library(tidyverse)
library(tidyr)
library(leaflet)
setwd("C:/Users/ubjho/Downloads")
cities500 <- read_csv("500CitiesLocalHealthIndicators.cdc.csv")
data(cities500)Healthy Cities GIS Assignment
Load the libraries and set the working directory
The GeoLocation variable has (lat, long) format
Split GeoLocation (lat, long) into two columns: lat and long
latlong <- cities500|>
mutate(GeoLocation = str_replace_all(GeoLocation, "[()]", ""))|>
separate(GeoLocation, into = c("lat", "long"), sep = ",", convert = TRUE)
head(latlong)# A tibble: 6 × 25
Year StateAbbr StateDesc CityName GeographicLevel DataSource Category
<dbl> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 CA California Hawthorne Census Tract BRFSS Health Outcom…
2 2017 CA California Hawthorne City BRFSS Unhealthy Beh…
3 2017 CA California Hayward City BRFSS Health Outcom…
4 2017 CA California Hayward City BRFSS Unhealthy Beh…
5 2017 CA California Hemet City BRFSS Prevention
6 2017 CA California Indio Census Tract BRFSS Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
# DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
# Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
# Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
Filter the dataset
Remove the StateDesc that includes the United Sates, select Prevention as the category (of interest), filter for only measuring crude prevalence and select only 2017.
latlong_clean <- latlong |>
filter(StateDesc != "United States") |>
filter(Data_Value_Type == "Crude prevalence") |>
filter(Year == 2017) |>
filter(StateAbbr == "CA") |>
filter(Category == "Unhealthy Behaviors")
head(latlong_clean)# A tibble: 6 × 25
Year StateAbbr StateDesc CityName GeographicLevel DataSource Category
<dbl> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 CA California Hawthorne City BRFSS Unhealthy Beh…
2 2017 CA California Hayward City BRFSS Unhealthy Beh…
3 2017 CA California Lakewood City BRFSS Unhealthy Beh…
4 2017 CA California Alhambra Census Tract BRFSS Unhealthy Beh…
5 2017 CA California Antioch City BRFSS Unhealthy Beh…
6 2017 CA California Chino City BRFSS Unhealthy Beh…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
# DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
# Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
# Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
What variables are included? (can any of them be removed?)
names(latlong_clean) [1] "Year" "StateAbbr"
[3] "StateDesc" "CityName"
[5] "GeographicLevel" "DataSource"
[7] "Category" "UniqueID"
[9] "Measure" "Data_Value_Unit"
[11] "DataValueTypeID" "Data_Value_Type"
[13] "Data_Value" "Low_Confidence_Limit"
[15] "High_Confidence_Limit" "Data_Value_Footnote_Symbol"
[17] "Data_Value_Footnote" "PopulationCount"
[19] "lat" "long"
[21] "CategoryID" "MeasureId"
[23] "CityFIPS" "TractFIPS"
[25] "Short_Question_Text"
Remove the variables that will not be used in the assignment
latlong_clean2 <- latlong_clean |>
select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)
head(latlong_clean2)# A tibble: 6 × 18
Year StateAbbr StateDesc CityName GeographicLevel Category UniqueID Measure
<dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 CA California Hawthorne City Unhealt… 632548 Curren…
2 2017 CA California Hayward City Unhealt… 633000 Obesit…
3 2017 CA California Lakewood City Unhealt… 639892 Obesit…
4 2017 CA California Alhambra Census Tract Unhealt… 0600884… Obesit…
5 2017 CA California Antioch City Unhealt… 602252 Binge …
6 2017 CA California Chino City Unhealt… 613210 Binge …
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
The new dataset “Prevention” is a manageable dataset now.
For your assignment, work with a cleaned dataset.
1. Once you run the above code and learn how to filter this complicated dataset, perform your own investigation by filtering this dataset however you choose so that you have a subset with no more than 900 observations.
Filter chunk here (you may need multiple chunks)
cities500 <- read_csv("500CitiesLocalHealthIndicators.cdc.csv")Rows: 810103 Columns: 24
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (17): StateAbbr, StateDesc, CityName, GeographicLevel, DataSource, Categ...
dbl (6): Year, Data_Value, Low_Confidence_Limit, High_Confidence_Limit, Cit...
num (1): PopulationCount
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
latlong <- cities500 |>
mutate(GeoLocation = str_replace_all(GeoLocation, "[()]", "")) |>
separate(GeoLocation, into = c("lat", "long"), sep = ",", convert = TRUE)
head(latlong)# A tibble: 6 × 25
Year StateAbbr StateDesc CityName GeographicLevel DataSource Category
<dbl> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 CA California Hawthorne Census Tract BRFSS Health Outcom…
2 2017 CA California Hawthorne City BRFSS Unhealthy Beh…
3 2017 CA California Hayward City BRFSS Health Outcom…
4 2017 CA California Hayward City BRFSS Unhealthy Beh…
5 2017 CA California Hemet City BRFSS Prevention
6 2017 CA California Indio Census Tract BRFSS Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
# DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
# Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
# Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
latlong_clean <- latlong |>
filter(StateDesc != "United States") |>
filter(Data_Value_Type == "Crude prevalence") |>
filter(Year == 2017) |>
filter(StateAbbr == "CA") |>
filter(Category == "Health Outcomes")
head(latlong_clean)# A tibble: 6 × 25
Year StateAbbr StateDesc CityName GeographicLevel DataSource Category
<dbl> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 CA California Hawthorne Census Tract BRFSS Health Outcom…
2 2017 CA California Indio Census Tract BRFSS Health Outcom…
3 2017 CA California Inglewood Census Tract BRFSS Health Outcom…
4 2017 CA California Livermore City BRFSS Health Outcom…
5 2017 CA California Antioch Census Tract BRFSS Health Outcom…
6 2017 CA California Berkeley City BRFSS Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
# DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
# Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
# Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
2. Based on the GIS tutorial (Japan earthquakes), create one plot about something in your subsetted dataset.
First plot chunk here
latlong_plot <- latlong_clean |>
group_by(Measure) |>
summarize(mean_value = mean(Data_Value, na.rm = TRUE)) |>
arrange(desc(mean_value))
ggplot(latlong_plot, aes(x = reorder(Measure, mean_value), y = mean_value)) +
geom_col(fill = "forestgreen") +
coord_flip() +
labs(title = "Average Crude\nPrevalence by\nHealth Outcome\n(California, 2017)",
x = "Health Outcome Measure",
y = "Mean Crude Prevalence (%)") +
theme_minimal()
3. Now create a map of your subsetted dataset.
First map chunk here
ca_lat <- 36.7783
ca_lon <- -119.4179
leaflet() |>
setView(lng = ca_lon, lat = ca_lat, zoom = 6) |>
addProviderTiles("Esri.WorldStreetMap") |>
addCircles(
data = latlong_clean,
lng = ~long,
lat = ~lat,
radius = ~Data_Value * 100,
color = "violet",
fillColor = "maroon",
fillOpacity = 0.4
)4. Refine your map to include a mouse-click tooltip
Refined map chunk here
pal <- colorFactor(
palette = c("blueviolet", "chartreuse", "darkred", "deeppink", "orchid", "coral", "darkslateblue", "darkslategrey", "yellowgreen", "tomato", "plum4", "khaki"),
levels = unique(latlong_clean$Measure),
latlong_clean$Measure
)
popup_health <- paste0(
"<b>City:</b> ", latlong_clean$CityName, "<br>",
"<b>Measure:</b> ", latlong_clean$Measure, "<br>",
"<b>Value:</b> ", latlong_clean$Data_Value, "%"
)
map1 <- leaflet(latlong_clean) |>
setView(lng = -119.4179, lat = 36.7783, zoom = 6) |>
addProviderTiles("Esri.WorldStreetMap") |>
addCircles(
fillColor = ~pal(Measure),
radius = ~Data_Value * 100,
fillOpacity = 0.8,
color = ~pal(Measure),
popup = popup_health
)Assuming "long" and "lat" are longitude and latitude, respectively
map1 |>
addLegend("topleft",
pal = pal,
values = latlong_clean$Measure,
title = "Health Outcome",
opacity = .7)