# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899135
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347491
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1]  0.0014113267  0.0205473641  0.0122582077  0.0272985212  0.0226674872
##   [6]  0.0079705309 -0.0473168376  0.0512617404  0.0049084374  0.0497020495
##  [11]  0.0183265169 -0.0125334877  0.0220259369  0.0201033638 -0.0036715950
##  [16]  0.0134146589  0.0026421533  0.0301157682  0.0006107447  0.0039786465
##  [21]  0.0305592699 -0.0247108922 -0.0026691814  0.0459715579  0.0133974933
##  [26] -0.0301510272  0.0340890378  0.0074549307 -0.0235651649 -0.0045577767
##  [31] -0.0313963778  0.0272050062  0.0035815494  0.0291541946 -0.0241554486
##  [36]  0.0183035606 -0.0303238350  0.0250044373  0.0173857414 -0.0337742374
##  [41] -0.0265401444  0.0393633339  0.0423237254 -0.0156617309  0.0064399085
##  [46]  0.0352548505 -0.0278953146  0.0483394477  0.0105746406 -0.0466200277
##  [51]  0.0191799739  0.0067242467 -0.0012080813 -0.0080865317  0.0153332772
##  [56] -0.0172155417 -0.0366513258  0.0392278256  0.0416894315 -0.0164324359
##  [61]  0.0244484317  0.0019793416  0.0208014708  0.0408845633 -0.0079323293
##  [66] -0.0269240873 -0.0129448850  0.0202906041 -0.0023145126  0.0504943184
##  [71] -0.0087364410 -0.0188559460  0.0047147420  0.0028703071  0.0496722067
##  [76]  0.0284963473 -0.0076544968 -0.0286014228 -0.0059332083  0.0207153221
##  [81]  0.0004393355  0.0552115953  0.0093142273  0.0260910255  0.0441780103
##  [86] -0.0068939606 -0.0130391422 -0.0081601741  0.0095324839  0.0389827046
##  [91]  0.0116788535  0.0228769163 -0.0293016914  0.0385632546  0.0099557217
##  [96]  0.0527374351 -0.0443575324  0.0173205142  0.0242232700 -0.0392051351
## [101]  0.0201618638 -0.0297374715 -0.0229670671 -0.0158000352  0.0277609740
## [106]  0.0021165035  0.0010825416 -0.0091921863  0.0043364952  0.0151618038
## [111] -0.0205102517 -0.0225871196  0.0203150681  0.0050438445  0.0270214534
## [116] -0.0214973204  0.0183635355 -0.0163034267  0.0138489520  0.0571984696
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   1.00 
##  3   1.02 
##  4   1.01 
##  5   1.03 
##  6   1.02 
##  7   1.01 
##  8   0.953
##  9   1.05 
## 10   1.00 
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1   1   
##  2   1.00
##  3   1.02
##  4   1.03
##  5   1.06
##  6   1.09
##  7   1.10
##  8   1.04
##  9   1.10
## 10   1.10
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 8.112106

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
    
    # Add a dollar
    simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))

    
    # Calculate the cumulative growth of a dollar
    simulated_growth <- simulated_returns_add_1 %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)
    
    return(simulated_growth)
    
}

simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
    tail()
## # A tibble: 6 × 1
##   growth
##    <dbl>
## 1   287.
## 2   292.
## 3   291.
## 4   291.
## 5   291.
## 6   296.
dump(list = c("simulate_accumulation"), 
     file = "../00_scripts/simulate_accumulation.R")

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 100
starts <- rep(1, sims) %>%
    set_names(paste0("sim", 1:sims))

starts
##   sim1   sim2   sim3   sim4   sim5   sim6   sim7   sim8   sim9  sim10  sim11 
##      1      1      1      1      1      1      1      1      1      1      1 
##  sim12  sim13  sim14  sim15  sim16  sim17  sim18  sim19  sim20  sim21  sim22 
##      1      1      1      1      1      1      1      1      1      1      1 
##  sim23  sim24  sim25  sim26  sim27  sim28  sim29  sim30  sim31  sim32  sim33 
##      1      1      1      1      1      1      1      1      1      1      1 
##  sim34  sim35  sim36  sim37  sim38  sim39  sim40  sim41  sim42  sim43  sim44 
##      1      1      1      1      1      1      1      1      1      1      1 
##  sim45  sim46  sim47  sim48  sim49  sim50  sim51  sim52  sim53  sim54  sim55 
##      1      1      1      1      1      1      1      1      1      1      1 
##  sim56  sim57  sim58  sim59  sim60  sim61  sim62  sim63  sim64  sim65  sim66 
##      1      1      1      1      1      1      1      1      1      1      1 
##  sim67  sim68  sim69  sim70  sim71  sim72  sim73  sim74  sim75  sim76  sim77 
##      1      1      1      1      1      1      1      1      1      1      1 
##  sim78  sim79  sim80  sim81  sim82  sim83  sim84  sim85  sim86  sim87  sim88 
##      1      1      1      1      1      1      1      1      1      1      1 
##  sim89  sim90  sim91  sim92  sim93  sim94  sim95  sim96  sim97  sim98  sim99 
##      1      1      1      1      1      1      1      1      1      1      1 
## sim100 
##      1
# Simulate
# for reporducible research
set.seed(1234)

monte_carlo_sim_51 <- starts %>%
    
    # Simulate
    map_dfc(.x = .,
            .f = ~simulate_accumulation(initial_value = .x,
                                        N = 120,
                                        mean_return = mean_port_return,
                                        sd_return = stddev_port_return)) %>%
    
    # Add column month
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>%
    
    # Rearrange column names
    set_names(c("month", names(starts))) %>%
    
    # Transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 12,100 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # ℹ 12,090 more rows
# Find quantiles
monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    
    quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
    round(2)
##   0%  25%  50%  75% 100% 
## 1.09 1.74 2.00 2.39 3.88

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>%
    
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    
    
    labs(title = "Simulating growth of $1 over 120 months")

Line plot with max, median, and min

# Step 1 Summarize data into max, median, and min of last value
sim_summary <- monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    
    summarise(max = max(growth),
              median = median(growth),
              min = min(growth))
sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  3.88   2.00  1.09
# Step 2 Plot
monte_carlo_sim_51 %>%
    
    # Filter for max, median, and min sim
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max |
               last(growth) == sim_summary$median |
               last(growth) == sim_summary$min) %>%
    ungroup %>%
    
    # Plot
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(plot.subtitle = element_text(hjust = 0.5)) +
    
    
    labs(title = "Simulating growth of $1 over 120 months",
         subtitle = "Maximum, Median, and Minimum Simulation")