# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the downside risk of your portfolio in terms of kurtosis.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("MSFT", "DPZ", "AAPL")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2020-12-31",
to = "2025-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "DPZ" "MSFT"
#weights
weights <- c(0.34, 0.33, 0.33)
weights
## [1] 0.34 0.33 0.33
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 3 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.34
## 2 DPZ 0.33
## 3 MSFT 0.33
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 54 × 2
## date returns
## <date> <dbl>
## 1 2021-01-29 0.000869
## 2 2021-02-26 -0.0492
## 3 2021-03-31 0.0278
## 4 2021-04-30 0.0928
## 5 2021-05-28 -0.0166
## 6 2021-06-30 0.0890
## 7 2021-07-30 0.0773
## 8 2021-08-31 0.0284
## 9 2021-09-30 -0.0725
## 10 2021-10-29 0.0812
## # ℹ 44 more rows
portfolio_kurt_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Kurtosis)
portfolio_kurt_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Kurtosis
## <dbl>
## 1 -0.260
portfolio_returns_tbl %>%
ggplot(aes(x = returns)) +
geom_histogram()
# Transform data
mean_kurt_tbl <- asset_returns_tbl %>%
# Calculate mean return and kurtosis for assets
group_by(asset) %>%
summarise(mean = mean(returns),
kurt = kurtosis(returns)) %>%
ungroup()
portfolio_returns_tbl %>%
summarise(mean = mean(returns),
kurt = kurtosis(returns)) %>%
mutate(asset = "Portfolio")
## # A tibble: 1 × 3
## mean kurt asset
## <dbl> <dbl> <chr>
## 1 0.00895 -0.260 Portfolio
# Plot
mean_kurt_tbl %>%
ggplot(aes(x = kurt, y = mean)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset, color = asset)) +
# Formatting
theme(legend.position = "none") +
scale_y_continuous(labels = scales::percent_format(accuracy = 0.1)) +
# Labeling
labs(x = "Kurtosis",
y = "Exprected Returns")
#Assign a value for window
window = 24
# Transform data: calculate 24 month rolling kurtosis
rolling_kurt_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = kurtosis,
col_rename = "kurt") %>%
na.omit() %>%
select(-returns)
# Plot
rolling_kurt_tbl %>%
ggplot(aes(x = date, y = kurt)) +
geom_line(color = "cornflowerblue") +
# Formatting
scale_y_continuous(breaks = seq(-1, 4, 0.5)) +
scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
theme(plot.title = element_text(hjust = 0.5)) +
# Labeling
labs(x = NULL,
y = "Kurtosis",
title = paste0("Rolling ", window, " Month Kurtosis")) +
annotate(geom = "text",
x = as.Date("2024-01-31"), y = 2,
size = 3, color = "red",
label = str_glue("Downside risk increased
toward the mid point of 2024 and 2025"))
Has the downside risk of your portfolio increased or decreased over time? Explain using the plot you created. You may also refer to the skewness of the returns distribution you plotted in the previous assignment.
I would say that gradually the downside increased over time but dipped in the beginning of 2025 but is beginning to rise once more. We can see in about 2023 it was -1 using Kurtosis but is now sitting within a 0.4 range, likely soon to hit 0.5