# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899135
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347491
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1] -0.0277577670 -0.0036561254  0.0470982726  0.0412694438 -0.0170398359
##   [6] -0.0097384725  0.0205838545  0.0121001018  0.0233165810  0.0248059228
##  [11]  0.0328687945 -0.0529286250  0.0196938511  0.0151699067  0.0246581377
##  [16] -0.0072984349  0.0442845134 -0.0090916694  0.0281819502 -0.0241298041
##  [21] -0.0053637462  0.0280649047 -0.0014596571  0.0345717383  0.0040934937
##  [26] -0.0089786011  0.0166810767 -0.0087305635 -0.0157046545  0.0239231919
##  [31] -0.0101947560  0.0122836838  0.0381015508 -0.0120233818 -0.0054593007
##  [36]  0.0152369805  0.0364463010 -0.0171106427 -0.0310497665 -0.0302055731
##  [41] -0.0335748402 -0.0059198957  0.0099189538 -0.0054943982  0.0376477438
##  [46] -0.0044687841  0.0061536493  0.0192174127  0.0014120045  0.0133721370
##  [51]  0.0409273360 -0.0156444595  0.0551534783  0.0174695938 -0.0207072970
##  [56] -0.0232620917 -0.0022224569  0.0060136198  0.0029793611 -0.0055181313
##  [61]  0.0301535033 -0.0362272291  0.0030066903  0.0246744488 -0.0218336232
##  [66]  0.0106295354 -0.0173786274  0.0367863028  0.0042597730 -0.0384967884
##  [71]  0.0131770656 -0.0268339064 -0.0206708372 -0.0227046324  0.0477858239
##  [76] -0.0055893517 -0.0314533528 -0.0196589746 -0.0039050317 -0.0078407919
##  [81]  0.0659306191 -0.0344732602 -0.0129542072 -0.0082038859 -0.0186770317
##  [86] -0.0018375953  0.0103237361  0.0034353059  0.0651073020 -0.0255591229
##  [91] -0.0002582090 -0.0179452508 -0.0289721925  0.0155020836  0.0005281257
##  [96] -0.0387081019  0.0101778004 -0.0113835461  0.0147253997  0.0174610503
## [101]  0.0326383708  0.0309791034 -0.0322884480  0.0157015175  0.0228593499
## [106] -0.0354509359  0.0337154487  0.0605706418  0.0387333756  0.0093887395
## [111]  0.0368431015 -0.0014876352  0.0079658841 -0.0321042360  0.0177030094
## [116]  0.0316159424  0.0007431758  0.0311994028 -0.0182033097 -0.0034877931
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   0.972
##  3   0.996
##  4   1.05 
##  5   1.04 
##  6   0.983
##  7   0.990
##  8   1.02 
##  9   1.01 
## 10   1.02 
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1  1    
##  2  0.972
##  3  0.969
##  4  1.01 
##  5  1.06 
##  6  1.04 
##  7  1.03 
##  8  1.05 
##  9  1.06 
## 10  1.09 
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 4.816278

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return) { 
    
        # Add a dollar
        simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return,  sd_return)))
        
        # Calculate the cumulative growth of a dollar
        simulated_growth <- simulated_returns_add_1 %>%
            mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
            select(growth)
        
        return(simulated_growth) 
}

simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>% tail
## # A tibble: 6 × 1
##   growth
##    <dbl>
## 1   414.
## 2   415.
## 3   422.
## 4   421.
## 5   415.
## 6   416.
dump(list = c("simulate_accumulation"), 
     file = "../00_scripts/simulate_accumulation.R")

7 Running multiple simulations

# Create a vector of 1s as a starting point 

sims <- 51 
starts <- rep(1, sims) %>% 
    set_names(paste0("sim", 1:sims)) 

starts 
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# Simulate
# For reproducible research
set.seed(1234)

monte_carlo_sim_51 <- starts %>%
    
    # Simulate
    map_dfc(.x = .,
            .f = ~simulate_accumulation(initial_value = .x, 
                                        N             = 120, 
                                        mean_return   = mean_port_return, 
                                        sd_return     = stddev_port_return)) %>%
    
    # Add a column month
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>%
    
    # Rearrange column names
    set_names(c("month", names(starts))) %>%
    
    # Transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # ℹ 6,161 more rows
# Find quantiles
monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    
    quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
    round(2)
##   0%  25%  50%  75% 100% 
## 1.17 1.59 1.98 2.40 3.88

8 Visualizing simulations with ggplot

Line plot of simulations

monte_carlo_sim_51 %>%
    
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +

    labs(title = "Simulating growth of $1 over 120 Months")

Line plot with max, median and min

# Step 1 Summarize data into max, median, min of last value
sim_summary <- monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%

    summarise(max    = max(growth), 
              median = median(growth), 
              min    = min(growth))
sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  3.88   1.98  1.17
# Step 2 Plot
monte_carlo_sim_51 %>%
    
    # Filter for max, median, min sim
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max |
               last(growth) == sim_summary$median |
               last(growth) == sim_summary$min) %>%

    ungroup() %>%
        
    # Plot
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
        
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(plot.subtitle = element_text(hjust = 0.5)) +

    labs(title = "Simulating growth of $1 over 120 months",
         subtitle = "Max, Median, Minimum Simulation")