# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062309206 -0.0029358265  0.0366063129  0.052133712  4.992290e-02
## 2013-02-28  0.0058910204 -0.0231048911 -0.0129695690  0.016175110  1.267882e-02
## 2013-03-28  0.0009849864 -0.0102349968  0.0129695690  0.040258323  3.726774e-02
## 2013-04-30  0.0096400601  0.0120845446  0.0489678889  0.001222724  1.903030e-02
## 2013-05-31 -0.0202145587 -0.0494829869 -0.0306555845  0.041975886  2.333491e-02
## 2013-06-28 -0.0157787032 -0.0547287165 -0.0271448062 -0.001403097 -1.343399e-02
## 2013-07-31  0.0026877241  0.0131598630  0.0518604004  0.063541408  5.038583e-02
## 2013-08-30 -0.0082977289 -0.0257057724 -0.0197463333 -0.034743173 -3.045141e-02
## 2013-09-30  0.0111438856  0.0695887852  0.0753386109  0.063873382  3.115605e-02
## 2013-10-31  0.0082923923  0.0408613628  0.0320814930  0.034234436  4.526635e-02
## 2013-11-29 -0.0025099115 -0.0025937254  0.0054497641  0.041661036  2.920731e-02
## 2013-12-31 -0.0055838102 -0.0040747080  0.0215280092  0.012892025  2.559608e-02
## 2014-01-31  0.0152920400 -0.0903224834 -0.0534133570 -0.035775599 -3.588442e-02
## 2014-02-28  0.0037570079  0.0332204840  0.0595050922  0.045257537  4.451017e-02
## 2014-03-31 -0.0014816378  0.0380217008 -0.0046024936  0.013315391  8.261362e-03
## 2014-04-30  0.0081832228  0.0077727927  0.0165294223 -0.023184269  6.927376e-03
## 2014-05-30  0.0117219820  0.0290910768  0.0158282891  0.006205136  2.294112e-02
## 2014-06-30 -0.0005759637  0.0237342830  0.0091653405  0.037718811  2.043492e-02
## 2014-07-31 -0.0025122243  0.0135553507 -0.0263795816 -0.052009519 -1.352889e-02
## 2014-08-29  0.0114303097  0.0279046076  0.0018004766  0.043658109  3.870482e-02
## 2014-09-30 -0.0061670037 -0.0808565450 -0.0395986182 -0.061260765 -1.389267e-02
## 2014-10-31  0.0105843902  0.0140963385 -0.0026548519  0.068874588  2.327814e-02
## 2014-11-28  0.0065492287 -0.0155414430  0.0006253295  0.004774153  2.710152e-02
## 2014-12-31  0.0014744425 -0.0404421228 -0.0407466475  0.025295610 -2.539727e-03
## 2015-01-30  0.0203158246 -0.0068958203  0.0062264509 -0.054627476 -3.007741e-02
## 2015-02-27 -0.0089884694  0.0431363883  0.0614507473  0.056914207  5.468211e-02
## 2015-03-31  0.0037405832 -0.0150863009 -0.0143889533  0.010156728 -1.583035e-02
## 2015-04-30 -0.0032327384  0.0662812399  0.0358165040 -0.018417902  9.785737e-03
## 2015-05-29 -0.0043836790 -0.0419109266  0.0019529451  0.007509903  1.277456e-02
## 2015-06-30 -0.0108260223 -0.0297466454 -0.0316790783  0.004171442 -2.052159e-02
## 2015-07-31  0.0085851645 -0.0651779537  0.0201147332 -0.027375568  2.233791e-02
## 2015-08-31 -0.0033642859 -0.0925122438 -0.0771525772 -0.047268436 -6.288639e-02
## 2015-09-30  0.0080807775 -0.0318252405 -0.0451947567 -0.038464839 -2.584740e-02
## 2015-10-30  0.0006860849  0.0618082789  0.0640259007  0.063589911  8.163494e-02
## 2015-11-30 -0.0038980275 -0.0255602647 -0.0075559791  0.024415374  3.648707e-03
## 2015-12-31 -0.0019189348 -0.0389472043 -0.0235949659 -0.052157170 -1.743387e-02
## 2016-01-29  0.0123300367 -0.0516369267 -0.0567577867 -0.060307052 -5.106845e-02
## 2016-02-29  0.0088313869 -0.0082114616 -0.0339140163  0.020605420 -8.262703e-04
## 2016-03-31  0.0087086672  0.1218791055  0.0637457564  0.089910402  6.510017e-02
## 2016-04-29  0.0025465417  0.0040792410  0.0219751893  0.021044276  3.933019e-03
## 2016-05-31  0.0001350846 -0.0376285322 -0.0008561715  0.004397090  1.686894e-02
## 2016-06-30  0.0191669356  0.0445825600 -0.0244917026  0.008292241  3.469487e-03
## 2016-07-29  0.0054297915  0.0524420273  0.0390003306  0.049348341  3.582223e-02
## 2016-08-31 -0.0021563198  0.0087984705  0.0053267601  0.011261091  1.196845e-03
## 2016-09-30  0.0005160165  0.0248729807  0.0132793321  0.008614563  5.802803e-05
## 2016-10-31 -0.0082054357 -0.0083120758 -0.0224039211 -0.038134656 -1.748905e-02
## 2016-11-30 -0.0259894309 -0.0451618779 -0.0179742290  0.125246412  3.617607e-02
## 2016-12-30  0.0025375592 -0.0025299829  0.0267029003  0.031491994  2.006900e-02
## 2017-01-31  0.0021267576  0.0644313476  0.0323818267 -0.012144123  1.773609e-02
## 2017-02-28  0.0064377273  0.0172577141  0.0118364314  0.013428797  3.853954e-02
## 2017-03-31 -0.0005531445  0.0361889775  0.0318055923 -0.006533116  1.249445e-03
## 2017-04-28  0.0090292649  0.0168664096  0.0239523312  0.005107801  9.877097e-03
## 2017-05-31  0.0068473207  0.0280601262  0.0348103668 -0.022862453  1.401432e-02
## 2017-06-30 -0.0001827520  0.0092236596  0.0029557775  0.029151707  6.354730e-03
## 2017-07-31  0.0033343223  0.0565944241  0.0261878079  0.007481415  2.034556e-02
## 2017-08-31  0.0093693937  0.0232437164 -0.0004482150 -0.027564707  2.913523e-03
## 2017-09-29 -0.0057322074 -0.0004460551  0.0233426703  0.082321590  1.994920e-02
## 2017-10-31  0.0009779709  0.0322783985  0.0166536532  0.005916056  2.329059e-02
## 2017-11-30 -0.0014836909 -0.0038970188  0.0068700315  0.036913212  3.010817e-02
## 2017-12-29  0.0047402021  0.0369254231  0.0133982085 -0.003731057  1.205473e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398560e-05 0.0001042119 4.178576e-05 -7.812075e-05 -9.030161e-06
## EEM  1.042119e-04 0.0017547095 1.039017e-03  6.437760e-04  6.795420e-04
## EFA  4.178576e-05 0.0010390172 1.064240e-03  6.490316e-04  6.975414e-04
## IJS -7.812075e-05 0.0006437760 6.490316e-04  1.565450e-03  8.290271e-04
## SPY -9.030161e-06 0.0006795420 6.975414e-04  8.290271e-04  7.408295e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347493
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS        SPY
## [1,] 0.0003874277 0.009257142 0.005815643 0.005684471 0.00233025
rowSums(component_contribution)
## [1] 0.02347493
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062309206 -0.0029358265  0.0366063129  0.052133712  4.992290e-02
## 2013-02-28  0.0058910204 -0.0231048911 -0.0129695690  0.016175110  1.267882e-02
## 2013-03-28  0.0009849864 -0.0102349968  0.0129695690  0.040258323  3.726774e-02
## 2013-04-30  0.0096400601  0.0120845446  0.0489678889  0.001222724  1.903030e-02
## 2013-05-31 -0.0202145587 -0.0494829869 -0.0306555845  0.041975886  2.333491e-02
## 2013-06-28 -0.0157787032 -0.0547287165 -0.0271448062 -0.001403097 -1.343399e-02
## 2013-07-31  0.0026877241  0.0131598630  0.0518604004  0.063541408  5.038583e-02
## 2013-08-30 -0.0082977289 -0.0257057724 -0.0197463333 -0.034743173 -3.045141e-02
## 2013-09-30  0.0111438856  0.0695887852  0.0753386109  0.063873382  3.115605e-02
## 2013-10-31  0.0082923923  0.0408613628  0.0320814930  0.034234436  4.526635e-02
## 2013-11-29 -0.0025099115 -0.0025937254  0.0054497641  0.041661036  2.920731e-02
## 2013-12-31 -0.0055838102 -0.0040747080  0.0215280092  0.012892025  2.559608e-02
## 2014-01-31  0.0152920400 -0.0903224834 -0.0534133570 -0.035775599 -3.588442e-02
## 2014-02-28  0.0037570079  0.0332204840  0.0595050922  0.045257537  4.451017e-02
## 2014-03-31 -0.0014816378  0.0380217008 -0.0046024936  0.013315391  8.261362e-03
## 2014-04-30  0.0081832228  0.0077727927  0.0165294223 -0.023184269  6.927376e-03
## 2014-05-30  0.0117219820  0.0290910768  0.0158282891  0.006205136  2.294112e-02
## 2014-06-30 -0.0005759637  0.0237342830  0.0091653405  0.037718811  2.043492e-02
## 2014-07-31 -0.0025122243  0.0135553507 -0.0263795816 -0.052009519 -1.352889e-02
## 2014-08-29  0.0114303097  0.0279046076  0.0018004766  0.043658109  3.870482e-02
## 2014-09-30 -0.0061670037 -0.0808565450 -0.0395986182 -0.061260765 -1.389267e-02
## 2014-10-31  0.0105843902  0.0140963385 -0.0026548519  0.068874588  2.327814e-02
## 2014-11-28  0.0065492287 -0.0155414430  0.0006253295  0.004774153  2.710152e-02
## 2014-12-31  0.0014744425 -0.0404421228 -0.0407466475  0.025295610 -2.539727e-03
## 2015-01-30  0.0203158246 -0.0068958203  0.0062264509 -0.054627476 -3.007741e-02
## 2015-02-27 -0.0089884694  0.0431363883  0.0614507473  0.056914207  5.468211e-02
## 2015-03-31  0.0037405832 -0.0150863009 -0.0143889533  0.010156728 -1.583035e-02
## 2015-04-30 -0.0032327384  0.0662812399  0.0358165040 -0.018417902  9.785737e-03
## 2015-05-29 -0.0043836790 -0.0419109266  0.0019529451  0.007509903  1.277456e-02
## 2015-06-30 -0.0108260223 -0.0297466454 -0.0316790783  0.004171442 -2.052159e-02
## 2015-07-31  0.0085851645 -0.0651779537  0.0201147332 -0.027375568  2.233791e-02
## 2015-08-31 -0.0033642859 -0.0925122438 -0.0771525772 -0.047268436 -6.288639e-02
## 2015-09-30  0.0080807775 -0.0318252405 -0.0451947567 -0.038464839 -2.584740e-02
## 2015-10-30  0.0006860849  0.0618082789  0.0640259007  0.063589911  8.163494e-02
## 2015-11-30 -0.0038980275 -0.0255602647 -0.0075559791  0.024415374  3.648707e-03
## 2015-12-31 -0.0019189348 -0.0389472043 -0.0235949659 -0.052157170 -1.743387e-02
## 2016-01-29  0.0123300367 -0.0516369267 -0.0567577867 -0.060307052 -5.106845e-02
## 2016-02-29  0.0088313869 -0.0082114616 -0.0339140163  0.020605420 -8.262703e-04
## 2016-03-31  0.0087086672  0.1218791055  0.0637457564  0.089910402  6.510017e-02
## 2016-04-29  0.0025465417  0.0040792410  0.0219751893  0.021044276  3.933019e-03
## 2016-05-31  0.0001350846 -0.0376285322 -0.0008561715  0.004397090  1.686894e-02
## 2016-06-30  0.0191669356  0.0445825600 -0.0244917026  0.008292241  3.469487e-03
## 2016-07-29  0.0054297915  0.0524420273  0.0390003306  0.049348341  3.582223e-02
## 2016-08-31 -0.0021563198  0.0087984705  0.0053267601  0.011261091  1.196845e-03
## 2016-09-30  0.0005160165  0.0248729807  0.0132793321  0.008614563  5.802803e-05
## 2016-10-31 -0.0082054357 -0.0083120758 -0.0224039211 -0.038134656 -1.748905e-02
## 2016-11-30 -0.0259894309 -0.0451618779 -0.0179742290  0.125246412  3.617607e-02
## 2016-12-30  0.0025375592 -0.0025299829  0.0267029003  0.031491994  2.006900e-02
## 2017-01-31  0.0021267576  0.0644313476  0.0323818267 -0.012144123  1.773609e-02
## 2017-02-28  0.0064377273  0.0172577141  0.0118364314  0.013428797  3.853954e-02
## 2017-03-31 -0.0005531445  0.0361889775  0.0318055923 -0.006533116  1.249445e-03
## 2017-04-28  0.0090292649  0.0168664096  0.0239523312  0.005107801  9.877097e-03
## 2017-05-31  0.0068473207  0.0280601262  0.0348103668 -0.022862453  1.401432e-02
## 2017-06-30 -0.0001827520  0.0092236596  0.0029557775  0.029151707  6.354730e-03
## 2017-07-31  0.0033343223  0.0565944241  0.0261878079  0.007481415  2.034556e-02
## 2017-08-31  0.0093693937  0.0232437164 -0.0004482150 -0.027564707  2.913523e-03
## 2017-09-29 -0.0057322074 -0.0004460551  0.0233426703  0.082321590  1.994920e-02
## 2017-10-31  0.0009779709  0.0322783985  0.0166536532  0.005916056  2.329059e-02
## 2017-11-30 -0.0014836909 -0.0038970188  0.0068700315  0.036913212  3.010817e-02
## 2017-12-29  0.0047402021  0.0369254231  0.0133982085 -0.003731057  1.205473e-02
calculate_component_contribution <- function(.data, w) { covariance_matrix <- cov(.data)

# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)


# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]


rowSums(component_contribution)

# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

return (component_percentages)
    
}

asset_returns_wide_tbl %>% calculate_component_contribution (w = c(.25, .25,.2, .2, .1))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

Column Chart of Component Contribution and Weight

plot_data <- asset_returns_wide_tbl %>%
    calculate_component_contribution (w = c(.25, .25,.2, .2, .1)) %>%
    
    # Transform to long form
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") %>%
    
    #Add weights
    add_column(weight = c( .25,.25,.2,.2,.1)) %>%
    
    # Transform to long
    pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")


plot_data %>%
    ggplot(aes(x = Asset, y = value, fill = type)) +
    geom_col(position = "dodge") +
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    scale_fill_tq() +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme_tq() +
    labs(title = "Percent Contribution to Portfolio Volatility and Weight", y = "Percent",
         x = NULL)

6 Rolling Component Contribution