Connectic… Stamford Census Tract    Unhealt… 0973000… Binge …
10  2017 CT        Connectic… Hartford Census Tract    Unhealt… 0937000… Binge …
# ℹ 218 more rows
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
city_only <- subset_data %>%
  filter(GeographicLevel == "City")

2. Based on the GIS tutorial (Japan earthquakes), create one plot about something in your subsetted dataset.

First plot chunk here

# non map plot
health_insurance_plot <- ggplot(city_only, aes(CityName, Data_Value, color = CityName)) +
  geom_boxplot(shape = 17, size = 3) +
  scale_color_brewer(palette = "Pastel1") +
  labs(
    x = "City Name",
    y = "Value (%)",
    title = "Unhealthy Behaviors by City in Connecticut (2017)",
    subtitle = "Each boxes represents the level of Unhealthy Behaviors by city in Connecticut.",
    color = "City Name"
  ) +
  theme(
    plot.background = element_rect(fill = "lightgrey"),
    panel.background = element_rect(fill = "grey"),
    axis.title = element_text(face = 2),
    legend.background = element_rect(fill = "lightgrey"),
    legend.title = element_text(color = "black", size = 12),
    legend.text = element_text(color = "black", size = 11),
    legend.key.size = unit(0.75, units = "cm"),
    panel.grid = element_line(color = "darkgrey"),
    axis.text.x = element_text(angle = 45, hjust = 1) 
  )

health_insurance_plot

3. Now create a map of your subsetted dataset.

First map chunk here

# leaflet()
library(leaflet)
library(knitr)
library(sf)
Linking to GEOS 3.13.0, GDAL 3.8.5, PROJ 9.5.1; sf_use_s2() is TRUE
map_plot1 <- leaflet(data = city_only) |>
  setView(lat = 41.6032, lng = -73.0877, zoom = 7) |> # Connecticut coordonates
  addProviderTiles("OpenStreetMap") |>
  addCircles(
    lat = ~lat,
    lng = ~long,
    radius = ~sqrt(10^(Data_Value / 30)) * 5,
    color = "green",
    
  )

map_plot1

4. Refine your map to include a mouse-click tooltip

Refined map chunk here

# Define the popup content
map_popup1 <- paste0( 
  "<b>City: </b>", city_only$CityName, "<br>",
  "<b>Census Tract: </b>", city_only$UniqueID, "<br>",
  "<b>Data Value (%): </b>", city_only$Data_Value, "<br>",
  "<strong>Population: </strong>", city_only$PopulationCount, "<br>"
)

# Create the map with popups
map_w_popup <- leaflet() |>
  setView(lat = 41.6032, lng = -73.0877, zoom = 7) |>
  addProviderTiles("OpenStreetMap") |>
  addCircles(
    lat = ~lat,
    lng = ~long,
    data = city_only,
    radius = sqrt(10^(city_only$Data_Value/30)) * 5,
    color = "yellow",
    popup = map_popup1
  )
map_w_popup

5. Write a paragraph

In a paragraph, describe the plots you created and what they show.

The plots I created display unhealthy behavior prevalence data across cities and census tracts in Connecticut for 2017. The scatter plot shows the percentage of unhealthy behaviors by city, with each point representing a different city. The map plot provides a geographic view, where circle sizes reflect the severity of unhealthy behaviors in each location. Each marker includes a popup with additional details such as city name, census tract, data value, and population. Together, these visualizations highlight regional differences in health patterns across the state.