# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize expected returns and risk to make it easier to compare the performance of multiple assets and portfolios.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("NKE", "ADDYY", "SKX", "UAA")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "ADDYY" "NKE" "SKX" "UAA"
# weights
weights <- c(0.4, 0.2, 0.25, 0.15)
weights
## [1] 0.40 0.20 0.25 0.15
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 × 2
## symbols weights
## <chr> <dbl>
## 1 ADDYY 0.4
## 2 NKE 0.2
## 3 SKX 0.25
## 4 UAA 0.15
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "month")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-01-31 0.0385
## 2 2013-02-28 0.0150
## 3 2013-03-28 0.0760
## 4 2013-04-30 0.0284
## 5 2013-05-31 0.0519
## 6 2013-06-28 0.0120
## 7 2013-07-31 0.0604
## 8 2013-08-30 0.0204
## 9 2013-09-30 0.0542
## 10 2013-10-31 0.0157
## # ℹ 50 more rows
portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = portfolio.returns,
performance_fun = table.Stats) %>%
select(Stdev) %>%
mutate(tq_sd = round(Stdev, 4))
portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 × 2
## Stdev tq_sd
## <dbl> <dbl>
## 1 0.0473 0.0473
#Mean of portfolio returns
portfolio_mean_tidyquant_builtin_percent <- mean(portfolio_returns_tbl$portfolio.returns)
portfolio_mean_tidyquant_builtin_percent
## [1] 0.01702087
# Expected Returns vs Risk
sd_mean_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Mean = ArithmeticMean, Stdev) %>%
ungroup() %>%
#Add portfolio sd
add_row(tibble(asset = "Portfolio",
Mean = portfolio_mean_tidyquant_builtin_percent,
Stdev = portfolio_sd_tidyquant_builtin_percent$tq_sd))
sd_mean_tbl
## # A tibble: 5 × 3
## asset Mean Stdev
## <chr> <dbl> <dbl>
## 1 ADDYY 0.0147 0.076
## 2 NKE 0.0158 0.0531
## 3 SKX 0.0302 0.111
## 4 UAA 0.0029 0.101
## 5 Portfolio 0.0170 0.0473
sd_mean_tbl %>%
ggplot(aes(x = Stdev, y = Mean, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset))
How should you expect your portfolio to perform relative to its assets
in the portfolio? Would you invest all your money in any of the
individual stocks instead of the portfolio? Discuss both in terms of
expected return and risk.
the expected return will not necessarily be the highest among all assets, but it reflects a balance based on weights. The portfolio’s standard deviation (volatility) is lower than the average of individual assets, due to diversification.
You might find that one of the stocks (e.g., ADDYY or SKX) has a slightly higher mean return than the portfolio. The portfolio reduces company-specific risk, which cannot be eliminated if you go all-in on one stock.
In conclusion… Stick with the portfolio. It offers a better risk-return tradeoff.Even if one stock outperformed over this time period, there’s no guarantee it will continue to do so.Diversification cushions your returns and helps avoid devastating losses — a cornerstone of smart investing.