Import your data

data("mtcars")
mtcars <- as_tibble(mtcars)
data <- read_excel("../00_data/my data q&a.xlsx")
data
## # A tibble: 269,732 × 15
##       id name     sex   age   height weight team  noc   games  year season city 
##    <dbl> <chr>    <chr> <chr> <chr>  <chr>  <chr> <chr> <chr> <dbl> <chr>  <chr>
##  1     1 A Dijia… M     24    180    80     China CHN   1992…  1992 Summer Barc…
##  2     2 A Lamusi M     23    170    60     China CHN   2012…  2012 Summer Lond…
##  3     3 Gunnar … M     24    NA     NA     Denm… DEN   1920…  1920 Summer Antw…
##  4     4 Edgar L… M     34    NA     NA     Denm… DEN   1900…  1900 Summer Paris
##  5     5 Christi… F     21    185    82     Neth… NED   1988…  1988 Winter Calg…
##  6     5 Christi… F     21    185    82     Neth… NED   1988…  1988 Winter Calg…
##  7     5 Christi… F     25    185    82     Neth… NED   1992…  1992 Winter Albe…
##  8     5 Christi… F     25    185    82     Neth… NED   1992…  1992 Winter Albe…
##  9     5 Christi… F     27    185    82     Neth… NED   1994…  1994 Winter Lill…
## 10     5 Christi… F     27    185    82     Neth… NED   1994…  1994 Winter Lill…
## # ℹ 269,722 more rows
## # ℹ 3 more variables: sport <chr>, event <chr>, medal <chr>

Repeat the same operation over different columns of a data frame

Case of numeric variables

mtcars %>% map_dbl (.x= ., .f = ~mean(x = .x))
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
mtcars %>% map_dbl(.f= ~mean(x= .x))
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
mtcars %>% map_dbl(mean)
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
mtcars %>% map_dbl (.x= ., .f = ~mean(x = .x, trim = 0.1))
##         mpg         cyl        disp          hp        drat          wt 
##  19.6961538   6.2307692 222.5230769 141.1923077   3.5792308   3.1526923 
##        qsec          vs          am        gear        carb 
##  17.8276923   0.4230769   0.3846154   3.6153846   2.6538462
mtcars %>% map_dbl(mean, trim = 0.1)
##         mpg         cyl        disp          hp        drat          wt 
##  19.6961538   6.2307692 222.5230769 141.1923077   3.5792308   3.1526923 
##        qsec          vs          am        gear        carb 
##  17.8276923   0.4230769   0.3846154   3.6153846   2.6538462
mtcars %>% select(.data= ., mpg)
## # A tibble: 32 × 1
##      mpg
##    <dbl>
##  1  21  
##  2  21  
##  3  22.8
##  4  21.4
##  5  18.7
##  6  18.1
##  7  14.3
##  8  24.4
##  9  22.8
## 10  19.2
## # ℹ 22 more rows
mtcars %>% select(mpg)
## # A tibble: 32 × 1
##      mpg
##    <dbl>
##  1  21  
##  2  21  
##  3  22.8
##  4  21.4
##  5  18.7
##  6  18.1
##  7  14.3
##  8  24.4
##  9  22.8
## 10  19.2
## # ℹ 22 more rows

Create your own function

double_by_factor <- function(x,factor) {x * factor}
10 %>% double_by_factor(factor = 2)
## [1] 20
mtcars %>% map_dfr(.x = ., .f = ~ double_by_factor(x = .x, factor = 10))
## # A tibble: 32 × 11
##      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1   210    60  1600  1100  39    26.2  165.     0    10    40    40
##  2   210    60  1600  1100  39    28.8  170.     0    10    40    40
##  3   228    40  1080   930  38.5  23.2  186.    10    10    40    10
##  4   214    60  2580  1100  30.8  32.2  194.    10     0    30    10
##  5   187    80  3600  1750  31.5  34.4  170.     0     0    30    20
##  6   181    60  2250  1050  27.6  34.6  202.    10     0    30    10
##  7   143    80  3600  2450  32.1  35.7  158.     0     0    30    40
##  8   244    40  1467   620  36.9  31.9  200     10     0    40    20
##  9   228    40  1408   950  39.2  31.5  229     10     0    40    20
## 10   192    60  1676  1230  39.2  34.4  183     10     0    40    40
## # ℹ 22 more rows
mtcars %>% map_dfr (double_by_factor, factor = 10)
## # A tibble: 32 × 11
##      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1   210    60  1600  1100  39    26.2  165.     0    10    40    40
##  2   210    60  1600  1100  39    28.8  170.     0    10    40    40
##  3   228    40  1080   930  38.5  23.2  186.    10    10    40    10
##  4   214    60  2580  1100  30.8  32.2  194.    10     0    30    10
##  5   187    80  3600  1750  31.5  34.4  170.     0     0    30    20
##  6   181    60  2250  1050  27.6  34.6  202.    10     0    30    10
##  7   143    80  3600  2450  32.1  35.7  158.     0     0    30    40
##  8   244    40  1467   620  36.9  31.9  200     10     0    40    20
##  9   228    40  1408   950  39.2  31.5  229     10     0    40    20
## 10   192    60  1676  1230  39.2  34.4  183     10     0    40    40
## # ℹ 22 more rows

Repeat the same operation over different elements of a list

When you have a grouping variable (factor)

mtcars %>% lm(formula = mpg ~ wt, data = .)
## 
## Call:
## lm(formula = mpg ~ wt, data = .)
## 
## Coefficients:
## (Intercept)           wt  
##      37.285       -5.344
mtcars %>% distinct(cyl)
## # A tibble: 3 × 1
##     cyl
##   <dbl>
## 1     6
## 2     4
## 3     8
reg_coeff_tbl <- mtcars %>%
  split(.$cyl) %>%
  map(~ lm(mpg ~ wt, data = .x)) %>%
  map_df(broom::tidy, conf.int = TRUE, .id = "cyl") %>%
  filter(term == "wt")

reg_coeff_tbl   
## # A tibble: 3 × 8
##   cyl   term  estimate std.error statistic p.value conf.low conf.high
##   <chr> <chr>    <dbl>     <dbl>     <dbl>   <dbl>    <dbl>     <dbl>
## 1 4     wt       -5.65     1.85      -3.05  0.0137    -9.83    -1.46 
## 2 6     wt       -2.78     1.33      -2.08  0.0918    -6.21     0.651
## 3 8     wt       -2.19     0.739     -2.97  0.0118    -3.80    -0.582
reg_coeff_tbl %>%
  mutate(estimate = -estimate,
         conf.low = -conf.low,
         conf.high = -conf.high) %>%
  ggplot(aes(x = estimate, y = factor(cyl))) +
  geom_point() + 
  geom_errorbar(aes(xmin = conf.low, xmax = conf.high), width = 0.2) +
  labs(
    x = "Negative Coefficient Estimate for wt",
    y = "Cylinders",
    title = "Effect of Weight on MPG by Cylinder Count"
  ) +
  theme_minimal()

Create your own

Choose either one of the two cases above and apply it to your data

# Clean your data
olympics_clean <- data %>%
  filter(!is.na(weight), !is.na(height), !is.na(sport))

# Remove groups without enough variation
olympics_filtered <- olympics_clean %>%
  group_by(sport) %>%
  filter(n_distinct(height) > 1) %>%
  ungroup()

# Create a safe lm function that returns NULL on error
safe_lm <- possibly(~ lm(weight ~ height, data = .x), otherwise = NULL)

# Run regressions safely on each sport group
regression_results <- olympics_filtered %>%
  group_split(sport) %>%
  set_names(map_chr(., ~ unique(.x$sport))) %>%
  map(safe_lm)
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
## Warning in storage.mode(v) <- "double": NAs introduced by coercion
# Remove failed fits (NULL)
regression_results <- discard(regression_results, is.null)

# Tidy results
reg_tbl <- regression_results %>%
  map_df(broom::tidy, conf.int = TRUE, .id = "sport") %>%
  filter(term == "height")

# Plot the negative coefficient of height
reg_tbl %>%
  mutate(
    estimate = -estimate,
    conf.low = -conf.low,
    conf.high = -conf.high
  ) %>%
  ggplot(aes(x = estimate, y = reorder(sport, estimate))) +
  geom_point() +
  geom_errorbar(aes(xmin = conf.low, xmax = conf.high), width = 0.2) +
  labs(
    x = "Negative Coefficient of Height",
    y = "Sport",
    title = "Effect of Height on Weight by Sport"
  ) +
  theme_minimal()