# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062316770 -0.0029352585  0.0366063129  0.052133610  4.992301e-02
## 2013-02-28  0.0058913990 -0.0231055723 -0.0129692845  0.016175327  1.267769e-02
## 2013-03-28  0.0009851750 -0.0102351142  0.0129692845  0.040258016  3.726849e-02
## 2013-04-30  0.0096389334  0.0120847780  0.0489675324  0.001222623  1.902976e-02
## 2013-05-31 -0.0202138087 -0.0494833466 -0.0306556875  0.041976197  2.333527e-02
## 2013-06-28 -0.0157784109 -0.0547282154 -0.0271442523 -0.001402900 -1.343423e-02
## 2013-07-31  0.0026871430  0.0131597961  0.0518601267  0.063541402  5.038618e-02
## 2013-08-30 -0.0082969506 -0.0257057675 -0.0197461540 -0.034743647 -3.045141e-02
## 2013-09-30  0.0111434935  0.0695888937  0.0753387805  0.063873943  3.115672e-02
## 2013-10-31  0.0082913390  0.0408610589  0.0320814055  0.034233911  4.526600e-02
## 2013-11-29 -0.0025091469 -0.0025941934  0.0054497637  0.041661050  2.920668e-02
## 2013-12-31 -0.0055828469 -0.0040743575  0.0215280874  0.012892029  2.559629e-02
## 2014-01-31  0.0152909826 -0.0903222373 -0.0534135169 -0.035775271 -3.588463e-02
## 2014-02-28  0.0037571032  0.0332204176  0.0595052511  0.045257537  4.451058e-02
## 2014-03-31 -0.0014812591  0.0380213991 -0.0046026525  0.013315071  8.261361e-03
## 2014-04-30  0.0081827508  0.0077730322  0.0165295008 -0.023183867  6.927376e-03
## 2014-05-30  0.0117214271  0.0290910768  0.0158282878  0.006205217  2.294102e-02
## 2014-06-30 -0.0005754068  0.0237341703  0.0091657226  0.037718726  2.043454e-02
## 2014-07-31 -0.0025122248  0.0135553522 -0.0263801196 -0.052009515 -1.352822e-02
## 2014-08-29  0.0114312325  0.0279047188  0.0018006337  0.043657710  3.870454e-02
## 2014-09-30 -0.0061674624 -0.0808568967 -0.0395986967 -0.061260281 -1.389248e-02
## 2014-10-31  0.0105842956  0.0140965746 -0.0026546882  0.068874891  2.327777e-02
## 2014-11-28  0.0065484990 -0.0155412100  0.0006252476  0.004773526  2.710134e-02
## 2014-12-31  0.0014751707 -0.0404420568 -0.0407468997  0.025295995 -2.539817e-03
## 2015-01-30  0.0203156428 -0.0068956344  0.0062265367 -0.054627945 -3.007669e-02
## 2015-02-27 -0.0089885593  0.0431361369  0.0614507523  0.056914601  5.468192e-02
## 2015-03-31  0.0037404940 -0.0150866582 -0.0143887121  0.010156500 -1.583061e-02
## 2015-04-30 -0.0032330085  0.0662814793  0.0358165763 -0.018417597  9.786175e-03
## 2015-05-29 -0.0043840420 -0.0419110434  0.0019526334  0.007509901  1.277396e-02
## 2015-06-30 -0.0108254837 -0.0297466489 -0.0316790005  0.004171290 -2.052116e-02
## 2015-07-31  0.0085851669 -0.0651780903  0.0201145758 -0.027375722  2.233800e-02
## 2015-08-31 -0.0033640146 -0.0925121983 -0.0771525048 -0.047268195 -6.288702e-02
## 2015-09-30  0.0080814978 -0.0318250291 -0.0451948496 -0.038464748 -2.584694e-02
## 2015-10-30  0.0006851847  0.0618082105  0.0640260786  0.063589736  8.163485e-02
## 2015-11-30 -0.0038981185 -0.0255604067 -0.0075559791  0.024414906  3.648621e-03
## 2015-12-31 -0.0019186638 -0.0389471397 -0.0235949659 -0.052156537 -1.743361e-02
## 2016-01-29  0.0123295897 -0.0516366273 -0.0567578778 -0.060306862 -5.106891e-02
## 2016-02-29  0.0088318338 -0.0082114604 -0.0339140194  0.020605071 -8.259932e-04
## 2016-03-31  0.0087089307  0.1218789507  0.0637458506  0.089910239  6.510026e-02
## 2016-04-29  0.0025459278  0.0040793093  0.0219749298  0.021044354  3.933364e-03
## 2016-05-31  0.0001356103 -0.0376284587 -0.0008559986  0.004397014  1.686860e-02
## 2016-06-30  0.0191667604  0.0445822826 -0.0244916160  0.008292317  3.469826e-03
## 2016-07-29  0.0054297915  0.0524420342  0.0390006719  0.049348413  3.582173e-02
## 2016-08-31 -0.0021564055  0.0087985991  0.0053265037  0.011261020  1.197090e-03
## 2016-09-30  0.0005161021  0.0248731673  0.0132792472  0.008614633  5.753904e-05
## 2016-10-31 -0.0082055220 -0.0083124505 -0.0224037498 -0.038134872 -1.748872e-02
## 2016-11-30 -0.0259899647 -0.0451617553 -0.0179743131  0.125246300  3.617615e-02
## 2016-12-30  0.0025387095 -0.0025300489  0.0267026433  0.031492189  2.006908e-02
## 2017-01-31  0.0021261392  0.0644316642  0.0323819144 -0.012143997  1.773640e-02
## 2017-02-28  0.0064375526  0.0172576504  0.0118364324  0.013428485  3.853915e-02
## 2017-03-31 -0.0005527940  0.0361888562  0.0318056735 -0.006532741  1.249371e-03
## 2017-04-28  0.0090291772  0.0168664096  0.0239524080  0.005107800  9.876951e-03
## 2017-05-31  0.0068475795  0.0280600145  0.0348099190 -0.022862705  1.401439e-02
## 2017-06-30 -0.0001824931  0.0092237714  0.0029561485  0.029151773  6.354874e-03
## 2017-07-31  0.0033342345  0.0565943194  0.0261879520  0.007481354  2.034570e-02
## 2017-08-31  0.0093693045  0.0232439234 -0.0004483592 -0.027564836  2.913453e-03
## 2017-09-29 -0.0057321197 -0.0004462597  0.0233428816  0.082321843  1.994900e-02
## 2017-10-31  0.0009775424  0.0322787980  0.0166537190  0.005916172  2.329059e-02
## 2017-11-30 -0.0014839481 -0.0038973159  0.0068698920  0.036913096  3.010843e-02
## 2017-12-29  0.0047403740  0.0369256148  0.0133982067 -0.003731169  1.205499e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398355e-05 0.0001042095 4.178129e-05 -7.812104e-05 -9.032695e-06
## EEM  1.042095e-04 0.0017547092 1.039019e-03  6.437730e-04  6.795437e-04
## EFA  4.178129e-05 0.0010390185 1.064240e-03  6.490324e-04  6.975429e-04
## IJS -7.812104e-05 0.0006437730 6.490324e-04  1.565449e-03  8.290246e-04
## SPY -9.032695e-06 0.0006795437 6.975429e-04  8.290246e-04  7.408293e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347491
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS         SPY
## [1,] 0.0003874035 0.009257143 0.005815646 0.005684466 0.002330251
rowSums(component_contribution)
## [1] 0.02347491
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062316770 -0.0029352585  0.0366063129  0.052133610  4.992301e-02
## 2013-02-28  0.0058913990 -0.0231055723 -0.0129692845  0.016175327  1.267769e-02
## 2013-03-28  0.0009851750 -0.0102351142  0.0129692845  0.040258016  3.726849e-02
## 2013-04-30  0.0096389334  0.0120847780  0.0489675324  0.001222623  1.902976e-02
## 2013-05-31 -0.0202138087 -0.0494833466 -0.0306556875  0.041976197  2.333527e-02
## 2013-06-28 -0.0157784109 -0.0547282154 -0.0271442523 -0.001402900 -1.343423e-02
## 2013-07-31  0.0026871430  0.0131597961  0.0518601267  0.063541402  5.038618e-02
## 2013-08-30 -0.0082969506 -0.0257057675 -0.0197461540 -0.034743647 -3.045141e-02
## 2013-09-30  0.0111434935  0.0695888937  0.0753387805  0.063873943  3.115672e-02
## 2013-10-31  0.0082913390  0.0408610589  0.0320814055  0.034233911  4.526600e-02
## 2013-11-29 -0.0025091469 -0.0025941934  0.0054497637  0.041661050  2.920668e-02
## 2013-12-31 -0.0055828469 -0.0040743575  0.0215280874  0.012892029  2.559629e-02
## 2014-01-31  0.0152909826 -0.0903222373 -0.0534135169 -0.035775271 -3.588463e-02
## 2014-02-28  0.0037571032  0.0332204176  0.0595052511  0.045257537  4.451058e-02
## 2014-03-31 -0.0014812591  0.0380213991 -0.0046026525  0.013315071  8.261361e-03
## 2014-04-30  0.0081827508  0.0077730322  0.0165295008 -0.023183867  6.927376e-03
## 2014-05-30  0.0117214271  0.0290910768  0.0158282878  0.006205217  2.294102e-02
## 2014-06-30 -0.0005754068  0.0237341703  0.0091657226  0.037718726  2.043454e-02
## 2014-07-31 -0.0025122248  0.0135553522 -0.0263801196 -0.052009515 -1.352822e-02
## 2014-08-29  0.0114312325  0.0279047188  0.0018006337  0.043657710  3.870454e-02
## 2014-09-30 -0.0061674624 -0.0808568967 -0.0395986967 -0.061260281 -1.389248e-02
## 2014-10-31  0.0105842956  0.0140965746 -0.0026546882  0.068874891  2.327777e-02
## 2014-11-28  0.0065484990 -0.0155412100  0.0006252476  0.004773526  2.710134e-02
## 2014-12-31  0.0014751707 -0.0404420568 -0.0407468997  0.025295995 -2.539817e-03
## 2015-01-30  0.0203156428 -0.0068956344  0.0062265367 -0.054627945 -3.007669e-02
## 2015-02-27 -0.0089885593  0.0431361369  0.0614507523  0.056914601  5.468192e-02
## 2015-03-31  0.0037404940 -0.0150866582 -0.0143887121  0.010156500 -1.583061e-02
## 2015-04-30 -0.0032330085  0.0662814793  0.0358165763 -0.018417597  9.786175e-03
## 2015-05-29 -0.0043840420 -0.0419110434  0.0019526334  0.007509901  1.277396e-02
## 2015-06-30 -0.0108254837 -0.0297466489 -0.0316790005  0.004171290 -2.052116e-02
## 2015-07-31  0.0085851669 -0.0651780903  0.0201145758 -0.027375722  2.233800e-02
## 2015-08-31 -0.0033640146 -0.0925121983 -0.0771525048 -0.047268195 -6.288702e-02
## 2015-09-30  0.0080814978 -0.0318250291 -0.0451948496 -0.038464748 -2.584694e-02
## 2015-10-30  0.0006851847  0.0618082105  0.0640260786  0.063589736  8.163485e-02
## 2015-11-30 -0.0038981185 -0.0255604067 -0.0075559791  0.024414906  3.648621e-03
## 2015-12-31 -0.0019186638 -0.0389471397 -0.0235949659 -0.052156537 -1.743361e-02
## 2016-01-29  0.0123295897 -0.0516366273 -0.0567578778 -0.060306862 -5.106891e-02
## 2016-02-29  0.0088318338 -0.0082114604 -0.0339140194  0.020605071 -8.259932e-04
## 2016-03-31  0.0087089307  0.1218789507  0.0637458506  0.089910239  6.510026e-02
## 2016-04-29  0.0025459278  0.0040793093  0.0219749298  0.021044354  3.933364e-03
## 2016-05-31  0.0001356103 -0.0376284587 -0.0008559986  0.004397014  1.686860e-02
## 2016-06-30  0.0191667604  0.0445822826 -0.0244916160  0.008292317  3.469826e-03
## 2016-07-29  0.0054297915  0.0524420342  0.0390006719  0.049348413  3.582173e-02
## 2016-08-31 -0.0021564055  0.0087985991  0.0053265037  0.011261020  1.197090e-03
## 2016-09-30  0.0005161021  0.0248731673  0.0132792472  0.008614633  5.753904e-05
## 2016-10-31 -0.0082055220 -0.0083124505 -0.0224037498 -0.038134872 -1.748872e-02
## 2016-11-30 -0.0259899647 -0.0451617553 -0.0179743131  0.125246300  3.617615e-02
## 2016-12-30  0.0025387095 -0.0025300489  0.0267026433  0.031492189  2.006908e-02
## 2017-01-31  0.0021261392  0.0644316642  0.0323819144 -0.012143997  1.773640e-02
## 2017-02-28  0.0064375526  0.0172576504  0.0118364324  0.013428485  3.853915e-02
## 2017-03-31 -0.0005527940  0.0361888562  0.0318056735 -0.006532741  1.249371e-03
## 2017-04-28  0.0090291772  0.0168664096  0.0239524080  0.005107800  9.876951e-03
## 2017-05-31  0.0068475795  0.0280600145  0.0348099190 -0.022862705  1.401439e-02
## 2017-06-30 -0.0001824931  0.0092237714  0.0029561485  0.029151773  6.354874e-03
## 2017-07-31  0.0033342345  0.0565943194  0.0261879520  0.007481354  2.034570e-02
## 2017-08-31  0.0093693045  0.0232439234 -0.0004483592 -0.027564836  2.913453e-03
## 2017-09-29 -0.0057321197 -0.0004462597  0.0233428816  0.082321843  1.994900e-02
## 2017-10-31  0.0009775424  0.0322787980  0.0166537190  0.005916172  2.329059e-02
## 2017-11-30 -0.0014839481 -0.0038973159  0.0068698920  0.036913096  3.010843e-02
## 2017-12-29  0.0047403740  0.0369256148  0.0133982067 -0.003731169  1.205499e-02
calculate_component_contribution <- function(.data, w) {
    
    # Covariance of asset returns
        covariance_matrix <- cov(.data)
        
        # Standard deviation of portfolio
        # Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
        sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
        
        # Component contribution
        # Similar to the formula for sd_portfolio
        # Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
        component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
        
        # Component contribution in percentage
        component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
            round(3) %>%
            as_tibble()
        
        return(component_percentages)
}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c(0.25, 0.25, 0.2, .2, .1))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

Column Chart of Component Contribution

plot_data <- asset_returns_wide_tbl %>% 
    
    calculate_component_contribution(w = c(0.25, 0.25, 0.2, .2, .1)) %>%
    
    # Transfer to Long Form
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution")

plot_data %>%
    
    ggplot(aes(x = Asset, y = Contribution)) +
    geom_col(fill = "cornflowerblue") +
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    theme(plot.title = element_text(hjust = 0.5)) +
    
    labs(title = "Percent Contribution to Portfolio Volatility")

Column Chart of Component Contribution and Weight

plot_data <- asset_returns_wide_tbl %>% 
    
    calculate_component_contribution(w = c(0.25, 0.25, 0.2, .2, .1)) %>%
    
    # Transfer to Long Form
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") %>%
    
    # Add Weights
    add_column(weight = c(0.25, 0.25, 0.2, .2, .1)) %>%
    
    # Transform to Long
    pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")

plot_data %>%
    
    ggplot(aes(x = Asset, y = value, fill = type)) +
    geom_col(position = "dodge") +
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    scale_fill_tq() +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme_tq() +
    
    labs(title = "Percent Contribution to Portfolio Volatility and Weight",
         y = "Percent",
         x = NULL)

6 Rolling Component Contribution