# Load packages
# Core
library(tidyverse)
library(tidyquant)
# Source function
simulate_accumulation <- function(initial_value, n = 240, mu, sigma) {
tibble(returns = c(initial_value, 1 + rnorm(n, mu, sigma))) %>%
mutate(growth = accumulate(returns, function(x, y) x * y)) %>%
select(growth)
}
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = Sys.Date())
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AGG 0.25
## 2 EEM 0.25
## 3 EFA 0.2
## 4 IJS 0.2
## 5 SPY 0.1
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 150 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0204
## 2 2013-02-28 -0.00239
## 3 2013-03-28 0.0121
## 4 2013-04-30 0.0174
## 5 2013-05-31 -0.0128
## 6 2013-06-28 -0.0247
## 7 2013-07-31 0.0321
## 8 2013-08-30 -0.0224
## 9 2013-09-30 0.0511
## 10 2013-10-31 0.0301
## # ℹ 140 more rows
mu <- mean(portfolio_returns_tbl$returns)
sigma <- sd(portfolio_returns_tbl$returns)
mean_port_return <- mean(portfolio_returns_tbl$returns)
stddev_port_return <- sd(portfolio_returns_tbl$returns)
No need to write this; the function was loaded in step 1.
set.seed(1234)
sims <- 51
starts <- rep(100, sims) %>% set_names(paste0("sim", 1:sims))
monte_carlo_sim_51 <- map_dfc(.x = starts, .f = ~ simulate_accumulation(initial_value = .x, n = 240, mu = mean_port_return, sigma = stddev_port_return)) %>%
mutate(month = 0:240) %>%
select(month, everything()) %>%
pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
monte_carlo_sim_51 %>%
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line(show.legend = FALSE) +
labs(title = "Simulated $100 Growth Over 20 Years") +
theme(plot.title = element_text(hjust = 0.5))
sim_summary <- monte_carlo_sim_51 %>%
group_by(sim) %>%
summarize(growth = last(growth)) %>%
ungroup()
extremes <- monte_carlo_sim_51 %>%
group_by(sim) %>%
filter(last(growth) %in% c(max(sim_summary$growth), median(sim_summary$growth), min(sim_summary$growth))) %>%
ungroup()
extremes %>%
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
labs(title = "Simulations of $100 Growth Over 20 Years",
subtitle = "Max, Median, and Min Simulations") +
theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5))
monte_carlo_sim_51 %>%
group_by(sim) %>%
summarize(growth = last(growth)) %>%
pull(growth) %>%
quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
round(2)
## 0% 25% 50% 75% 100%
## 86.82 210.49 296.46 414.42 668.57
Based on the Monte Carlo simulation results, after 20 years, you should expect your $100 investment to grow to around the median outcome from the quantiles above. The best-case scenario is the maximum final growth, and the worst-case is the minimum value.
Limitations: - Simulated returns assume a normal distribution, which may not reflect real-world skewness or fat tails. - Returns are based on a bull market period (2012–2017), possibly overestimating future expectations. - Results vary with each run unless you set a fixed seed for reproducibility.