# Load packages

# Core
library(tidyverse)
library(tidyquant)

Goal

Visualize and examine changes in the underlying trend in the downside risk of your portfolio in terms of kurtosis.

Choose your stocks.

from 2012-12-31 to present

1 Import stock prices

symbols <- c("NKE", "ADDYY", "SKX", "UAA")

prices <- tq_get(x    = symbols, 
                 get  = "stock.prices",
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns (monthly)

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted,
                 mutate_fun = periodReturn,
                 period     = "monthly",
                 type       = "log") %>%
   
     slice(-1) %>%
   
     ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset (change the weigting scheme)

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "ADDYY" "NKE"   "SKX"   "UAA"
# weights
weights <- c(0.4, 0.2, 0.25, 0.15)
weights
## [1] 0.40 0.20 0.25 0.15
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 ADDYY      0.4 
## 2 NKE        0.2 
## 3 SKX        0.25
## 4 UAA        0.15

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col   = asset,
                 returns_col  = returns,
                 weights      = w_tbl,
                 rebalance_on = "months",
                 col_rename   = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date       returns
##    <date>       <dbl>
##  1 2013-01-31  0.0385
##  2 2013-02-28  0.0150
##  3 2013-03-28  0.0760
##  4 2013-04-30  0.0284
##  5 2013-05-31  0.0519
##  6 2013-06-28  0.0120
##  7 2013-07-31  0.0604
##  8 2013-08-30  0.0204
##  9 2013-09-30  0.0542
## 10 2013-10-31  0.0157
## # ℹ 50 more rows

5 Compute kurtosis

portfolio_kurt_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
    
    tq_performance(Ra = returns, 
                   performance_fun = table.Stats) %>%
    
    select(Kurtosis)
   
portfolio_kurt_tidyquant_builtin_percent
## # A tibble: 1 × 1
##   Kurtosis
##      <dbl>
## 1    0.344

6 Plot: Rolling kurtosis

# Assign a value for window
window = 24

# Transform data: calculate 24 month rolling kurtosis
rolling_kurt_tbl <- portfolio_returns_tbl %>%
    
    tq_mutate(select     = returns,
              mutate_fun = rollapply,
              width      = window,
              FUN       = kurtosis,
              col_rename = "kurt") %>%
    
    na.omit() %>%
    select(-returns)

# Plot
rolling_kurt_tbl %>%
    
    ggplot(aes(x = date, y = kurt)) +
    geom_line(color = "cornflowerblue") +
    
    # Formatting
    scale_y_continuous(breaks = seq(-1, 4, 0.5)) +
    scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
    theme(plot.title = element_text(hjust = 0.5)) +
    
    # Labeling
    labs(x = NULL,
         y = "Kurtosis",
         title = paste0("Rolling ", window, " Month Kurtosis")) +
    
    annotate(geom = "text",
             x = as.Date("2016-07-01"), y = 3, 
             size = 5, color = "red",
             label = str_glue("Downside risk skyrocketed 
                              toward the end of 2017"))

Has the downside risk of your portfolio increased or decreased over time? Explain using the plot you created. You may also refer to the skewness of the returns distribution you plotted in the previous assignment.

The downside risk of the portfolio increased over time, as indicated by the rising rolling kurtosis values approaching and surpassing 3. This suggests a growing likelihood of large, negative returns, especially in late 2017, supported further by likely negative skewness in the distribution of returns.