Appearance = c(8, 8, 8, 9, 7, 9, 9, 7, 8, 9) 
Thickness = c(8, 8, 7, 7, 7, 8, 9, 8, 7, 9) 
Spredability= c(7, 9, 9, 9, 8, 8, 7, 8, 6, 7) 
data1 = cbind(Appearance, Thickness, Spredability) 
print(data1) 
Appearance = c(8, 8, 8, 9, 7, 9, 9, 7, 8, 9) 
Thickness = c(8, 8, 7, 7, 7, 8, 9, 8, 7, 9) 
Spredability= c(7, 9, 9, 9, 8, 8, 7, 8, 6, 7) 
data2 = data.frame(Appearance, Thickness, Spredability) 
print(data2)
data3 = data.frame(Appearance = c(8, 8, 8, 9, 7, 9, 9, 7, 8, 9),
                   Thickness = c(8, 8, 7, 7, 7, 8, 9, 8, 7, 9),
                   Spredability= c(7, 9, 9, 9, 8, 8, 7, 8, 6, 7))
print(data3)

{r}

A = c(8, 8, 8, 9, 7, 9, 9, 7, 8, 9) 
T= c(8, 8, 7, 7, 7, 8, 9, 8, 7, 9) 
S= c(7, 9, 9, 9, 8, 8, 7, 8, 6, 7) 
mean(A)
mean(T)
mean(S)
var(A)
var(T)
var(S)
cov(A,A)
cov(A,T)
cov(T,A)
data=cbind(A,T,S)
data
mean_vector=cbind(mean(A),mean(T),mean(S))
mean_vector
cov_matrix=cov(data)
cov_matrix
cor_matrix=cor(data)
cor_matrix

download ข้อมูล https://github.com/jgscott/STA380/blob/master/data/protein.csv

protein_data=read.csv(file.choose(), header=TRUE)
protein_data
head(protein_data) 
str(protein_data)
protein_data_nocountry=protein_data[-1]
protein_data_nocountry
summary(protein_data_nocountry)
cov(protein_data_nocountry)
cor(protein_data_nocountry)

TEST

ให้สร้างชุดข้อมูลที่ประกอบไปด้วยตัวแปร RedMeat WhiteMeat และ Eggs และคำนวณ ค่าเฉลี่ย ความแปรปรวรนของแต่ละตัวแปร เวกเตอร์ค่าเฉลี่ย และเมตริกซ์ตวามแปรปรวน

LS0tCnRpdGxlOiAiMjY1MjIxIExBQiAxIgpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazogZGVmYXVsdAogIHBkZl9kb2N1bWVudDogZGVmYXVsdAogIHdvcmRfZG9jdW1lbnQ6IGRlZmF1bHQKICBodG1sX2RvY3VtZW50OgogICAgZGZfcHJpbnQ6IHBhZ2VkCi0tLQoKYGBge3J9CkFwcGVhcmFuY2UgPSBjKDgsIDgsIDgsIDksIDcsIDksIDksIDcsIDgsIDkpIApUaGlja25lc3MgPSBjKDgsIDgsIDcsIDcsIDcsIDgsIDksIDgsIDcsIDkpIApTcHJlZGFiaWxpdHk9IGMoNywgOSwgOSwgOSwgOCwgOCwgNywgOCwgNiwgNykgCmRhdGExID0gY2JpbmQoQXBwZWFyYW5jZSwgVGhpY2tuZXNzLCBTcHJlZGFiaWxpdHkpIApwcmludChkYXRhMSkgCmBgYAoKYGBge3J9CkFwcGVhcmFuY2UgPSBjKDgsIDgsIDgsIDksIDcsIDksIDksIDcsIDgsIDkpIApUaGlja25lc3MgPSBjKDgsIDgsIDcsIDcsIDcsIDgsIDksIDgsIDcsIDkpIApTcHJlZGFiaWxpdHk9IGMoNywgOSwgOSwgOSwgOCwgOCwgNywgOCwgNiwgNykgCmRhdGEyID0gZGF0YS5mcmFtZShBcHBlYXJhbmNlLCBUaGlja25lc3MsIFNwcmVkYWJpbGl0eSkgCnByaW50KGRhdGEyKQpgYGAKCmBgYHtyfQpkYXRhMyA9IGRhdGEuZnJhbWUoQXBwZWFyYW5jZSA9IGMoOCwgOCwgOCwgOSwgNywgOSwgOSwgNywgOCwgOSksCiAgICAgICAgICAgICAgICAgICBUaGlja25lc3MgPSBjKDgsIDgsIDcsIDcsIDcsIDgsIDksIDgsIDcsIDkpLAogICAgICAgICAgICAgICAgICAgU3ByZWRhYmlsaXR5PSBjKDcsIDksIDksIDksIDgsIDgsIDcsIDgsIDYsIDcpKQpwcmludChkYXRhMykKYGBgCgp7cn0KCmBgYHtyfQpBID0gYyg4LCA4LCA4LCA5LCA3LCA5LCA5LCA3LCA4LCA5KSAKVD0gYyg4LCA4LCA3LCA3LCA3LCA4LCA5LCA4LCA3LCA5KSAKUz0gYyg3LCA5LCA5LCA5LCA4LCA4LCA3LCA4LCA2LCA3KSAKYGBgCgpgYGB7cn0KbWVhbihBKQpgYGAKCmBgYHtyfQptZWFuKFQpCmBgYAoKYGBge3J9Cm1lYW4oUykKYGBgCgpgYGB7cn0KdmFyKEEpCmBgYAoKYGBge3J9CnZhcihUKQpgYGAKCmBgYHtyfQp2YXIoUykKYGBgCgpgYGB7cn0KY292KEEsQSkKYGBgCgpgYGB7cn0KY292KEEsVCkKYGBgCgpgYGB7cn0KY292KFQsQSkKYGBgCgpgYGB7cn0KZGF0YT1jYmluZChBLFQsUykKZGF0YQpgYGAKCmBgYHtyfQptZWFuX3ZlY3Rvcj1jYmluZChtZWFuKEEpLG1lYW4oVCksbWVhbihTKSkKbWVhbl92ZWN0b3IKYGBgCgpgYGB7cn0KY292X21hdHJpeD1jb3YoZGF0YSkKY292X21hdHJpeApgYGAKCmBgYHtyfQpjb3JfbWF0cml4PWNvcihkYXRhKQpjb3JfbWF0cml4CmBgYAoKKipkb3dubG9hZCDguILguYnguK3guKHguLnguKUqKiA8aHR0cHM6Ly9naXRodWIuY29tL2pnc2NvdHQvU1RBMzgwL2Jsb2IvbWFzdGVyL2RhdGEvcHJvdGVpbi5jc3Y+CgpgYGB7cn0KcHJvdGVpbl9kYXRhPXJlYWQuY3N2KGZpbGUuY2hvb3NlKCksIGhlYWRlcj1UUlVFKQpgYGAKCmBgYHtyfQpwcm90ZWluX2RhdGEKYGBgCgpgYGB7cn0KaGVhZChwcm90ZWluX2RhdGEpIAoKYGBgCgpgYGB7cn0Kc3RyKHByb3RlaW5fZGF0YSkKYGBgCgpgYGB7cn0KcHJvdGVpbl9kYXRhX25vY291bnRyeT1wcm90ZWluX2RhdGFbLTFdCnByb3RlaW5fZGF0YV9ub2NvdW50cnkKYGBgCgpgYGB7cn0Kc3VtbWFyeShwcm90ZWluX2RhdGFfbm9jb3VudHJ5KQpgYGAKCmBgYHtyfQpjb3YocHJvdGVpbl9kYXRhX25vY291bnRyeSkKYGBgCgpgYGB7cn0KY29yKHByb3RlaW5fZGF0YV9ub2NvdW50cnkpCmBgYAoKIyBURVNUCgrguYPguKvguYnguKrguKPguYnguLLguIfguIrguLjguJTguILguYnguK3guKHguLnguKXguJfguLXguYjguJvguKPguLDguIHguK3guJrguYTguJvguJTguYnguKfguKLguJXguLHguKfguYHguJvguKMgUmVkTWVhdCBXaGl0ZU1lYXQg4LmB4Lil4LiwIEVnZ3Mg4LmB4Lil4Liw4LiE4Liz4LiZ4Lin4LiTIOC4hOC5iOC4suC5gOC4ieC4peC4teC5iOC4oiDguITguKfguLLguKHguYHguJvguKPguJvguKPguKfguKPguJnguILguK3guIfguYHguJXguYjguKXguLDguJXguLHguKfguYHguJvguKMg4LmA4Lin4LiB4LmA4LiV4Lit4Lij4LmM4LiE4LmI4Liy4LmA4LiJ4Lil4Li14LmI4LiiIOC5geC4peC4sOC5gOC4oeC4leC4o+C4tOC4geC4i+C5jOC4leC4p+C4suC4oeC5geC4m+C4o+C4m+C4o+C4p+C4mQo=