Healthy Cities GIS Assignment

Author

Telesphore Kabore

Load the libraries and set the working directory

library(tidyverse)
library(tidyr)
library(dplyr)
setwd("~/Telesphore/Personnel/Etudes/Montgomery_College/Data_Sciences_Certificate_program/Data_110/Week5")
cities500 <- read_csv("500CitiesLocalHealthIndicators.cdc.csv")
data(cities500)

The GeoLocation variable has (lat, long) format

Split GeoLocation (lat, long) into two columns: lat and long

latlong <- cities500|>
  mutate(GeoLocation = str_replace_all(GeoLocation, "[()]", ""))|>
  separate(GeoLocation, into = c("lat", "long"), sep = ",", convert = TRUE)
head(latlong)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName  GeographicLevel DataSource Category      
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>      <chr>         
1  2017 CA        California Hawthorne Census Tract    BRFSS      Health Outcom…
2  2017 CA        California Hawthorne City            BRFSS      Unhealthy Beh…
3  2017 CA        California Hayward   City            BRFSS      Health Outcom…
4  2017 CA        California Hayward   City            BRFSS      Unhealthy Beh…
5  2017 CA        California Hemet     City            BRFSS      Prevention    
6  2017 CA        California Indio     Census Tract    BRFSS      Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

Filter the dataset

Remove the StateDesc that includes the United Sates, select Prevention as the category (of interest), filter for only measuring crude prevalence and select only 2017.

latlong_clean <- latlong |>
  filter(StateDesc != "United States") |>
  filter(Data_Value_Type == "Crude prevalence") |>
  filter(Year == 2017) |>
  filter(StateAbbr == "CT") |>
  filter(Category == "Unhealthy Behaviors")
head(latlong_clean)
# A tibble: 6 × 25
   Year StateAbbr StateDesc   CityName   GeographicLevel DataSource Category    
  <dbl> <chr>     <chr>       <chr>      <chr>           <chr>      <chr>       
1  2017 CT        Connecticut Bridgeport Census Tract    BRFSS      Unhealthy B…
2  2017 CT        Connecticut Danbury    City            BRFSS      Unhealthy B…
3  2017 CT        Connecticut Norwalk    Census Tract    BRFSS      Unhealthy B…
4  2017 CT        Connecticut Bridgeport Census Tract    BRFSS      Unhealthy B…
5  2017 CT        Connecticut Hartford   Census Tract    BRFSS      Unhealthy B…
6  2017 CT        Connecticut Waterbury  Census Tract    BRFSS      Unhealthy B…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

What variables are included? (can any of them be removed?)

names(latlong_clean)
 [1] "Year"                       "StateAbbr"                 
 [3] "StateDesc"                  "CityName"                  
 [5] "GeographicLevel"            "DataSource"                
 [7] "Category"                   "UniqueID"                  
 [9] "Measure"                    "Data_Value_Unit"           
[11] "DataValueTypeID"            "Data_Value_Type"           
[13] "Data_Value"                 "Low_Confidence_Limit"      
[15] "High_Confidence_Limit"      "Data_Value_Footnote_Symbol"
[17] "Data_Value_Footnote"        "PopulationCount"           
[19] "lat"                        "long"                      
[21] "CategoryID"                 "MeasureId"                 
[23] "CityFIPS"                   "TractFIPS"                 
[25] "Short_Question_Text"       

Remove the variables that will not be used in the assignment

latlong_clean2 <- latlong_clean |>
  select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)
head(latlong_clean2)
# A tibble: 6 × 18
   Year StateAbbr StateDesc   CityName GeographicLevel Category UniqueID Measure
  <dbl> <chr>     <chr>       <chr>    <chr>           <chr>    <chr>    <chr>  
1  2017 CT        Connecticut Bridgep… Census Tract    Unhealt… 0908000… Obesit…
2  2017 CT        Connecticut Danbury  City            Unhealt… 918430   Obesit…
3  2017 CT        Connecticut Norwalk  Census Tract    Unhealt… 0955990… Obesit…
4  2017 CT        Connecticut Bridgep… Census Tract    Unhealt… 0908000… Curren…
5  2017 CT        Connecticut Hartford Census Tract    Unhealt… 0937000… Obesit…
6  2017 CT        Connecticut Waterbu… Census Tract    Unhealt… 0980000… Obesit…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

The new dataset “Prevention” is a manageable dataset now.

For your assignment, work with a cleaned dataset.

1. Once you run the above code and learn how to filter this complicated dataset, perform your own investigation by filtering this dataset however you choose so that you have a subset with no more than 900 observations.

Filter chunk here (you may need multiple chunks)

# Filter for obesity and smocking in Connecticut 
library(dplyr)

kaya <- latlong_clean2 %>%
  filter(Category == "Unhealthy Behaviors") %>%
  filter(Measure == "Obesity among adults aged >=18 Years") %>%
  filter(StateDesc == "Connecticut")
head(kaya)
# A tibble: 6 × 18
   Year StateAbbr StateDesc   CityName GeographicLevel Category UniqueID Measure
  <dbl> <chr>     <chr>       <chr>    <chr>           <chr>    <chr>    <chr>  
1  2017 CT        Connecticut Bridgep… Census Tract    Unhealt… 0908000… Obesit…
2  2017 CT        Connecticut Danbury  City            Unhealt… 918430   Obesit…
3  2017 CT        Connecticut Norwalk  Census Tract    Unhealt… 0955990… Obesit…
4  2017 CT        Connecticut Hartford Census Tract    Unhealt… 0937000… Obesit…
5  2017 CT        Connecticut Waterbu… Census Tract    Unhealt… 0980000… Obesit…
6  2017 CT        Connecticut Hartford Census Tract    Unhealt… 0937000… Obesit…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

2. Based on the GIS tutorial (Japan earthquakes), create one plot about something in your subsetted dataset.

#Create a side-by-side Box plot of Obesity among adults aged >=18 Years based on cities.
ggplot(kaya, aes(x= CityName, y = MeasureId, color = CityName)) +
geom_boxplot()+
geom_jitter(alpha = 0.2) +
 theme(axis.text.x = element_text(angle = 45))

3. Now create a map of your subsetted dataset.

# Calculate the weighted obesity rates for each city and summarize it as a new variable for city-level obesity
city_smokers <- kaya |>
  group_by(CityName) |>
  summarize(
    total_population = sum(PopulationCount),
    weighted_smoking = sum(Data_Value * PopulationCount) / total_population,
    lat = mean(lat, na.rm = TRUE),
    long = mean(long, na.rm = TRUE)
  ) |>
  arrange(desc(weighted_smoking))

head(city_smokers)
# A tibble: 6 × 5
  CityName    total_population weighted_smoking   lat  long
  <chr>                  <dbl>            <dbl> <dbl> <dbl>
1 Hartford              249550             36.9  41.8 -72.7
2 Waterbury             220732             35.8  41.6 -73.0
3 New Haven             259558             34.5  41.3 -72.9
4 New Britain           146412             31.7  41.7 -72.8
5 Bridgeport            288458             29.4  41.2 -73.2
6 Norwalk               171206             23.5  41.1 -73.4
# Calculate the weighted obesity rates for each city and summarize it as a new variable for city-level obesity
city_obesity <- kaya |>
  group_by(CityName) |>
  summarize(
    total_population = sum(PopulationCount),
    weighted_obesity = sum(Data_Value * PopulationCount) / total_population,
    lat = mean(lat, na.rm = TRUE),
    long = mean(long, na.rm = TRUE)
  ) |>
  arrange(desc(weighted_obesity))

head(city_obesity)
# A tibble: 6 × 5
  CityName    total_population weighted_obesity   lat  long
  <chr>                  <dbl>            <dbl> <dbl> <dbl>
1 Hartford              249550             36.9  41.8 -72.7
2 Waterbury             220732             35.8  41.6 -73.0
3 New Haven             259558             34.5  41.3 -72.9
4 New Britain           146412             31.7  41.7 -72.8
5 Bridgeport            288458             29.4  41.2 -73.2
6 Norwalk               171206             23.5  41.1 -73.4
head(city_obesity)
# A tibble: 6 × 5
  CityName    total_population weighted_obesity   lat  long
  <chr>                  <dbl>            <dbl> <dbl> <dbl>
1 Hartford              249550             36.9  41.8 -72.7
2 Waterbury             220732             35.8  41.6 -73.0
3 New Haven             259558             34.5  41.3 -72.9
4 New Britain           146412             31.7  41.7 -72.8
5 Bridgeport            288458             29.4  41.2 -73.2
6 Norwalk               171206             23.5  41.1 -73.4
head(city_smokers)
# A tibble: 6 × 5
  CityName    total_population weighted_smoking   lat  long
  <chr>                  <dbl>            <dbl> <dbl> <dbl>
1 Hartford              249550             36.9  41.8 -72.7
2 Waterbury             220732             35.8  41.6 -73.0
3 New Haven             259558             34.5  41.3 -72.9
4 New Britain           146412             31.7  41.7 -72.8
5 Bridgeport            288458             29.4  41.2 -73.2
6 Norwalk               171206             23.5  41.1 -73.4

First map chunk here

library(leaflet)
leaflet() |>
  setView(lng = -73.0877, lat = 41.6032, zoom =7) |>
  addProviderTiles("Esri.WorldStreetMap") |>
  addCircles(
    data = city_obesity, 
    lng = ~long, lat = ~lat,
    radius = ~weighted_obesity * 150,
    color = "red",
    fillOpacity = 0.6,
    group = "obesity"
    ) |>
  addCircles(data = city_smokers,
             lng = ~long + 0.10,, lat = ~lat,
    radius = ~weighted_smoking * 150,
    color = "blue",
    fillOpacity = 0.6,
    group = "smoking") |>
  addLayersControl(overlayGroups = c("obesity", "smoking"),
                   options = 
                     layersControlOptions(collapse = FALSE)
                   )

4. Refine your map to include a mouse-click tooltip

# Create a popup using paste0
popupobesity <- paste0(
      "<b>total_population: </b>", city_obesity, "<br>",
      "<b>weighted_obesity: </b>", city_obesity, "<br>"
            )
# Create a popup using paste0
popupsmokers <- paste0(
      "<b>total_population: </b>", city_smokers, "<br>",
      "<b>weighted_smoking: </b>", city_smokers, "<br>"
      )

Refined map chunk here

leaflet() |>
  setView(lng = -73.0877, lat = 41.6032, zoom = 8) |>
  addProviderTiles("Esri.WorldStreetMap") |>
  addCircles(
    data = city_obesity, 
    lng = ~long, lat = ~lat,
    radius = ~weighted_obesity * 150,
    color = "red",
    fillOpacity = 0.6,
    popup = popupobesity,
    group = "obesity"
    ) |>
  addCircles(data = city_smokers,
             lng = ~long + 0.10,, lat = ~lat,
    radius = ~weighted_smoking * 150,
    color = "blue",
    fillOpacity = 0.6,
    popup = popupsmokers,
    group = "smoking") |>
  addLayersControl(overlayGroups = c("obesity", "smoking"),
                   options = 
                     layersControlOptions(collapse = FALSE)
                   )

5. Write a paragraph

My plots are related to the visualization of obesity and smoking rate among adult population of 18 years and above per city in the state of Connecticut. The Red circles represent the obesity rate and the blue ones the smoking rate. Eight (8) major cities of the State of Connecticut are featured. I inserted for each city and behavior a popup presenting the total population and the rate of the behavior.