# Load packages
# Core
library(tidyverse)
library(tidyquant)
# time series
library(timetk)
Simulate future portfolio returns
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
market: “SPY”
from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AGG 0.25
## 2 EEM 0.25
## 3 EFA 0.2
## 4 IJS 0.2
## 5 SPY 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0204
## 2 2013-02-28 -0.00239
## 3 2013-03-28 0.0121
## 4 2013-04-30 0.0174
## 5 2013-05-31 -0.0128
## 6 2013-06-28 -0.0247
## 7 2013-07-31 0.0321
## 8 2013-08-30 -0.0224
## 9 2013-09-30 0.0511
## 10 2013-10-31 0.0301
## # ℹ 50 more rows
# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899134
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.0234749
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
## [1] 6.825768e-03 9.854920e-03 2.072346e-02 -1.467464e-02 -3.002450e-02
## [6] 3.023531e-05 3.127915e-02 2.889491e-02 -2.136358e-02 2.242999e-02
## [11] -2.959604e-02 -2.238466e-03 9.140345e-03 3.750546e-02 1.612748e-02
## [16] 1.491106e-02 -1.993089e-02 4.202779e-02 6.411801e-03 2.981541e-02
## [21] 3.709379e-02 9.360552e-03 1.298900e-02 -9.622453e-03 -4.889915e-03
## [26] -1.159919e-02 3.927423e-02 5.308225e-02 1.499218e-02 3.762121e-02
## [31] 1.398191e-02 5.605343e-02 6.488169e-03 5.405083e-02 1.844223e-03
## [36] 6.093367e-04 -1.518309e-02 -1.293182e-02 -1.665222e-02 -4.109794e-03
## [41] -1.960655e-02 3.894946e-02 1.283113e-03 1.991746e-03 4.325887e-02
## [46] 7.550416e-03 4.556532e-03 7.877773e-03 9.954413e-03 -7.367660e-03
## [51] 2.712971e-02 9.027330e-03 5.019586e-03 4.612523e-02 -1.389103e-02
## [56] 1.180359e-02 -1.311299e-02 -1.806112e-03 8.096652e-04 9.881070e-03
## [61] -1.667421e-04 5.251906e-02 1.105461e-02 1.850156e-02 4.629379e-03
## [66] 1.387873e-02 -1.133880e-02 5.133948e-03 -4.593598e-02 2.475193e-02
## [71] -4.323028e-03 4.313542e-02 -8.304947e-03 -1.709583e-02 1.683244e-02
## [76] 2.545439e-02 -2.283921e-02 7.428997e-03 2.940410e-02 4.498954e-02
## [81] 1.356693e-02 4.834783e-04 1.727799e-02 5.334797e-03 2.106281e-02
## [86] -1.406096e-02 -1.485845e-02 -1.460488e-02 1.031339e-02 1.899076e-02
## [91] 1.436955e-03 -4.037037e-03 1.085777e-02 -3.420728e-03 -1.650030e-02
## [96] 7.262663e-03 4.376328e-03 -5.240517e-02 3.222013e-02 -4.787796e-03
## [101] -2.021986e-03 -2.011773e-02 4.434024e-02 -2.231658e-02 1.042503e-02
## [106] -2.438676e-02 -2.720467e-02 -2.275188e-02 2.469824e-02 1.190713e-02
## [111] 3.570253e-02 -3.558479e-02 4.377370e-04 1.714464e-02 2.498478e-02
## [116] 9.250028e-03 4.387761e-03 -4.294917e-02 2.453288e-02 -3.551089e-03
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
## returns
## <dbl>
## 1 1
## 2 1.01
## 3 1.01
## 4 1.02
## 5 0.985
## 6 0.970
## 7 1.00
## 8 1.03
## 9 1.03
## 10 0.979
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
select(growth)
simulated_growth
## # A tibble: 121 × 1
## growth
## <dbl>
## 1 1
## 2 1.01
## 3 1.02
## 4 1.04
## 5 1.02
## 6 0.992
## 7 0.992
## 8 1.02
## 9 1.05
## 10 1.03
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 8.021939
simulate_accumulation <- function(initial_value,N, mean_return, sd_return) {
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return )))
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
select(growth)
return(simulated_growth)
}
simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
tail()
## # A tibble: 6 × 1
## growth
## <dbl>
## 1 314.
## 2 315.
## 3 319.
## 4 320.
## 5 323.
## 6 320.
if (!dir.exists("../00_scripts"))
dir.create("../00_scripts", recursive = TRUE)
dump (list = c("simulate_accumulation"),
file = "../00_scripts/simulate_accumulation")
# Create a vector of 1s as starting point
sims <- 100
starts <- rep (1, sims) %>%
set_names(paste0("sim", 1:sims))
starts
## sim1 sim2 sim3 sim4 sim5 sim6 sim7 sim8 sim9 sim10 sim11
## 1 1 1 1 1 1 1 1 1 1 1
## sim12 sim13 sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22
## 1 1 1 1 1 1 1 1 1 1 1
## sim23 sim24 sim25 sim26 sim27 sim28 sim29 sim30 sim31 sim32 sim33
## 1 1 1 1 1 1 1 1 1 1 1
## sim34 sim35 sim36 sim37 sim38 sim39 sim40 sim41 sim42 sim43 sim44
## 1 1 1 1 1 1 1 1 1 1 1
## sim45 sim46 sim47 sim48 sim49 sim50 sim51 sim52 sim53 sim54 sim55
## 1 1 1 1 1 1 1 1 1 1 1
## sim56 sim57 sim58 sim59 sim60 sim61 sim62 sim63 sim64 sim65 sim66
## 1 1 1 1 1 1 1 1 1 1 1
## sim67 sim68 sim69 sim70 sim71 sim72 sim73 sim74 sim75 sim76 sim77
## 1 1 1 1 1 1 1 1 1 1 1
## sim78 sim79 sim80 sim81 sim82 sim83 sim84 sim85 sim86 sim87 sim88
## 1 1 1 1 1 1 1 1 1 1 1
## sim89 sim90 sim91 sim92 sim93 sim94 sim95 sim96 sim97 sim98 sim99
## 1 1 1 1 1 1 1 1 1 1 1
## sim100
## 1
# Simulate
# for reproducible research
set.seed (800)
monte_carlo_sim_51 <- starts %>%
# Simulate
map_dfc (.x = .,
.f = ~simulate_accumulation (initial_value = .x, N = 120, mean_return = mean_port_return, sd_return = stddev_port_return)) %>%
# Add column month
mutate(month = 1:nrow(.)) %>%
select(month, everything()) %>%
# Rearrange column names
set_names(c("month", names(starts))) %>%
# Transform to long form
pivot_longer(cols= -month, names_to = "sim", values_to = "growth")
monte_carlo_sim_51
## # A tibble: 12,100 × 3
## month sim growth
## <int> <chr> <dbl>
## 1 1 sim1 1
## 2 1 sim2 1
## 3 1 sim3 1
## 4 1 sim4 1
## 5 1 sim5 1
## 6 1 sim6 1
## 7 1 sim7 1
## 8 1 sim8 1
## 9 1 sim9 1
## 10 1 sim10 1
## # ℹ 12,090 more rows
# Find quantiles
monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
pull(growth) %>%
quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
round(2)
## 0% 25% 50% 75% 100%
## 1.16 1.76 2.06 2.39 3.37
monte_carlo_sim_51 %>%
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5)) +
theme(plot.subtitle = element_text(hjust = 0.5)) +
labs(title = "Simulations growth of $1 over 120 months",
subtitle = "Maximum, Median, and Minimum Simulation")
#Line plot with max, median, and min
# Step 1 Summarize data into max, median, and min of last value
sim_summary <- monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
summarise(max = max(growth),
median = median(growth),
min= min(growth))
sim_summary
## # A tibble: 1 × 3
## max median min
## <dbl> <dbl> <dbl>
## 1 3.37 2.06 1.16
# Step 2 Plot
monte_carlo_sim_51 %>%
group_by(sim) %>%
filter(last(growth) == sim_summary$max |
last(growth) == sim_summary$median |
last(growth) == sim_summary$min) %>%
ungroup()
## # A tibble: 242 × 3
## month sim growth
## <int> <chr> <dbl>
## 1 1 sim59 1
## 2 1 sim66 1
## 3 2 sim59 0.992
## 4 2 sim66 0.980
## 5 3 sim59 1.03
## 6 3 sim66 1.01
## 7 4 sim59 1.06
## 8 4 sim66 1.05
## 9 5 sim59 1.07
## 10 5 sim66 1.05
## # ℹ 232 more rows