# Load packages
# Core
library(tidyverse)
library(tidyquant)
library(dplyr)
# time series
library(timetk)
Simulate future portfolio returns
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
market: “SPY”
from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AGG 0.25
## 2 EEM 0.25
## 3 EFA 0.2
## 4 IJS 0.2
## 5 SPY 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0204
## 2 2013-02-28 -0.00239
## 3 2013-03-28 0.0121
## 4 2013-04-30 0.0174
## 5 2013-05-31 -0.0128
## 6 2013-06-28 -0.0247
## 7 2013-07-31 0.0321
## 8 2013-08-30 -0.0224
## 9 2013-09-30 0.0511
## 10 2013-10-31 0.0301
## # ℹ 50 more rows
# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899133
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347491
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
## [1] -3.076397e-02 3.152933e-02 2.393321e-02 -1.962732e-02 -2.761079e-02
## [6] 4.678188e-02 1.813594e-02 1.216246e-02 -3.885792e-03 -2.067830e-02
## [11] -9.547837e-04 1.809444e-02 2.876219e-02 -1.427328e-02 8.244803e-03
## [16] -1.178537e-02 7.791348e-03 8.369019e-03 -5.111791e-02 -3.949557e-03
## [21] -1.084272e-02 -8.456842e-03 3.272768e-02 1.253060e-02 9.563475e-03
## [26] 4.631880e-02 1.361707e-02 2.654646e-02 3.185823e-02 3.517543e-03
## [31] -1.337798e-02 -2.201266e-02 1.302965e-02 -1.759546e-02 -7.823509e-03
## [36] -1.656713e-02 3.045647e-02 -1.612960e-02 7.635043e-03 -2.651379e-03
## [41] -1.542201e-02 1.377799e-02 3.906753e-03 9.397531e-03 2.228463e-02
## [46] 2.954436e-03 2.916470e-02 2.405120e-02 -1.449479e-02 -4.820031e-04
## [51] 1.798133e-02 3.427138e-02 -4.232827e-03 7.327720e-02 4.471158e-02
## [56] -1.482138e-02 -6.471338e-03 -2.643909e-02 2.105410e-02 -1.156157e-02
## [61] 3.716436e-02 2.684170e-02 1.046275e-02 1.061535e-02 2.584926e-02
## [66] 1.754042e-02 -3.186320e-02 1.211679e-03 8.258635e-03 -1.536528e-03
## [71] -4.577619e-02 -9.891230e-03 -4.914170e-02 2.812236e-02 1.537167e-03
## [76] 3.695595e-02 2.161532e-02 2.291684e-02 3.345479e-02 3.617308e-02
## [81] 4.201477e-02 -8.683489e-03 4.644312e-02 -3.195431e-03 -1.377605e-02
## [86] 3.694438e-02 4.839229e-02 2.363368e-02 6.481770e-03 3.373192e-02
## [91] 1.761282e-02 3.502568e-02 -8.417773e-05 -2.237515e-02 2.668482e-02
## [96] 1.778810e-02 -1.499068e-02 9.134965e-03 -2.108577e-02 -3.837461e-03
## [101] -5.170336e-03 2.010616e-02 4.304179e-02 -1.675955e-02 3.606088e-02
## [106] 3.982913e-02 -8.437554e-03 3.507195e-02 -1.174583e-02 -3.575717e-02
## [111] 3.297079e-03 5.165722e-03 2.306231e-02 -3.951143e-02 3.907040e-02
## [116] 3.133349e-02 3.460749e-02 2.176807e-02 4.120226e-02 2.150006e-02
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
## returns
## <dbl>
## 1 1
## 2 0.969
## 3 1.03
## 4 1.02
## 5 0.980
## 6 0.972
## 7 1.05
## 8 1.02
## 9 1.01
## 10 0.996
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
select(growth)
simulated_growth
## # A tibble: 121 × 1
## growth
## <dbl>
## 1 1
## 2 0.969
## 3 1.00
## 4 1.02
## 5 1.00
## 6 0.976
## 7 1.02
## 8 1.04
## 9 1.05
## 10 1.05
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 10.63223
simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
select(growth)
return(simulated_growth)
}
simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = .01) %>%
tail()
## # A tibble: 6 × 1
## growth
## <dbl>
## 1 283.
## 2 284.
## 3 286.
## 4 288.
## 5 290.
## 6 292.
# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
set_names(paste0("sim", 1:sims))
starts
## sim1 sim2 sim3 sim4 sim5 sim6 sim7 sim8 sim9 sim10 sim11 sim12 sim13
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51
## 1 1 1 1 1 1 1 1 1 1 1 1
# Simulate
monte_carlo_sim_51 <- starts %>%
# Simulate
map_dfc(.x = .,
.f = ~simulate_accumulation(initial_value = .x,
N = 120,
mean_return = mean_port_return,
sd_return = stddev_port_return)) %>%
# Add column month
mutate(month = 1:nrow(.)) %>%
select(month, everything()) %>%
# Rearrange column names
set_names(c("month", names(starts))) %>%
# Transform to long form
pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
monte_carlo_sim_51
## # A tibble: 6,171 × 3
## month sim growth
## <int> <chr> <dbl>
## 1 1 sim1 1
## 2 1 sim2 1
## 3 1 sim3 1
## 4 1 sim4 1
## 5 1 sim5 1
## 6 1 sim6 1
## 7 1 sim7 1
## 8 1 sim8 1
## 9 1 sim9 1
## 10 1 sim10 1
## # ℹ 6,161 more rows
# find quantiles
monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
pull(growth) %>%
quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
round(2)
## 0% 25% 50% 75% 100%
## 1.03 1.59 1.97 2.36 3.85
monte_carlo_sim_51 %>%
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5)) +
labs(title = "Simulating growth of $1 over 120 months")