# Load packages
# Core
library(tidyverse)
library(tidyquant)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
from 2012-12-31 to present
symbols <- c("MSFT", "DPZ", "AAPL")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2020-12-31",
to = "2024-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "DPZ" "MSFT"
#weights
weights <- c(0.34, 0.33, 0.33)
weights
## [1] 0.34 0.33 0.33
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.34
## 2 DPZ 0.33
## 3 MSFT 0.33
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 48 × 2
## date returns
## <date> <dbl>
## 1 2021-01-29 0.000869
## 2 2021-02-26 -0.0492
## 3 2021-03-31 0.0278
## 4 2021-04-30 0.0928
## 5 2021-05-28 -0.0166
## 6 2021-06-30 0.0890
## 7 2021-07-30 0.0773
## 8 2021-08-31 0.0284
## 9 2021-09-30 -0.0725
## 10 2021-10-29 0.0812
## # ℹ 38 more rows
market_returns_tbl <- tq_get(x = "SPY",
get = "stock.prices",
from = "2020-12-31",
to = "2024-12-31") %>%
# Conver prices to returns
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
portfolio_market_returns_tbl <- left_join(market_returns_tbl,
portfolio_returns_tbl,
by = "date") %>%
set_names("date", "market_returns", "portfolio_returns")
portfolio_market_returns_tbl %>%
tq_performance(Ra = portfolio_returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 1.17
portfolio_market_returns_tbl %>%
ggplot(aes(x = market_returns,
y = portfolio_returns)) +
geom_point(color = "cornflowerblue") +
geom_smooth(method = "lm", se = FALSE,
size = 1.5, color =
tidyquant::palette_light()[3]) +
labs(y = "Portfolio Returns",
x = "Market Returns")
actual_fitted_long_tbl <- portfolio_market_returns_tbl %>%
# Linear Regression Model
lm(portfolio_returns ~ market_returns, data = .) %>%
# Get fitted and actual returns
broom::augment() %>%
# Add date
mutate(date = portfolio_market_returns_tbl$date) %>%
select(date, portfolio_returns, .fitted) %>%
# Transform data to long
pivot_longer(cols = c(portfolio_returns, .fitted),
names_to = "type",
values_to = "returns")
actual_fitted_long_tbl %>%
ggplot(aes(x = date, y = returns, color = type)) +
geom_line()
How sensitive is your portfolio to the market? Discuss in terms of the beta coefficient. Does the plot confirm the beta coefficient you calculated?
I would say that my portfolio is very sensitive to the market, in terms of the beta coefficient it is far more volatile than the market sitting at 1.17 and that is reflected in some locations throughout the graph. Across multiple points the portfolio drops strictly on its own whilst other times it is in line with the market.