# Load packages

# Core
library(tidyverse)
library(tidyquant)
simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
  simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))

  simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x * y)) %>%
    select(growth)

  return(simulated_growth)
}

1 Import stock prices

Revise the code below.

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

Revise the code for weights.

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899138
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347491

6 Simulation function

No need

7 Running multiple simulations

# Create a vector of 1s as starting point
sims <- 100
starts <- rep (100, sims) %>%
    set_names(paste0("sim", 1:sims))
starts
##   sim1   sim2   sim3   sim4   sim5   sim6   sim7   sim8   sim9  sim10  sim11 
##    100    100    100    100    100    100    100    100    100    100    100 
##  sim12  sim13  sim14  sim15  sim16  sim17  sim18  sim19  sim20  sim21  sim22 
##    100    100    100    100    100    100    100    100    100    100    100 
##  sim23  sim24  sim25  sim26  sim27  sim28  sim29  sim30  sim31  sim32  sim33 
##    100    100    100    100    100    100    100    100    100    100    100 
##  sim34  sim35  sim36  sim37  sim38  sim39  sim40  sim41  sim42  sim43  sim44 
##    100    100    100    100    100    100    100    100    100    100    100 
##  sim45  sim46  sim47  sim48  sim49  sim50  sim51  sim52  sim53  sim54  sim55 
##    100    100    100    100    100    100    100    100    100    100    100 
##  sim56  sim57  sim58  sim59  sim60  sim61  sim62  sim63  sim64  sim65  sim66 
##    100    100    100    100    100    100    100    100    100    100    100 
##  sim67  sim68  sim69  sim70  sim71  sim72  sim73  sim74  sim75  sim76  sim77 
##    100    100    100    100    100    100    100    100    100    100    100 
##  sim78  sim79  sim80  sim81  sim82  sim83  sim84  sim85  sim86  sim87  sim88 
##    100    100    100    100    100    100    100    100    100    100    100 
##  sim89  sim90  sim91  sim92  sim93  sim94  sim95  sim96  sim97  sim98  sim99 
##    100    100    100    100    100    100    100    100    100    100    100 
## sim100 
##    100
# Simulate
# for reproducible research
set.seed (800)
monte_carlo_sim_51 <- starts %>%
    # Simulate 
    map_dfc (.x = .,
             .f = ~simulate_accumulation (initial_value = .x, N = 240, mean_return = mean_port_return, sd_return = stddev_port_return)) %>%
    
    # Add column month
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>%
    
    # Rearrange column names
    set_names(c("month", names(starts))) %>%
    
    # Transform to long form
    pivot_longer(cols= -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 24,100 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1     100
##  2     1 sim2     100
##  3     1 sim3     100
##  4     1 sim4     100
##  5     1 sim5     100
##  6     1 sim6     100
##  7     1 sim7     100
##  8     1 sim8     100
##  9     1 sim9     100
## 10     1 sim10    100
## # ℹ 24,090 more rows
# Find quantiles
monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
ungroup() %>%
    pull(growth) %>%

quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
            round(2) 
##     0%    25%    50%    75%   100% 
## 139.14 305.22 387.88 470.84 883.98

## 8 Visualizing simulations with ggplot
Line Plot of Simulations with Max, Median, and Min


``` r
monte_carlo_sim_51 %>%
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(plot.subtitle = element_text(hjust = 0.5)) +

labs(title = "Simulations growth of $100 over 240 months",
     subtitle = "Maximum, Median, and Minimum Simulation")

Based on the Monte Carlo simulation results, how much should you expect from your $100 investment after 20 years? What is the best-case scenario? What is the worst-case scenario? What are limitations of this simulation analysis? The best case scenario is around $600 or more while the worst case scenario is $100 or less which means our investment didn’t grow or actually costed you money. Limitations include a flat or standard distribution which does not mimic the real world’s risk and extremes.