## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
##
## Anexando pacote: 'modelr'
##
##
## O seguinte objeto é mascarado por 'package:broom':
##
## bootstrap
A CAPES é um órgão do MEC que tem a atribuição de acompanhar a pós-graduação na universidade brasileira. Uma das formas que ela encontrou de fazer isso e pela qual ela é bastante criticada é através de uma avaliação quantitativa a cada x anos (era 3, mudou para 4).
Usaremos dados da penúltima avaliação da CAPES:
cacc_tudo = read_projectdata()
glimpse(cacc_tudo)
## Rows: 73
## Columns: 31
## $ Instituição <chr> "UNIVERSIDADE FEDERAL DO AMAZONAS", "UNIV…
## $ Programa <chr> "INFORMÁTICA (12001015012P2)", "CIÊNCIA D…
## $ Nível <int> 5, 4, 3, 3, 3, 5, 4, 3, 3, 3, 5, 3, 3, 3,…
## $ Sigla <chr> "UFAM", "UFPA", "UFMA", "UEMA", "FUFPI", …
## $ `Tem doutorado` <chr> "Sim", "Sim", "Não", "Não", "Não", "Sim",…
## $ `Docentes colaboradores` <dbl> 0.25, 5.50, 3.00, 6.25, 1.75, 2.00, 1.00,…
## $ `Docentes permanentes` <dbl> 24.75, 14.00, 10.00, 14.00, 9.50, 20.75, …
## $ `Docentes visitantes` <dbl> 0.00, 0.00, 0.00, 0.00, 0.00, 0.75, 0.50,…
## $ `Resumos em conf` <int> 20, 23, 15, 5, 4, 10, 6, 136, 0, 24, 27, …
## $ `Resumos expandidos em conf` <int> 25, 24, 7, 10, 1, 68, 9, 13, 4, 6, 16, 5,…
## $ `Artigos em conf` <int> 390, 284, 115, 73, 150, 269, 179, 0, 120,…
## $ Dissertacoes <int> 108, 77, 50, 25, 31, 75, 60, 129, 45, 3, …
## $ Teses <int> 14, 0, 0, 0, 0, 24, 5, 0, 0, 0, 29, 0, 0,…
## $ periodicos_A1 <int> 15, 19, 5, 1, 7, 21, 21, 0, 3, 8, 44, 0, …
## $ periodicos_A2 <int> 19, 21, 11, 1, 4, 32, 13, 0, 9, 2, 23, 2,…
## $ periodicos_B1 <int> 19, 38, 7, 3, 6, 26, 16, 2, 6, 4, 32, 4, …
## $ periodicos_B2 <int> 1, 12, 2, 6, 0, 0, 11, 0, 0, 2, 1, 0, 0, …
## $ periodicos_B3 <int> 3, 16, 2, 2, 3, 16, 15, 0, 4, 6, 9, 0, 2,…
## $ periodicos_B4 <int> 0, 4, 0, 3, 3, 0, 1, 3, 1, 6, 0, 0, 4, 5,…
## $ periodicos_B5 <int> 10, 16, 8, 4, 12, 4, 16, 2, 6, 2, 11, 0, …
## $ periodicos_C <int> 9, 34, 12, 5, 2, 3, 11, 9, 5, 10, 16, 1, …
## $ periodicos_NA <int> 7, 15, 8, 11, 12, 6, 19, 31, 7, 14, 19, 0…
## $ per_comaluno_A1 <int> 4, 1, 0, 0, 1, 7, 5, 0, 1, 0, 10, 0, 0, 2…
## $ per_comaluno_A2 <int> 5, 5, 5, 0, 2, 15, 3, 0, 3, 0, 3, 0, 0, 1…
## $ per_comaluno_B1 <int> 4, 2, 5, 2, 2, 14, 6, 0, 2, 0, 17, 0, 1, …
## $ per_comaluno_B2 <int> 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,…
## $ per_comaluno_B3 <int> 2, 2, 0, 1, 0, 7, 9, 0, 2, 0, 4, 0, 0, 1,…
## $ per_comaluno_B4 <int> 0, 0, 0, 0, 2, 0, 1, 0, 1, 3, 0, 0, 2, 0,…
## $ per_comaluno_B5 <int> 5, 0, 4, 0, 8, 3, 6, 0, 4, 0, 4, 0, 2, 5,…
## $ per_comaluno_C <int> 6, 5, 3, 1, 2, 3, 7, 1, 2, 4, 8, 0, 11, 3…
## $ per_comaluno_NA <int> 6, 14, 2, 2, 9, 3, 6, 4, 5, 1, 10, 0, 17,…
Uma das maneiras de avaliar a produção dos docentes que a CAPES utiliza é quantificando a produção de artigos pelos docentes. Os artigos são categorizados em extratos ordenados (A1 é o mais alto), e separados entre artigos em conferências e periódicos. Usaremos para esse lab a produção em periódicos avaliados com A1, A2 e B1.
cacc = cacc_tudo %>%
transmute(
docentes = `Docentes permanentes`,
producao = (periodicos_A1 + periodicos_A2 + periodicos_B1),
produtividade = producao / docentes,
mestrados = Dissertacoes,
doutorados = Teses,
tem_doutorado = tolower(`Tem doutorado`) == "sim",
mestrados_pprof = mestrados / docentes,
doutorados_pprof = doutorados / docentes
)
cacc_md = cacc %>%
filter(tem_doutorado)
skimr::skim(cacc)
| Name | cacc |
| Number of rows | 73 |
| Number of columns | 8 |
| _______________________ | |
| Column type frequency: | |
| logical | 1 |
| numeric | 7 |
| ________________________ | |
| Group variables | None |
Variable type: logical
| skim_variable | n_missing | complete_rate | mean | count |
|---|---|---|---|---|
| tem_doutorado | 0 | 1 | 0.47 | FAL: 39, TRU: 34 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| docentes | 0 | 1 | 20.63 | 12.27 | 8.25 | 11.25 | 16.75 | 25.75 | 67.25 | ▇▃▁▁▁ |
| producao | 0 | 1 | 58.03 | 65.44 | 0.00 | 18.00 | 42.00 | 67.00 | 355.00 | ▇▂▁▁▁ |
| produtividade | 0 | 1 | 2.36 | 1.37 | 0.00 | 1.40 | 2.27 | 3.20 | 5.66 | ▆▇▇▅▂ |
| mestrados | 0 | 1 | 75.79 | 63.23 | 0.00 | 39.00 | 58.00 | 103.00 | 433.00 | ▇▃▁▁▁ |
| doutorados | 0 | 1 | 14.96 | 30.98 | 0.00 | 0.00 | 0.00 | 14.00 | 152.00 | ▇▁▁▁▁ |
| mestrados_pprof | 0 | 1 | 3.66 | 1.81 | 0.00 | 2.57 | 3.58 | 4.88 | 8.19 | ▂▇▇▃▂ |
| doutorados_pprof | 0 | 1 | 0.43 | 0.73 | 0.00 | 0.00 | 0.00 | 0.57 | 2.69 | ▇▁▁▁▁ |
cacc %>%
ggplot(aes(x = docentes)) +
geom_histogram(bins = 15, fill = paleta[1])
cacc %>%
ggplot(aes(x = producao)) +
geom_histogram(bins = 15, fill = paleta[2])
cacc %>%
ggplot(aes(x = produtividade)) +
geom_histogram(bins = 15, fill = paleta[3])
Se quisermos modelar o efeito do tamanho do programa em termos de docentes (permanentes) na quantidade de artigos publicados, podemos usar regressão.
Importante: sempre queremos ver os dados antes de fazermos qualquer modelo ou sumário:
cacc %>%
ggplot(aes(x = docentes, y = producao)) +
geom_point()
Parece que existe uma relação. Vamos criar um modelo então:
modelo1 = lm(producao ~ docentes, data = cacc)
tidy(modelo1, conf.int = TRUE, conf.level = 0.95)
glance(modelo1)
Para visualizar o modelo:
cacc_augmented = cacc %>%
add_predictions(modelo1)
cacc_augmented %>%
ggplot(aes(x = docentes)) +
geom_line(aes(y = pred), colour = "brown") +
geom_point(aes(y = producao)) +
labs(y = "Produção do programa")
Se considerarmos que temos apenas uma amostra de todos os programas de pós em CC no Brasil, o que podemos inferir a partir desse modelo sobre a relação entre número de docentes permanentes e produção de artigos em programas de pós?
Uma Regressão linear simples foi utilizada para analisar se o número de docentes permanentes tem uma associação significativa com a produção de artigos em programas de pós-graduação em Ciência da Computação no Brasil. Os resultados da regressão indicam que um modelo com o preditor “docentes” no formato:
produção = -41,27 + 4,81 × docentes explica 81,46% da variância da variável de resposta (R² = 0,8146). O número de docentes permanentes, medido em quantidade absoluta de professores, tem uma relação significativa com a produção de artigos (b = 4,81; IC 95% = [4,27; 5,36]). O aumento de 1 docente permanente está associado, em média, a um aumento de 4,81 artigos na produção do programa. Na prática, a relação encontrada indica que programas de pós-graduação com mais docentes permanentes tendem a apresentar uma produção maior de artigos. Isso é esperado, pois um maior número de professores geralmente implica em mais linhas de pesquisa, mais orientações e, consequentemente, maior produção científica agregada. A relação forte observada pode ser explicada pelo fato de que a produção total é, em grande parte, uma soma das produções individuais dos docentes. Além disso, programas maiores podem ter mais recursos, infraestrutura e redes de colaboração, o que também contribui para uma produção científica mais elevada.
modelo2 = lm(producao ~ docentes + mestrados_pprof + doutorados_pprof + tem_doutorado,
data = cacc_md)
tidy(modelo2, conf.int = TRUE, conf.level = 0.95)
glance(modelo2)
E se considerarmos também o número de alunos?
modelo2 = lm(producao ~ docentes + mestrados + doutorados, data = cacc)
tidy(modelo2, conf.int = TRUE, conf.level = 0.95)
glance(modelo2)
Visualizar o modelo com muitas variáveis independentes fica mais difícil
para_plotar_modelo = cacc %>%
data_grid(producao = seq_range(producao, 10), # Crie um vetor de 10 valores no range
docentes = seq_range(docentes, 4),
# mestrados = seq_range(mestrados, 3),
mestrados = median(mestrados),
doutorados = seq_range(doutorados, 3)) %>%
add_predictions(modelo2)
glimpse(para_plotar_modelo)
## Rows: 120
## Columns: 5
## $ producao <dbl> 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.000…
## $ docentes <dbl> 8.25000, 8.25000, 8.25000, 27.91667, 27.91667, 27.91667, 47…
## $ mestrados <int> 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58,…
## $ doutorados <dbl> 0, 76, 152, 0, 76, 152, 0, 76, 152, 0, 76, 152, 0, 76, 152,…
## $ pred <dbl> 3.199123, 79.257725, 155.316327, 72.026777, 148.085378, 224…
para_plotar_modelo %>%
ggplot(aes(x = docentes, y = pred)) +
geom_line(aes(group = doutorados, colour = doutorados)) +
geom_point(data = cacc, aes(y = producao, colour = doutorados))
Considerando agora esses três fatores, o que podemos dizer sobre como cada um deles se relaciona com a produção de um programa de pós em CC? E sobre o modelo? Ele explica mais que o modelo 1?
EXPLICAÇÃO:
Uma regressão linear múltipla foi utilizada para analisar se o número de docentes permanentes, o número de mestrados e o número de doutorados têm associação significativa com a produção de artigos em programas de pós-graduação em Ciência da Computação no Brasil. Os resultados da regressão indicam que um modelo com os três preditores, no formato: > produção = -14,37 + 3,50 × docentes – 0,19 × mestrados + 1,00 × doutorados explica 87,07% da variância da variável de resposta (R² = 0,8707), valor superior ao modelo anterior com apenas um preditor (R² = 0,8146). O número de docentes permanentes tem uma relação positiva e significativa com a produção de artigos (b = 3,50; IC 95% = [2,58; 4,42]), indicando que o aumento de 1 docente está associado, em média, a um aumento de 3,5 artigos na produção do programa. O número de mestrados defendidos apresenta uma relação negativa e significativa (b = -0,19; IC 95% = [-0,36; -0,03]), sugerindo que, controlando os outros fatores, mais defesas de mestrado estão associadas a uma ligeira redução na produção de artigos. Já o número de doutorados defendidos tem uma relação positiva e significativa (b = 1,00; IC 95% = [0,64; 1,37]), indicando que cada doutorado defendido está associado, em média, a um aumento de 1 artigo na produção do programa. Portanto, o modelo com três preditores explica mais a variância da produção do que o modelo simples, mostrando que além do número de docentes, o perfil de formação (mestrados e doutorados) também influencia a produção científica dos programas.
modelo_produtividade <- lm(produtividade ~ docentes + doutorados + tem_doutorado, data = cacc)
Modelo_produtividade = lm(produtividade ~ docentes + doutorados + tem_doutorado, data = cacc)
library(broom)
tidy(modelo_produtividade, conf.int = TRUE, conf.level = 0.95)
glance(modelo_produtividade)
cacc_prod_augmented <- cacc %>%
add_predictions(modelo_produtividade)
cacc_prod_augmented %>%
ggplot(aes(x = docentes)) +
geom_point(aes(y = produtividade), color = "black") +
geom_line(aes(y = pred), color = "blue") +
labs(y = "Produtividade do programa", x = "Docentes")
cacc_prod_augmented %>%
ggplot(aes(x = docentes, y = pred, color = as.factor(doutorados))) +
geom_line() +
geom_point(aes(y = produtividade), color = "black") +
labs(y = "Produtividade do programa", x = "Docentes", color = "Doutorados")
EXPLICAÇÃO:
Uma regressão linear múltipla foi utilizada para analisar se o número de docentes permanentes, o número de doutorados defendidos e a existência de doutorado no programa têm associação significativa com a produtividade dos programas de pós-graduação em Ciência da Computação no Brasil. Os resultados da regressão indicam que um modelo com esses três preditores, no formato: > produtividade = 1,51 + 0,002 × docentes + 0,015 × doutorados + 1,26 × tem_doutorado explica 51,04% da variância da produtividade dos programas (R² = 0,5104). Entre os preditores, o número de docentes não apresentou relação significativa com a produtividade (b = 0,002; IC 95% = [-0,0336; 0,0376]; p = 0,91). Já o número de doutorados defendidos mostrou uma relação positiva e significativa (b = 0,015; IC 95% = [0,0012; 0,0287]; p = 0,033), indicando que programas com mais doutorados defendidos tendem a ser mais produtivos. Além disso, a existência de doutorado no programa também apresentou uma relação positiva e significativa com a produtividade (b = 1,26; IC 95% = [0,71; 1,82]; p < 0,001), sugerindo que programas que oferecem doutorado são, em média, mais produtivos. Na prática, aprendemos que a produtividade dos programas de pós-graduação em Ciência da Computação no Brasil está mais associada à capacidade de formar doutores e à existência de doutorado no programa do que ao simples aumento do número de docentes. Isso sugere que a maturidade e a estrutura do programa, refletidas na formação de doutores e na oferta de doutorado, são fatores mais determinantes para a produtividade do que apenas o tamanho do corpo docente.