# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062309780 -0.0029359391  0.0366064170  0.052133496  4.992333e-02
## 2013-02-28  0.0058910594 -0.0231051182 -0.0129690974  0.016175220  1.267800e-02
## 2013-03-28  0.0009848396 -0.0102348794  0.0129690974  0.040258225  3.726768e-02
## 2013-04-30  0.0096397122  0.0120847752  0.0489678087  0.001222520  1.903036e-02
## 2013-05-31 -0.0202144713 -0.0494837613 -0.0306556847  0.041976099  2.333538e-02
## 2013-06-28 -0.0157778893 -0.0547282900 -0.0271444386 -0.001402999 -1.343434e-02
## 2013-07-31  0.0026880528  0.0131598630  0.0518602211  0.063541691  5.038594e-02
## 2013-08-30 -0.0082982112 -0.0257057073 -0.0197461540 -0.034743739 -3.045152e-02
## 2013-09-30  0.0111440513  0.0695889632  0.0753385261  0.063874032  3.115639e-02
## 2013-10-31  0.0082917944  0.0408612364  0.0320815778  0.034233735  4.526623e-02
## 2013-11-29 -0.0025099692 -0.0025937251  0.0054498458  0.041661220  2.920658e-02
## 2013-12-31 -0.0055834047 -0.0040748251  0.0215280075  0.012892192  2.559609e-02
## 2014-01-31  0.0152918984 -0.0903225477 -0.0534134369 -0.035775347 -3.588433e-02
## 2014-02-28  0.0037568567  0.0332203617  0.0595051716  0.045257287  4.451079e-02
## 2014-03-31 -0.0014813266  0.0380220072 -0.0046025730  0.013315553  8.261360e-03
## 2014-04-30  0.0081829390  0.0077727917  0.0165293438 -0.023184595  6.927375e-03
## 2014-05-30  0.0117218559  0.0290910733  0.0158285221  0.006205789  2.294083e-02
## 2014-06-30 -0.0005758987  0.0237340549  0.0091651859  0.037718403  2.043492e-02
## 2014-07-31 -0.0025119498  0.0135553522 -0.0263796602 -0.052009354 -1.352860e-02
## 2014-08-29  0.0114306003  0.0279048269  0.0018005552  0.043657786  3.870472e-02
## 2014-09-30 -0.0061676342 -0.0808566531 -0.0395984549 -0.061260355 -1.389257e-02
## 2014-10-31  0.0105847103  0.0140962229 -0.0026548515  0.068874807  2.327796e-02
## 2014-11-28  0.0065485962 -0.0155409752  0.0006253294  0.004773526  2.710134e-02
## 2014-12-31  0.0014751205 -0.0404424750 -0.0407468111  0.025295843 -2.539638e-03
## 2015-01-30  0.0203152328 -0.0068955741  0.0062265356 -0.054627873 -3.007741e-02
## 2015-02-27 -0.0089881608  0.0431361421  0.0614505830  0.056914225  5.468211e-02
## 2015-03-31  0.0037406485 -0.0150863608 -0.0143888736  0.010156505 -1.583026e-02
## 2015-04-30 -0.0032331116  0.0662811877  0.0358168158 -0.018417222  9.785824e-03
## 2015-05-29 -0.0043835437 -0.0419108145  0.0019523999  0.007509750  1.277422e-02
## 2015-06-30 -0.0108256847 -0.0297466454 -0.0316786843  0.004171215 -2.052125e-02
## 2015-07-31  0.0085845377 -0.0651782106  0.0201145726 -0.027375185  2.233783e-02
## 2015-08-31 -0.0033636095 -0.0925122687 -0.0771526622 -0.047268673 -6.288657e-02
## 2015-09-30  0.0080813364 -0.0318248859 -0.0451946717 -0.038464588 -2.584731e-02
## 2015-10-30  0.0006852473  0.0618082745  0.0640258172  0.063589662  8.163486e-02
## 2015-11-30 -0.0038978987 -0.0255604733 -0.0075558116  0.024415376  3.648794e-03
## 2015-12-31 -0.0019193937 -0.0389472098 -0.0235952221 -0.052156847 -1.743370e-02
## 2016-01-29  0.0123301906 -0.0516366273 -0.0567577967 -0.060307123 -5.106863e-02
## 2016-02-29  0.0088317309 -0.0082115378 -0.0339139283  0.020605247 -8.260854e-04
## 2016-03-31  0.0087086873  0.1218791652  0.0637459390  0.089910558  6.510016e-02
## 2016-04-29  0.0025458689  0.0040789675  0.0219751008  0.021044120  3.933450e-03
## 2016-05-31  0.0001361215 -0.0376284665 -0.0008562580  0.004397090  1.686834e-02
## 2016-06-30  0.0191662834  0.0445824953 -0.0244914386  0.008292241  3.469995e-03
## 2016-07-29  0.0054297221  0.0524421628  0.0390001532  0.049348126  3.582189e-02
## 2016-08-31 -0.0021560140  0.0087982792  0.0053267601  0.011261306  1.196845e-03
## 2016-09-30  0.0005158236  0.0248733585  0.0132794996  0.008614703  5.770204e-05
## 2016-10-31 -0.0082049238 -0.0083121997 -0.0224039173 -0.038134943 -1.748905e-02
## 2016-11-30 -0.0259895998 -0.0451620062 -0.0179745747  0.125246429  3.617640e-02
## 2016-12-30  0.0025375818 -0.0025300489  0.0267030747  0.031491873  2.006900e-02
## 2017-01-31  0.0021262251  0.0644312942  0.0323817445 -0.012144378  1.773632e-02
## 2017-02-28  0.0064374617  0.0172579598  0.0118364324  0.013429115  3.853893e-02
## 2017-03-31 -0.0005523221  0.0361890338  0.0318058309 -0.006533117  1.249446e-03
## 2017-04-28  0.0090291777  0.0168661777  0.0239521738  0.005107677  9.877466e-03
## 2017-05-31  0.0068475925  0.0280599059  0.0348102184 -0.022862332  1.401410e-02
## 2017-06-30 -0.0001828897  0.0092241057  0.0029559999  0.029151837  6.354874e-03
## 2017-07-31  0.0033344468  0.0565945227  0.0261876618  0.007481292  2.034556e-02
## 2017-08-31  0.0093692730  0.0232437116 -0.0004482872 -0.027564901  2.913523e-03
## 2017-09-29 -0.0057327884 -0.0004461573  0.0233428145  0.082322086  1.994920e-02
## 2017-10-31  0.0009783606  0.0322782962  0.0166539996  0.005916055  2.329066e-02
## 2017-11-30 -0.0014841979 -0.0038970188  0.0068694787  0.036913208  3.010817e-02
## 2017-12-29  0.0047407582  0.0369255190  0.0133985507 -0.003731393  1.205499e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398409e-05 0.0001042101 4.178254e-05 -7.812137e-05 -9.032865e-06
## EEM  1.042101e-04 0.0017547116 1.039018e-03  6.437740e-04  6.795425e-04
## EFA  4.178254e-05 0.0010390184 1.064239e-03  6.490306e-04  6.975410e-04
## IJS -7.812137e-05 0.0006437740 6.490306e-04  1.565452e-03  8.290282e-04
## SPY -9.032865e-06 0.0006795425 6.975410e-04  8.290282e-04  7.408292e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347492
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS        SPY
## [1,] 0.0003874082 0.009257149 0.005815639 0.005684471 0.00233025
rowSums(component_contribution)
## [1] 0.02347492
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062309780 -0.0029359391  0.0366064170  0.052133496  4.992333e-02
## 2013-02-28  0.0058910594 -0.0231051182 -0.0129690974  0.016175220  1.267800e-02
## 2013-03-28  0.0009848396 -0.0102348794  0.0129690974  0.040258225  3.726768e-02
## 2013-04-30  0.0096397122  0.0120847752  0.0489678087  0.001222520  1.903036e-02
## 2013-05-31 -0.0202144713 -0.0494837613 -0.0306556847  0.041976099  2.333538e-02
## 2013-06-28 -0.0157778893 -0.0547282900 -0.0271444386 -0.001402999 -1.343434e-02
## 2013-07-31  0.0026880528  0.0131598630  0.0518602211  0.063541691  5.038594e-02
## 2013-08-30 -0.0082982112 -0.0257057073 -0.0197461540 -0.034743739 -3.045152e-02
## 2013-09-30  0.0111440513  0.0695889632  0.0753385261  0.063874032  3.115639e-02
## 2013-10-31  0.0082917944  0.0408612364  0.0320815778  0.034233735  4.526623e-02
## 2013-11-29 -0.0025099692 -0.0025937251  0.0054498458  0.041661220  2.920658e-02
## 2013-12-31 -0.0055834047 -0.0040748251  0.0215280075  0.012892192  2.559609e-02
## 2014-01-31  0.0152918984 -0.0903225477 -0.0534134369 -0.035775347 -3.588433e-02
## 2014-02-28  0.0037568567  0.0332203617  0.0595051716  0.045257287  4.451079e-02
## 2014-03-31 -0.0014813266  0.0380220072 -0.0046025730  0.013315553  8.261360e-03
## 2014-04-30  0.0081829390  0.0077727917  0.0165293438 -0.023184595  6.927375e-03
## 2014-05-30  0.0117218559  0.0290910733  0.0158285221  0.006205789  2.294083e-02
## 2014-06-30 -0.0005758987  0.0237340549  0.0091651859  0.037718403  2.043492e-02
## 2014-07-31 -0.0025119498  0.0135553522 -0.0263796602 -0.052009354 -1.352860e-02
## 2014-08-29  0.0114306003  0.0279048269  0.0018005552  0.043657786  3.870472e-02
## 2014-09-30 -0.0061676342 -0.0808566531 -0.0395984549 -0.061260355 -1.389257e-02
## 2014-10-31  0.0105847103  0.0140962229 -0.0026548515  0.068874807  2.327796e-02
## 2014-11-28  0.0065485962 -0.0155409752  0.0006253294  0.004773526  2.710134e-02
## 2014-12-31  0.0014751205 -0.0404424750 -0.0407468111  0.025295843 -2.539638e-03
## 2015-01-30  0.0203152328 -0.0068955741  0.0062265356 -0.054627873 -3.007741e-02
## 2015-02-27 -0.0089881608  0.0431361421  0.0614505830  0.056914225  5.468211e-02
## 2015-03-31  0.0037406485 -0.0150863608 -0.0143888736  0.010156505 -1.583026e-02
## 2015-04-30 -0.0032331116  0.0662811877  0.0358168158 -0.018417222  9.785824e-03
## 2015-05-29 -0.0043835437 -0.0419108145  0.0019523999  0.007509750  1.277422e-02
## 2015-06-30 -0.0108256847 -0.0297466454 -0.0316786843  0.004171215 -2.052125e-02
## 2015-07-31  0.0085845377 -0.0651782106  0.0201145726 -0.027375185  2.233783e-02
## 2015-08-31 -0.0033636095 -0.0925122687 -0.0771526622 -0.047268673 -6.288657e-02
## 2015-09-30  0.0080813364 -0.0318248859 -0.0451946717 -0.038464588 -2.584731e-02
## 2015-10-30  0.0006852473  0.0618082745  0.0640258172  0.063589662  8.163486e-02
## 2015-11-30 -0.0038978987 -0.0255604733 -0.0075558116  0.024415376  3.648794e-03
## 2015-12-31 -0.0019193937 -0.0389472098 -0.0235952221 -0.052156847 -1.743370e-02
## 2016-01-29  0.0123301906 -0.0516366273 -0.0567577967 -0.060307123 -5.106863e-02
## 2016-02-29  0.0088317309 -0.0082115378 -0.0339139283  0.020605247 -8.260854e-04
## 2016-03-31  0.0087086873  0.1218791652  0.0637459390  0.089910558  6.510016e-02
## 2016-04-29  0.0025458689  0.0040789675  0.0219751008  0.021044120  3.933450e-03
## 2016-05-31  0.0001361215 -0.0376284665 -0.0008562580  0.004397090  1.686834e-02
## 2016-06-30  0.0191662834  0.0445824953 -0.0244914386  0.008292241  3.469995e-03
## 2016-07-29  0.0054297221  0.0524421628  0.0390001532  0.049348126  3.582189e-02
## 2016-08-31 -0.0021560140  0.0087982792  0.0053267601  0.011261306  1.196845e-03
## 2016-09-30  0.0005158236  0.0248733585  0.0132794996  0.008614703  5.770204e-05
## 2016-10-31 -0.0082049238 -0.0083121997 -0.0224039173 -0.038134943 -1.748905e-02
## 2016-11-30 -0.0259895998 -0.0451620062 -0.0179745747  0.125246429  3.617640e-02
## 2016-12-30  0.0025375818 -0.0025300489  0.0267030747  0.031491873  2.006900e-02
## 2017-01-31  0.0021262251  0.0644312942  0.0323817445 -0.012144378  1.773632e-02
## 2017-02-28  0.0064374617  0.0172579598  0.0118364324  0.013429115  3.853893e-02
## 2017-03-31 -0.0005523221  0.0361890338  0.0318058309 -0.006533117  1.249446e-03
## 2017-04-28  0.0090291777  0.0168661777  0.0239521738  0.005107677  9.877466e-03
## 2017-05-31  0.0068475925  0.0280599059  0.0348102184 -0.022862332  1.401410e-02
## 2017-06-30 -0.0001828897  0.0092241057  0.0029559999  0.029151837  6.354874e-03
## 2017-07-31  0.0033344468  0.0565945227  0.0261876618  0.007481292  2.034556e-02
## 2017-08-31  0.0093692730  0.0232437116 -0.0004482872 -0.027564901  2.913523e-03
## 2017-09-29 -0.0057327884 -0.0004461573  0.0233428145  0.082322086  1.994920e-02
## 2017-10-31  0.0009783606  0.0322782962  0.0166539996  0.005916055  2.329066e-02
## 2017-11-30 -0.0014841979 -0.0038970188  0.0068694787  0.036913208  3.010817e-02
## 2017-12-29  0.0047407582  0.0369255190  0.0133985507 -0.003731393  1.205499e-02
calculate_component_contribution <- function(.data, w) {
    
        # Covariance of asset returns
covariance_matrix <- cov(.data)
        
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
        
sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
        
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
        component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
        component_contribution
        
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
            round(3) %>%
            as_tibble()
        
        return(component_percentages)
}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c(.25, .25, .20, .20, .10)) 
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

Column Chart of Component Contribution

plot_data <- asset_returns_wide_tbl %>% 
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>% 
    
    # Transform to long from 
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution")  

plot_data %>% 
    
    ggplot(aes(x = Asset, y = Contribution)) +
    geom_col(fill = "cornflowerblue") + 
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + 
    theme(plot.title = element_text(hjust = 0.5)) + 
    
    labs(title = "Percent Contribution to Portfolio Votality")

6 Rolling Component Contribution

Column Chart of Component Contribution and weight

plot_data <- asset_returns_wide_tbl %>% 
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>% 
    
    # Transform to long from 
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution")  %>% 

    # Add weights 
    add_column(weight = c(.25, .25, .2, .2, .1 )) %>% 
    
    # Transform to long 
    pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")

plot_data %>% 
    
    ggplot(aes(x = Asset, y = value, fill = type)) +
    geom_col(position = "dodge") + 
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + 
    scale_fill_tq() + 
    theme(plot.title = element_text(hjust = 0.5)) + 
        theme_tq() + 
        labs(title = "Percent Contribution to Portfolio Votality and Weight",
             y = "Percent",
             x = NULL)