vitesse <- c(4, 7, 8, 9, 10, 11, 11, 12, 12, 13,
14, 15, 15, 16, 17, 18, 19, 20, 24, 25)
distance <- c(2, 4, 16, 10, 26, 17, 28, 20, 28, 26,
36, 26, 54, 40, 50, 76, 46, 48, 92, 85)
mean_vitesse <- mean(vitesse)
mean_distance <- mean(distance)
mean_vitesse
## [1] 14
mean_distance
## [1] 36.5
var_vitesse <- var(vitesse)
var_distance <- var(distance)
var_vitesse
## [1] 29.78947
var_distance
## [1] 642.7895
reg_d_sur_v <- lm(distance ~ vitesse)
summary(reg_d_sur_v)
##
## Call:
## lm(formula = distance ~ vitesse)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.7968 -6.3048 -0.2032 5.6325 22.3127
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -23.655 6.230 -3.797 0.00132 **
## vitesse 4.297 0.416 10.329 5.42e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.897 on 18 degrees of freedom
## Multiple R-squared: 0.8556, Adjusted R-squared: 0.8476
## F-statistic: 106.7 on 1 and 18 DF, p-value: 5.416e-09
reg_v_sur_d <- lm(vitesse ~ distance)
summary(reg_v_sur_d)
##
## Call:
## lm(formula = vitesse ~ distance)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8657 -1.4578 0.1883 1.2900 3.7100
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.73168 0.84980 7.921 2.82e-07 ***
## distance 0.19913 0.01928 10.329 5.42e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.131 on 18 degrees of freedom
## Multiple R-squared: 0.8556, Adjusted R-squared: 0.8476
## F-statistic: 106.7 on 1 and 18 DF, p-value: 5.416e-09
plot(
vitesse, distance, pch = 19, col = "blue",
xlab = "Vitesse (mph)", ylab = "Distance (ft)",
main = "Régressions croisées"
)
abline(reg_d_sur_v, col = "red", lwd = 2)
a <- coef(reg_v_sur_d)[1]
b <- coef(reg_v_sur_d)[2]
abline(a = -a / b, b = 1 / b, col = "green", lwd = 2)
legend("topleft",
legend = c("D ~ V", "V ~ D inversée"),
col = c("red", "green"), lty = 1, lwd = 2)
m1 <- coef(reg_d_sur_v)[2]
m2 <- 1 / coef(reg_v_sur_d)[2]
theta_deg <- atan(abs((m2 - m1) / (1 + m1 * m2))) * 180 / pi
theta_deg
## distance
## 1.83914
r <- cor(vitesse, distance)
r
## [1] 0.9250052
Conclusion Le coefficient de corrélation est élevé, indiquant une forte dépendance linéaire positive entre la vitesse et la distance de freinage.