# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(dplyr)

# time series
library(timetk)

1 Import stock prices

Revise the code below.

symbols <- c("NVDA", "SHOP", "ASML", "META", "UPST")

prices <- tq_get(x = symbols, 
                 get  = "stock.prices", 
                 from = "2012-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

Revise the code for weights.

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "ASML" "META" "NVDA" "SHOP" "UPST"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 ASML       0.25
## 2 META       0.25
## 3 NVDA       0.2 
## 4 SHOP       0.2 
## 5 UPST       0.1

4 Build a portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 150 × 2
##    date         returns
##    <date>         <dbl>
##  1 2013-01-31  0.0764  
##  2 2013-02-28 -0.0385  
##  3 2013-03-28 -0.0239  
##  4 2013-04-30  0.0595  
##  5 2013-05-31  0.000255
##  6 2013-06-28 -0.00738 
##  7 2013-07-31  0.136   
##  8 2013-08-30  0.0259  
##  9 2013-09-30  0.0912  
## 10 2013-10-31 -0.0154  
## # ℹ 140 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.02357811
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.08123017

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
    
     # Add a dollar
    simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
    
    # Calculate the cumulative growth of a dollar
    simulated_growth <- simulated_returns_add_1 %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)
    
    return(simulated_growth)
    
}

simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = .01) %>%
    tail()
## # A tibble: 6 × 1
##   growth
##    <dbl>
## 1   245.
## 2   248.
## 3   246.
## 4   245.
## 5   244.
## 6   247.

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste0("sim", 1:sims))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# Simulate
monte_carlo_sim <- starts %>%
    
    # Simulate
    map_dfc(.x = .,
            .f = ~simulate_accumulation(initial_value = .x,
                                        N             = 120,
                                        mean_return   = mean_port_return,
                                        sd_return     = stddev_port_return)) %>%
    
    # Add column month
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>%
    
    # Rearrange column names
    set_names(c("month", names(starts))) %>%
    
    # Transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # ℹ 6,161 more rows
# find quantiles
monte_carlo_sim %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    
    quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
    round(2)
##    0%   25%   50%   75%  100% 
##  2.66  6.24 11.11 17.83 75.63

8 Visualizing simulations with ggplot

monte_carlo_sim %>%
    
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") + 
    theme(plot.title = element_text(hjust = 0.5)) +
    
    labs(title = "Simulating growth of $1 over 120 months")

Line plot with max, median, and min

# Step 1 Summarize data into max, median, and min of last value
sim_summary <- monte_carlo_sim %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    
    summarise(max    = max(growth),
              median = median(growth),
              min    = min(growth))

sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  75.6   11.1  2.66
# Step 2 Plot
monte_carlo_sim %>%
    
    # Filter for max, median, and min sim
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max | 
               last(growth) == sim_summary$median |
               last(growth) == sim_summary$min) %>%
    
    ungroup() %>% 
    
    #plot
     ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") + 
    theme(plot.title = element_text(hjust = 0.5)) + 
    theme(plot.subtitle = element_text(hjust = 0.5)) +
    
    labs(title = "Simulating growth of $1 over 120 months", 
         subtitle = "Maximum, Median, and Minimum Simulation") 

Based on the Monte Carlo simulation results, how much should you expect from your $100 investment after 20 years? What is the best-case scenario? What is the worst-case scenario? What are limitations of this simulation analysis?

Worst case I would make around a 0.1 dolar growth on average I would see around 12-15 returns, and max I would see around a 120 dollar return. The limitations to this are that it cannot predict what could happen to certain companys, and it also cannot predict what could happen to our economy. Like how the tarriffs which will be added soon may affect the stock market.