library(ChainLadder)
## Warning: package 'ChainLadder' was built under R version 4.3.3
## 
## Welcome to ChainLadder version 0.2.20
## 
## 
## To cite package 'ChainLadder' in publications use:
## 
##   Gesmann M, Murphy D, Zhang Y, Carrato A, Wuthrich M, Concina F, Dal
##   Moro E (2025). _ChainLadder: Statistical Methods and Models for
##   Claims Reserving in General Insurance_. R package version 0.2.20,
##   <https://CRAN.R-project.org/package=ChainLadder>.
## 
## To suppress this message use:
## suppressPackageStartupMessages(library(ChainLadder))
library(readxl)
data <- read_excel("D:/HK2_MHRRBH_TDP/r_2725.xlsx")
## New names:
## • `` -> `...1`
tri <- as.triangle(as.matrix(data))
dimnames(tri)=list(origin=1:nrow(tri), dev=1:ncol(tri))
units1 <- 1000
ylab1 <-  paste(units1)
title1 <- ""
plot(tri/units1, lattice=TRUE, ylab=ylab1, main=title1)

plot(tri/units1, ylab=ylab1, main=title1)

dim(tri)
## [1] 17 18
tri <- tri[, 2:17]
M <- MackChainLadder(tri, est.sigma="Mack")
M
## MackChainLadder(Triangle = tri, est.sigma = "Mack")
## 
##    Latest Dev.To.Date Ultimate     IBNR Mack.S.E CV(IBNR)
## 1  24,001       1.000   24,001     0.00     0.00      NaN
## 2  24,550       1.000   24,550     0.00     0.00      NaN
## 3  25,732       1.000   25,741     9.01     2.53    0.281
## 4  26,167       0.999   26,187    20.10    16.89    0.841
## 5  26,735       0.996   26,852   116.54   157.27    1.349
## 6  26,959       0.992   27,181   222.15   207.16    0.933
## 7  25,723       0.986   26,084   360.72   261.92    0.726
## 8  30,302       0.985   30,770   468.13   292.25    0.624
## 9  28,948       0.978   29,600   652.27   390.57    0.599
## 10 29,830       0.967   30,837 1,007.01   501.90    0.498
## 11 27,480       0.965   28,489 1,009.16   486.33    0.482
## 12 29,183       0.954   30,587 1,403.80   807.01    0.575
## 13 24,210       0.942   25,700 1,490.46   794.02    0.533
## 14 24,029       0.919   26,150 2,120.73 1,239.34    0.584
## 15 22,603       0.902   25,072 2,469.24 1,350.08    0.547
## 16 20,111       0.856   23,506 3,394.74 1,463.40    0.431
## 17 12,539       0.566   22,145 9,606.35 1,594.09    0.166
## 
##               Totals
## Latest:   429,102.00
## Dev:            0.95
## Ultimate: 453,452.39
## IBNR:      24,350.39
## Mack.S.E    3,817.86
## CV(IBNR):       0.16
plot(M)

plot(M, lattice=TRUE)

CDR(M)
##               IBNR  CDR(1)S.E.   Mack.S.E.
## 1         0.000000    0.000000    0.000000
## 2         0.000000    0.000000    0.000000
## 3         9.013145    2.530036    2.530036
## 4        20.096491   16.721116   16.892351
## 5       116.543797  156.395592  157.268485
## 6       222.147248  137.646352  207.155985
## 7       360.721404  171.173937  261.915348
## 8       468.126795   70.312710  292.249649
## 9       652.270932  271.623791  390.570914
## 10     1007.005144  310.030007  501.904517
## 11     1009.155632  104.665239  486.332479
## 12     1403.799022  632.580551  807.013544
## 13     1490.464164  315.021526  794.020254
## 14     2120.725025  948.846160 1239.340015
## 15     2469.239251  604.145133 1350.077556
## 16     3394.735373  671.295281 1463.398884
## 17     9606.345100  735.785256 1594.093764
## Total 24350.388522 2185.909760 3817.858242
round(CDR(M, dev="all"),0)
##        IBNR CDR(1)S.E. CDR(2)S.E. CDR(3)S.E. CDR(4)S.E. CDR(5)S.E. CDR(6)S.E.
## 1         0          0          0          0          0          0          0
## 2         0          0          0          0          0          0          0
## 3         9          3          0          0          0          0          0
## 4        20         17          2          0          0          0          0
## 5       117        156         16          2          0          0          0
## 6       222        138        154         16          2          0          0
## 7       361        171        131        148         15          2          0
## 8       468         70        185        142        161         17          2
## 9       652        272         62        178        137        156         16
## 10     1007        310        274         59        180        139        158
## 11     1009        105        293        260         53        171        131
## 12     1404        633        104        302        269         53        177
## 13     1490        315        572         88        273        243         45
## 14     2121        949        315        575         86        274        244
## 15     2469        604        925        305        561         82        267
## 16     3395        671        581        891        293        541         77
## 17     9606        736        648        561        862        283        523
## Total 24350       2186       1833       1558       1326        902        786
##       CDR(7)S.E. CDR(8)S.E. CDR(9)S.E. CDR(10)S.E. CDR(11)S.E. CDR(12)S.E.
## 1              0          0          0           0           0           0
## 2              0          0          0           0           0           0
## 3              0          0          0           0           0           0
## 4              0          0          0           0           0           0
## 5              0          0          0           0           0           0
## 6              0          0          0           0           0           0
## 7              0          0          0           0           0           0
## 8              0          0          0           0           0           0
## 9              2          0          0           0           0           0
## 10            17          2          0           0           0           0
## 11           150         16          2           0           0           0
## 12           136        156         16           2           0           0
## 13           160        123        141          15           2           0
## 14            44        161        124         142          15           2
## 15           238         42        156         120         139          15
## 16           257        229         40         151         116         134
## 17            73        249        222          38         146         112
## Total        526        477        367         270         245         180
##       CDR(13)S.E. CDR(14)S.E. CDR(15)S.E. CDR(16)S.E. Mack.S.E.
## 1               0           0           0           0         0
## 2               0           0           0           0         0
## 3               0           0           0           0         3
## 4               0           0           0           0        17
## 5               0           0           0           0       157
## 6               0           0           0           0       207
## 7               0           0           0           0       262
## 8               0           0           0           0       292
## 9               0           0           0           0       391
## 10              0           0           0           0       502
## 11              0           0           0           0       486
## 12              0           0           0           0       807
## 13              0           0           0           0       794
## 14              0           0           0           0      1239
## 15              2           0           0           0      1350
## 16             14           2           0           0      1463
## 17            129          14           2           0      1594
## Total         130          14           2           0      3818
# Áp dụng mô hình Mack Chain-Ladder
library(ChainLadder)

M <- MackChainLadder(tri, est.sigma = "Mack")

# In kết quả mô hình
M
## MackChainLadder(Triangle = tri, est.sigma = "Mack")
## 
##    Latest Dev.To.Date Ultimate     IBNR Mack.S.E CV(IBNR)
## 1  24,001       1.000   24,001     0.00     0.00      NaN
## 2  24,550       1.000   24,550     0.00     0.00      NaN
## 3  25,732       1.000   25,741     9.01     2.53    0.281
## 4  26,167       0.999   26,187    20.10    16.89    0.841
## 5  26,735       0.996   26,852   116.54   157.27    1.349
## 6  26,959       0.992   27,181   222.15   207.16    0.933
## 7  25,723       0.986   26,084   360.72   261.92    0.726
## 8  30,302       0.985   30,770   468.13   292.25    0.624
## 9  28,948       0.978   29,600   652.27   390.57    0.599
## 10 29,830       0.967   30,837 1,007.01   501.90    0.498
## 11 27,480       0.965   28,489 1,009.16   486.33    0.482
## 12 29,183       0.954   30,587 1,403.80   807.01    0.575
## 13 24,210       0.942   25,700 1,490.46   794.02    0.533
## 14 24,029       0.919   26,150 2,120.73 1,239.34    0.584
## 15 22,603       0.902   25,072 2,469.24 1,350.08    0.547
## 16 20,111       0.856   23,506 3,394.74 1,463.40    0.431
## 17 12,539       0.566   22,145 9,606.35 1,594.09    0.166
## 
##               Totals
## Latest:   429,102.00
## Dev:            0.95
## Ultimate: 453,452.39
## IBNR:      24,350.39
## Mack.S.E    3,817.86
## CV(IBNR):       0.16
# Xem rủi ro quy trình theo từng dòng (row) tại cột cuối
M$Mack.ProcessRisk[, ncol(tri)]
##           1           2           3           4           5           6 
##    0.000000    0.000000    2.045289   14.504982  139.645606  185.522298 
##           7           8           9          10          11          12 
##  238.262522  262.027257  358.221304  463.883900  452.297887  760.230659 
##          13          14          15          16          17 
##  756.302939 1189.278813 1299.664076 1414.254553 1545.854277
# Xem tổng rủi ro quy trình (process risk) tại cột cuối
M$Total.ProcessRisk[ncol(tri)]
##      17 
## 3061.19
# Xem rủi ro tham số (parameter risk) theo từng dòng tại cột cuối
M$Mack.ParameterRisk[, ncol(tri)]
##          1          2          3          4          5          6          7 
##   0.000000   0.000000   1.489253   8.657772  72.335891  92.168755 108.768654 
##          8          9         10         11         12         13         14 
## 129.427870 155.637838 191.624300 178.734163 270.777041 241.814034 348.682631 
##         15         16         17 
## 365.489666 376.058978 389.190802
# Xem tổng rủi ro tham số tại cột cuối
M$Total.ParameterRisk[ncol(tri)]
## [1] 2281.482
# Vẽ đồ thị trực quan hóa
plot(M)

plot(M, lattice = TRUE)

LS0tDQp0aXRsZTogIk5oaeG7h20gduG7pSBUdeG6p24gNSINCmF1dGhvcjogIlF14buzbmggSMawxqFuZyINCmRhdGU6ICJgciBmb3JtYXQoU3lzLnRpbWUoKSwgJyVIOiVNOiVTLCAlZCAtICVtIC0gJVknKWAiDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6DQogICAgY29kZV9mb2xkaW5nOiBoaWRlDQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KICAgIG51bWJlcl9zZWN0aW9uczogZmFsc2UgIA0KICAgIHRvYzogdHJ1ZQ0KICAgIHRvY19kZXB0aDogNQ0KICAgIHRvY19mbG9hdDoNCiAgICAgIGNvbGxhcHNlZDogdHJ1ZQ0KICAgICAgc21vb3RoX3Njcm9sbDogdHJ1ZQ0KICB3b3JkX2RvY3VtZW50Og0KICAgIHRvYzogdHJ1ZQ0KLS0tDQoNCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQ0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFKQ0KYGBgDQoNCg0KDQpgYGB7cn0NCg0KbGlicmFyeShDaGFpbkxhZGRlcikNCmxpYnJhcnkocmVhZHhsKQ0KZGF0YSA8LSByZWFkX2V4Y2VsKCJEOi9ISzJfTUhSUkJIX1REUC9yXzI3MjUueGxzeCIpDQpgYGANCg0KYGBge3J9DQp0cmkgPC0gYXMudHJpYW5nbGUoYXMubWF0cml4KGRhdGEpKQ0KYGBgDQoNCg0KYGBge3J9DQpkaW1uYW1lcyh0cmkpPWxpc3Qob3JpZ2luPTE6bnJvdyh0cmkpLCBkZXY9MTpuY29sKHRyaSkpDQpgYGANCg0KDQpgYGB7cn0NCnVuaXRzMSA8LSAxMDAwDQp5bGFiMSA8LSAgcGFzdGUodW5pdHMxKQ0KdGl0bGUxIDwtICIiDQpgYGANCg0KDQpgYGB7cn0NCnBsb3QodHJpL3VuaXRzMSwgbGF0dGljZT1UUlVFLCB5bGFiPXlsYWIxLCBtYWluPXRpdGxlMSkNCmBgYA0KDQoNCmBgYHtyfQ0KcGxvdCh0cmkvdW5pdHMxLCB5bGFiPXlsYWIxLCBtYWluPXRpdGxlMSkNCmBgYA0KDQoNCmBgYHtyfQ0KZGltKHRyaSkNCnRyaSA8LSB0cmlbLCAyOjE3XQ0KTSA8LSBNYWNrQ2hhaW5MYWRkZXIodHJpLCBlc3Quc2lnbWE9Ik1hY2siKQ0KTQ0KYGBgDQoNCg0KYGBge3J9DQpwbG90KE0pDQpgYGANCg0KDQpgYGB7cn0NCnBsb3QoTSwgbGF0dGljZT1UUlVFKQ0KYGBgDQoNCg0KYGBge3J9DQpDRFIoTSkNCnJvdW5kKENEUihNLCBkZXY9ImFsbCIpLDApDQoNCg0KYGBgDQoNCmBgYHtyfQ0KIyDDgXAgZOG7pW5nIG3DtCBow6xuaCBNYWNrIENoYWluLUxhZGRlcg0KbGlicmFyeShDaGFpbkxhZGRlcikNCg0KTSA8LSBNYWNrQ2hhaW5MYWRkZXIodHJpLCBlc3Quc2lnbWEgPSAiTWFjayIpDQoNCiMgSW4ga+G6v3QgcXXhuqMgbcO0IGjDrG5oDQpNDQoNCiMgWGVtIHLhu6dpIHJvIHF1eSB0csOsbmggdGhlbyB04burbmcgZMOybmcgKHJvdykgdOG6oWkgY+G7mXQgY3Xhu5FpDQpNJE1hY2suUHJvY2Vzc1Jpc2tbLCBuY29sKHRyaSldDQoNCiMgWGVtIHThu5VuZyBy4bunaSBybyBxdXkgdHLDrG5oIChwcm9jZXNzIHJpc2spIHThuqFpIGPhu5l0IGN14buRaQ0KTSRUb3RhbC5Qcm9jZXNzUmlza1tuY29sKHRyaSldDQoNCiMgWGVtIHLhu6dpIHJvIHRoYW0gc+G7kSAocGFyYW1ldGVyIHJpc2spIHRoZW8gdOG7q25nIGTDsm5nIHThuqFpIGPhu5l0IGN14buRaQ0KTSRNYWNrLlBhcmFtZXRlclJpc2tbLCBuY29sKHRyaSldDQoNCiMgWGVtIHThu5VuZyBy4bunaSBybyB0aGFtIHPhu5EgdOG6oWkgY+G7mXQgY3Xhu5FpDQpNJFRvdGFsLlBhcmFtZXRlclJpc2tbbmNvbCh0cmkpXQ0KDQojIFbhur0gxJHhu5MgdGjhu4sgdHLhu7FjIHF1YW4gaMOzYQ0KcGxvdChNKQ0KcGxvdChNLCBsYXR0aWNlID0gVFJVRSkNCmBgYA0KDQo=