# Model 1: Random Intercept Modelmodel1 <-lmer(distance ~ age + (1| Subject), data = ortho, REML =FALSE)summary(model1)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: distance ~ age + (1 | Subject)
Data: ortho
AIC BIC logLik -2*log(L) df.resid
451.4 462.1 -221.7 443.4 104
Scaled residuals:
Min 1Q Median 3Q Max
-3.6870 -0.5386 -0.0123 0.4910 3.7470
Random effects:
Groups Name Variance Std.Dev.
Subject (Intercept) 4.294 2.072
Residual 2.024 1.423
Number of obs: 108, groups: Subject, 27
Fixed effects:
Estimate Std. Error t value
(Intercept) 16.76111 0.79456 21.09
age 0.66019 0.06122 10.78
Correlation of Fixed Effects:
(Intr)
age -0.848
# Model 2: Random Slope Modelmodel2 <-lmer(distance ~ age + (age | Subject), data = ortho, REML =FALSE)summary(model2)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: distance ~ age + (age | Subject)
Data: ortho
AIC BIC logLik -2*log(L) df.resid
451.2 467.3 -219.6 439.2 102
Scaled residuals:
Min 1Q Median 3Q Max
-3.3060 -0.4874 0.0076 0.4822 3.9228
Random effects:
Groups Name Variance Std.Dev. Corr
Subject (Intercept) 4.81397 2.1941
age 0.04619 0.2149 -0.58
Residual 1.71623 1.3100
Number of obs: 108, groups: Subject, 27
Fixed effects:
Estimate Std. Error t value
(Intercept) 16.76111 0.76076 22.032
age 0.66019 0.06992 9.442
Correlation of Fixed Effects:
(Intr)
age -0.848
# Individual growth curvesggplot(ortho, aes(x = age, y = distance, group = Subject)) +geom_line(alpha =0.3) +geom_smooth(method ="lm", se =FALSE, color ="blue") +labs(title ="Growth of Dental Distance by Age",x ="Age (years)", y ="Distance (mm)")