# Load packages
# Core
library(tidyverse)
library(tidyquant)
library(readr)
# Time series
library(lubridate)
# modeling
library(broom)
Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
asset_returns_wide_tbl <- asset_returns_tbl %>%
pivot_wider(names_from = asset, values_from = returns) %>%
column_to_rownames(var = "date")
covariance_matrix <- cov(asset_returns_wide_tbl)
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)
sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
round(3) %>%
as_tibble()
component_percentages_long <- component_percentages %>%
gather(key = "asset", value = "contribution")
component_percentages_long
## # A tibble: 5 × 2
## asset contribution
## <chr> <dbl>
## 1 AGG 0.017
## 2 EEM 0.394
## 3 EFA 0.248
## 4 IJS 0.242
## 5 SPY 0.099
calculate_component_contribution <- function(data, weights) {
cov_matrix <- cov(data)
sd_portfolio <- sqrt(t(weights) %*% cov_matrix %*% weights)
component_contribution <- (t(weights) %*% cov_matrix * weights) / sd_portfolio[1, 1]
component_percentages <- (component_contribution / sd_portfolio[1, 1]) %>%
round(3) %>%
as_tibble()
return(component_percentages)
}
component_tbl <- calculate_component_contribution(asset_returns_wide_tbl, w)
component_tbl
## # A tibble: 1 × 5
## AGG EEM EFA IJS SPY
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
plot_data <- component_tbl %>%
pivot_longer(cols = everything(),
names_to = "asset",
values_to = "contribution") %>%
mutate(weight = w)
plot_data_long <- plot_data %>%
pivot_longer(cols = c(contribution, weight),
names_to = "type",
values_to = "value")
plot_data_long %>%
ggplot(aes(x = asset, y = value, fill = type)) +
geom_col(position = "dodge") +
scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
labs(title = "Contribution to Portfolio Volatility vs. Portfolio Weights",
y = "Percent", x = NULL, fill = NULL) +
theme_tq() +
scale_fill_tq() +
theme(plot.title = element_text(hjust = 0.5))