# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the performance of your portfolio in terms of Sharpe Ratio.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("NKE", "ADDYY", "SKX", "UAA")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "ADDYY" "NKE" "SKX" "UAA"
# weights
weights <- c(0.4, 0.2, 0.25, 0.15)
weights
## [1] 0.40 0.20 0.25 0.15
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
## symbols weights
## <chr> <dbl>
## 1 ADDYY 0.4
## 2 NKE 0.2
## 3 SKX 0.25
## 4 UAA 0.15
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0385
## 2 2013-02-28 0.0150
## 3 2013-03-28 0.0760
## 4 2013-04-30 0.0284
## 5 2013-05-31 0.0519
## 6 2013-06-28 0.0120
## 7 2013-07-31 0.0604
## 8 2013-08-30 0.0204
## 9 2013-09-30 0.0542
## 10 2013-10-31 0.0157
## # ℹ 50 more rows
# Define risk free rate
rfr <- 0.0003
portfolio_SharpeRatio_tbl <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = SharpeRatio,
Rf = rfr,
FUN = "StdDev")
portfolio_SharpeRatio_tbl
## # A tibble: 1 × 1
## `StdDevSharpe(Rf=0%,p=95%)`
## <dbl>
## 1 0.353
# Create a custom function to calculate rolling SR
Calculate_rolling_SharpeRatio <- function(data) {
rolling_SR <- SharpeRatio(R = data,
Rf = rfr,
FUN = "StdDev")
return(rolling_SR)
}
# Define window
window <- 24
# Transform data: calculate rolling sharpe ratio
rolling_sr_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = Calculate_rolling_SharpeRatio,
col_rename = "rolling_sr") %>%
select(-returns) %>%
na.omit()
rolling_sr_tbl
## # A tibble: 37 × 2
## date rolling_sr
## <date> <dbl>
## 1 2014-12-31 0.406
## 2 2015-01-30 0.393
## 3 2015-02-27 0.442
## 4 2015-03-31 0.417
## 5 2015-04-30 0.439
## 6 2015-05-29 0.429
## 7 2015-06-30 0.439
## 8 2015-07-31 0.459
## 9 2015-08-31 0.374
## 10 2015-09-30 0.364
## # ℹ 27 more rows
rolling_sr_tbl %>%
ggplot(aes(x = date, y = rolling_sr)) +
geom_line(color = "cornflowerblue") +
# Labeling
labs(x = NULL, y = "Rolling Sharpe Ratio") +
annotate(geom = "text",
x = as.Date("2016-06-01"), y = 0.5,
label = "This portfolio has consistently increased since 2016.",
color = "red", size = 4)
How has your portfolio performed over time? Provide dates of the
structural breaks, if any. The Code Along Assignment 9 had one
structural break in November 2016. What do you think the reason is?
The portfolio’s performance improved significantly after a structural break in November 2016, as indicated by a sharp increase in the rolling Sharpe Ratio. This improvement was likely driven by macroeconomic shifts (e.g., post-election market rally), improved consumer spending, and strong individual stock performance. The portfolio was relatively flat before 2016 but showed strong, consistent growth in risk-adjusted returns afterward.