# Load packages
# Core
library(tidyverse)
library(tidyquant)
library(readr)
# Time series
library(lubridate)
library(tibbletime)
# modeling
library(broom)
Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link
# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%
pivot_wider(names_from = asset, values_from = returns) %>%
column_to_rownames(var = "date")
asset_returns_wide_tbl
## AGG EEM EFA IJS SPY
## 2013-01-31 -0.0062310127 -0.0029353724 0.0366062159 0.052133405 4.992290e-02
## 2013-02-28 0.0058909236 -0.0231052291 -0.0129694742 0.016176080 1.267851e-02
## 2013-03-28 0.0009849862 -0.0102348782 0.0129694742 0.040258003 3.726799e-02
## 2013-04-30 0.0096396833 0.0120847738 0.0489677107 0.001222213 1.903000e-02
## 2013-05-31 -0.0202144652 -0.0494836945 -0.0306558657 0.041976202 2.333515e-02
## 2013-06-28 -0.0157782185 -0.0547283441 -0.0271442523 -0.001402900 -1.343399e-02
## 2013-07-31 0.0026883996 0.0131595438 0.0518603956 0.063541408 5.038606e-02
## 2013-08-30 -0.0082987915 -0.0257053864 -0.0197463316 -0.034743459 -3.045152e-02
## 2013-09-30 0.0111436918 0.0695884074 0.0753384346 0.063873668 3.115571e-02
## 2013-10-31 0.0082922975 0.0408613118 0.0320817420 0.034234090 4.526678e-02
## 2013-11-29 -0.0025095286 -0.0025937260 0.0054496815 0.041661299 2.920699e-02
## 2013-12-31 -0.0055833272 -0.0040742390 0.0215280874 0.012892026 2.559638e-02
## 2014-01-31 0.0152913653 -0.0903226541 -0.0534133482 -0.035775432 -3.588483e-02
## 2014-02-28 0.0037571025 0.0332206685 0.0595051619 0.045257371 4.451038e-02
## 2014-03-31 -0.0014819218 0.0380214520 -0.0046027319 0.013315312 8.261560e-03
## 2014-04-30 0.0081832244 0.0077729115 0.0165291083 -0.023183945 6.927474e-03
## 2014-05-30 0.0117220770 0.0290909579 0.0158287577 0.006205135 2.294092e-02
## 2014-06-30 -0.0005755922 0.0237339449 0.0091653391 0.037718491 2.043445e-02
## 2014-07-31 -0.0025122236 0.0135556888 -0.0263799706 -0.052008949 -1.352880e-02
## 2014-08-29 0.0114305827 0.0279043913 0.0018005555 0.043657775 3.870520e-02
## 2014-09-30 -0.0061674635 -0.0808564459 -0.0395983796 -0.061260845 -1.389257e-02
## 2014-10-31 0.0105847559 0.0140964557 -0.0026546880 0.068874824 2.327805e-02
## 2014-11-28 0.0065480418 -0.0155415604 0.0006250839 0.004774074 2.710125e-02
## 2014-12-31 0.0014752619 -0.0404416386 -0.0407466475 0.025295378 -2.539994e-03
## 2015-01-30 0.0203153773 -0.0068959409 0.0062266203 -0.054627802 -3.007659e-02
## 2015-02-27 -0.0089880230 0.0431360242 0.0614504983 0.056914685 5.468183e-02
## 2015-03-31 0.0037396872 -0.0150858838 -0.0143887929 0.010156426 -1.583008e-02
## 2015-04-30 -0.0032324714 0.0662810527 0.0358165791 -0.018417906 9.785472e-03
## 2015-05-29 -0.0043839521 -0.0419106881 0.0019525558 0.007509829 1.277430e-02
## 2015-06-30 -0.0108250275 -0.0297469958 -0.0316788449 0.004171822 -2.052116e-02
## 2015-07-31 0.0085842584 -0.0651779537 0.0201146545 -0.027375566 2.233782e-02
## 2015-08-31 -0.0033637438 -0.0925123143 -0.0771524985 -0.047268350 -6.288675e-02
## 2015-09-30 0.0080816793 -0.0318250973 -0.0451948457 -0.038465003 -2.584741e-02
## 2015-10-30 0.0006852747 0.0618083429 0.0640259896 0.063590070 8.163547e-02
## 2015-11-30 -0.0038980278 -0.0255606118 -0.0075558951 0.024414827 3.648361e-03
## 2015-12-31 -0.0019195684 -0.0389469938 -0.0235951360 -0.052156782 -1.743378e-02
## 2016-01-29 0.0123304925 -0.0516366195 -0.0567578828 -0.060306791 -5.106845e-02
## 2016-02-29 0.0088320094 -0.0082116139 -0.0339137399 0.020605075 -8.264552e-04
## 2016-03-31 0.0087085763 0.1218788136 0.0637456621 0.089910487 6.510026e-02
## 2016-04-29 0.0025461030 0.0040793099 0.0219751028 0.021044352 3.933364e-03
## 2016-05-31 0.0001356102 -0.0376283931 -0.0008560850 0.004397241 1.686843e-02
## 2016-06-30 0.0191669289 0.0445823535 -0.0244916138 0.008292014 3.470080e-03
## 2016-07-29 0.0054293623 0.0524422915 0.0390002419 0.049348198 3.582157e-02
## 2016-08-31 -0.0021561487 0.0087984693 0.0053269298 0.011261234 1.197172e-03
## 2016-09-30 0.0005155028 0.0248726666 0.0132792461 0.008614844 5.786503e-05
## 2016-10-31 -0.0082047487 -0.0083121401 -0.0224039192 -0.038135010 -1.748905e-02
## 2016-11-30 -0.0259897784 -0.0451617582 -0.0179744018 0.125246485 3.617583e-02
## 2016-12-30 0.0025385314 -0.0025299833 0.0267027328 0.031491994 2.006917e-02
## 2017-01-31 0.0021253449 0.0644314792 0.0323819993 -0.012144060 1.773648e-02
## 2017-02-28 0.0064381687 0.0172575929 0.0118364324 0.013428485 3.853953e-02
## 2017-03-31 -0.0005527062 0.0361892156 0.0318055948 -0.006532867 1.249149e-03
## 2017-04-28 0.0090285668 0.0168662927 0.0239523331 0.005107676 9.877098e-03
## 2017-05-31 0.0068480133 0.0280601262 0.0348103694 -0.022862902 1.401446e-02
## 2017-06-30 -0.0001826657 0.0092235488 0.0029559257 0.029152343 6.354586e-03
## 2017-07-31 0.0033341488 0.0565946395 0.0261876618 0.007481476 2.034563e-02
## 2017-08-31 0.0093690505 0.0232438163 -0.0004482151 -0.027564703 2.913383e-03
## 2017-09-29 -0.0057321222 -0.0004464642 0.0233428833 0.082321696 1.994934e-02
## 2017-10-31 0.0009780565 0.0322787022 0.0166535816 0.005915939 2.329066e-02
## 2017-11-30 -0.0014842909 -0.0038970184 0.0068699622 0.036913431 3.010804e-02
## 2017-12-29 0.0047407165 0.0369254195 0.0133982085 -0.003731504 1.205518e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)
covariance_matrix
## AGG EEM EFA IJS SPY
## AGG 7.398448e-05 0.0001042107 4.178318e-05 -7.811969e-05 -9.030962e-06
## EEM 1.042107e-04 0.0017547061 1.039016e-03 6.437722e-04 6.795434e-04
## EFA 4.178318e-05 0.0010390159 1.064238e-03 6.490306e-04 6.975416e-04
## IJS -7.811969e-05 0.0006437722 6.490306e-04 1.565451e-03 8.290260e-04
## SPY -9.030962e-06 0.0006795434 6.975416e-04 8.290260e-04 7.408304e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)
sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
## [,1]
## [1,] 0.02347491
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
## AGG EEM EFA IJS SPY
## [1,] 0.0003874178 0.009257131 0.005815637 0.00568447 0.002330253
rowSums(component_contribution)
## [1] 0.02347491
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
round(3) %>%
as_tibble()
component_percentages
## # A tibble: 1 × 5
## AGG EEM EFA IJS SPY
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%
as_tibble() %>%
gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
## asset contribution
## <chr> <dbl>
## 1 AGG 0.017
## 2 EEM 0.394
## 3 EFA 0.248
## 4 IJS 0.242
## 5 SPY 0.099
# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%
pivot_wider(names_from = asset, values_from = returns) %>%
column_to_rownames(var = "date")
asset_returns_wide_tbl
## AGG EEM EFA IJS SPY
## 2013-01-31 -0.0062310127 -0.0029353724 0.0366062159 0.052133405 4.992290e-02
## 2013-02-28 0.0058909236 -0.0231052291 -0.0129694742 0.016176080 1.267851e-02
## 2013-03-28 0.0009849862 -0.0102348782 0.0129694742 0.040258003 3.726799e-02
## 2013-04-30 0.0096396833 0.0120847738 0.0489677107 0.001222213 1.903000e-02
## 2013-05-31 -0.0202144652 -0.0494836945 -0.0306558657 0.041976202 2.333515e-02
## 2013-06-28 -0.0157782185 -0.0547283441 -0.0271442523 -0.001402900 -1.343399e-02
## 2013-07-31 0.0026883996 0.0131595438 0.0518603956 0.063541408 5.038606e-02
## 2013-08-30 -0.0082987915 -0.0257053864 -0.0197463316 -0.034743459 -3.045152e-02
## 2013-09-30 0.0111436918 0.0695884074 0.0753384346 0.063873668 3.115571e-02
## 2013-10-31 0.0082922975 0.0408613118 0.0320817420 0.034234090 4.526678e-02
## 2013-11-29 -0.0025095286 -0.0025937260 0.0054496815 0.041661299 2.920699e-02
## 2013-12-31 -0.0055833272 -0.0040742390 0.0215280874 0.012892026 2.559638e-02
## 2014-01-31 0.0152913653 -0.0903226541 -0.0534133482 -0.035775432 -3.588483e-02
## 2014-02-28 0.0037571025 0.0332206685 0.0595051619 0.045257371 4.451038e-02
## 2014-03-31 -0.0014819218 0.0380214520 -0.0046027319 0.013315312 8.261560e-03
## 2014-04-30 0.0081832244 0.0077729115 0.0165291083 -0.023183945 6.927474e-03
## 2014-05-30 0.0117220770 0.0290909579 0.0158287577 0.006205135 2.294092e-02
## 2014-06-30 -0.0005755922 0.0237339449 0.0091653391 0.037718491 2.043445e-02
## 2014-07-31 -0.0025122236 0.0135556888 -0.0263799706 -0.052008949 -1.352880e-02
## 2014-08-29 0.0114305827 0.0279043913 0.0018005555 0.043657775 3.870520e-02
## 2014-09-30 -0.0061674635 -0.0808564459 -0.0395983796 -0.061260845 -1.389257e-02
## 2014-10-31 0.0105847559 0.0140964557 -0.0026546880 0.068874824 2.327805e-02
## 2014-11-28 0.0065480418 -0.0155415604 0.0006250839 0.004774074 2.710125e-02
## 2014-12-31 0.0014752619 -0.0404416386 -0.0407466475 0.025295378 -2.539994e-03
## 2015-01-30 0.0203153773 -0.0068959409 0.0062266203 -0.054627802 -3.007659e-02
## 2015-02-27 -0.0089880230 0.0431360242 0.0614504983 0.056914685 5.468183e-02
## 2015-03-31 0.0037396872 -0.0150858838 -0.0143887929 0.010156426 -1.583008e-02
## 2015-04-30 -0.0032324714 0.0662810527 0.0358165791 -0.018417906 9.785472e-03
## 2015-05-29 -0.0043839521 -0.0419106881 0.0019525558 0.007509829 1.277430e-02
## 2015-06-30 -0.0108250275 -0.0297469958 -0.0316788449 0.004171822 -2.052116e-02
## 2015-07-31 0.0085842584 -0.0651779537 0.0201146545 -0.027375566 2.233782e-02
## 2015-08-31 -0.0033637438 -0.0925123143 -0.0771524985 -0.047268350 -6.288675e-02
## 2015-09-30 0.0080816793 -0.0318250973 -0.0451948457 -0.038465003 -2.584741e-02
## 2015-10-30 0.0006852747 0.0618083429 0.0640259896 0.063590070 8.163547e-02
## 2015-11-30 -0.0038980278 -0.0255606118 -0.0075558951 0.024414827 3.648361e-03
## 2015-12-31 -0.0019195684 -0.0389469938 -0.0235951360 -0.052156782 -1.743378e-02
## 2016-01-29 0.0123304925 -0.0516366195 -0.0567578828 -0.060306791 -5.106845e-02
## 2016-02-29 0.0088320094 -0.0082116139 -0.0339137399 0.020605075 -8.264552e-04
## 2016-03-31 0.0087085763 0.1218788136 0.0637456621 0.089910487 6.510026e-02
## 2016-04-29 0.0025461030 0.0040793099 0.0219751028 0.021044352 3.933364e-03
## 2016-05-31 0.0001356102 -0.0376283931 -0.0008560850 0.004397241 1.686843e-02
## 2016-06-30 0.0191669289 0.0445823535 -0.0244916138 0.008292014 3.470080e-03
## 2016-07-29 0.0054293623 0.0524422915 0.0390002419 0.049348198 3.582157e-02
## 2016-08-31 -0.0021561487 0.0087984693 0.0053269298 0.011261234 1.197172e-03
## 2016-09-30 0.0005155028 0.0248726666 0.0132792461 0.008614844 5.786503e-05
## 2016-10-31 -0.0082047487 -0.0083121401 -0.0224039192 -0.038135010 -1.748905e-02
## 2016-11-30 -0.0259897784 -0.0451617582 -0.0179744018 0.125246485 3.617583e-02
## 2016-12-30 0.0025385314 -0.0025299833 0.0267027328 0.031491994 2.006917e-02
## 2017-01-31 0.0021253449 0.0644314792 0.0323819993 -0.012144060 1.773648e-02
## 2017-02-28 0.0064381687 0.0172575929 0.0118364324 0.013428485 3.853953e-02
## 2017-03-31 -0.0005527062 0.0361892156 0.0318055948 -0.006532867 1.249149e-03
## 2017-04-28 0.0090285668 0.0168662927 0.0239523331 0.005107676 9.877098e-03
## 2017-05-31 0.0068480133 0.0280601262 0.0348103694 -0.022862902 1.401446e-02
## 2017-06-30 -0.0001826657 0.0092235488 0.0029559257 0.029152343 6.354586e-03
## 2017-07-31 0.0033341488 0.0565946395 0.0261876618 0.007481476 2.034563e-02
## 2017-08-31 0.0093690505 0.0232438163 -0.0004482151 -0.027564703 2.913383e-03
## 2017-09-29 -0.0057321222 -0.0004464642 0.0233428833 0.082321696 1.994934e-02
## 2017-10-31 0.0009780565 0.0322787022 0.0166535816 0.005915939 2.329066e-02
## 2017-11-30 -0.0014842909 -0.0038970184 0.0068699622 0.036913431 3.010804e-02
## 2017-12-29 0.0047407165 0.0369254195 0.0133982085 -0.003731504 1.205518e-02
calculate_component_contribution <- function(.data, w) {
# Covariance of asset returns
covariance_matrix <- cov(.data)
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
round(3) %>%
as_tibble()
return(component_percentages)
}
asset_returns_wide_tbl %>% calculate_component_contribution(w = c(.25, .25, .2, .2, .1))
## # A tibble: 1 × 5
## AGG EEM EFA IJS SPY
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
plot_data <- asset_returns_wide_tbl %>%
calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
# Transform to long form
pivot_longer(cols = everything() ,names_to = "Asset", values_to = "Contribution")
plot_data %>%
ggplot(aes(x = Asset, y = Contribution)) +
geom_col(fill = "cornflowerblue") +
scale_y_continuous(labels = scales:: percent_format(accuracy = 1)) +
theme(plot.title = element_text(hjust = 0.5)) +
labs(title = "Percent Contribution to Portfolio Volatility")
plot_data <- asset_returns_wide_tbl %>%
calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
# Transform to long form
pivot_longer(cols = everything() ,names_to = "Asset", values_to = "Contribution") %>%
# Add weights
add_column(weight = c(.25, .25, .2, .2, .1)) %>%
# Transform to long
pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")
plot_data %>%
ggplot(aes(x = Asset, y = value, fill = type)) +
geom_col(position = "dodge") +
scale_y_continuous(labels = scales:: percent_format(accuracy = 1)) +
theme(plot.title = element_text(hjust = 0.5)) +
scale_fill_tq() +
theme_tq() +
labs(title = "Percent Contribution to Portfolio Volatility and Weight", y = "Percent",
x = NULL)