df <- read.csv("male_players.csv")

df <- df %>%
    filter(Position != "GK")

df <- df %>%
    filter(League %in% c("Premier League", "LALIGA EA SPORTS",
        "Serie A Enilive", "Bundesliga", "Ligue 1 McDonald's")) %>%
    ## pick the top 1000 players
arrange(desc(OVR)) %>%
    slice(1:1000)
  1. All 37 attributes are continuous player ratings, so after z scoring a simple metric based on straight line (Euclidean) or city block (Manhattan) distance preserves their geometry. No additional transforms are needed once scaling removes unit and variance differences; if we had categorical traits (e.g., preferred foot) we would switch to a mixed type metric such as Gower.
## recreate above process but drop all GK's

clen_noGK <- df %>%
    filter(Position != "GK") %>%
    mutate(Height_cm = as.numeric(str_extract(Height, "\\d+")),
        Weight_kg = as.numeric(str_extract(Weight, "\\d+")),
        Position = as.factor(Position), Preferred_foot = as.factor(Preferred.foot)) %>%
    replace_na(list(GK.Diving = 0, GK.Handling = 0, GK.Kicking = 0,
        GK.Positioning = 0, GK.Reflexes = 0))
num_data_noGK <- clen_noGK %>%
    dplyr::select(PAC, SHO, PAS, DRI, DEF, PHY, Acceleration,
        Sprint.Speed, Positioning, Finishing, Shot.Power, Long.Shots,
        Volleys, Penalties, Vision, Crossing, Free.Kick.Accuracy,
        Short.Passing, Long.Passing, Curve, Dribbling, Agility,
        Balance, Reactions, Ball.Control, Composure, Interceptions,
        Heading.Accuracy, Def.Awareness, Standing.Tackle, Sliding.Tackle,
        Jumping, Stamina, Strength, Aggression, Height_cm, Weight_kg)
# 2.  scale + PCA, without GK
X_sc_noGK <- scale(num_data_noGK)
# 1) find any zero-variance columns in the raw numeric data
zero.var_noGK <- which(apply(num_data_noGK, 2, var, na.rm = TRUE) ==
    0)
if (length(zero.var_noGK) > 0) {
    message("Dropping ", length(zero.var_noGK), " constant columns: ",
        paste(colnames(num_data_noGK)[zero.var_noGK], collapse = ", "))
    num_data2_noGK <- num_data_noGK[, -zero.var_noGK]
} else {
    num_data2_noGK <- num_data_noGK
}

X_sc_noGK <- scale(num_data2_noGK)
# 2) now run PCA with centering & scaling
pca_noGK <- prcomp(X_sc_noGK, center = TRUE, scale. = TRUE)
# 3) plot cumulative variance explained
plot(cumsum(pca_noGK$sdev^2/sum(pca_noGK$sdev^2)), xlab = "Principal components",
    ylab = "Cumulative variance explained", type = "b", pch = 19)

# examine variance explained → choose ~10 PCs (~95%+)
fviz_eig(pca_noGK, addlabels = TRUE)

pc_df_noGK_noGK <- as_tibble(pca_noGK$x[, 1:10])  # retain the first 10 components


fviz_pca_var(pca_noGK, col.var = "contrib", gradient.cols = c("blue",
    "white", "red"), title = "PCA variable contributions (without GKs)")

# 2.2.  visualize PCA biplot
fviz_pca_biplot(pca_noGK, col.var = "contrib", gradient.cols = c("blue",
    "white", "red"), title = "PCA biplot (without GKs)", repel = TRUE)

# 2.3.  visualize PCA correlation circle
fviz_pca_var(pca_noGK, col.var = "coord", gradient.cols = c("blue",
    "white", "red"), title = "PCA correlation circle (without GKs)")

## 1.  Load helper that draws the 4 classic H-clust diagnostic
##     plots (linkage distance, R², semi-partial R², pseudo-t²)

source("https://raw.githubusercontent.com/jreuning/sds363_code/refs/heads/main/HClusEval3.R.txt")

## pick linkage & distance you want to test  ------------------
dist.m  <- "euclidean"
clus.m  <- "complete"        # or "ward.D2", "average", etc.

## run and plot – shows the first 15 merges by default --------
hclus_eval(X_sc_noGK,               
           dist_m  = dist.m,
           clus_m  = clus.m,
           plot_op = TRUE,      # four-panel diagnostic figure
           print_num = 15)      # how many merges to list
## [1] "Creating Distance Matrix using euclidean"
## [1] "Clustering using complete"
## [1] "Clustering Complete. Access the Cluster object in first element of output"
## [1] "Calculating RMSSTD"
## [1] "RMSSTD Done. Access in Element 2"
## [1] "Calculating RSQ"
## [1] "RSQ Done. Access in Element 3"
## [1] "Calculating SPRSQ"
## [1] "SPRSQ Done. Access in Element 4"
## [1] "Calculating Cluster Dist. "
## [1] "CD Done. Access in Element 5"

## [[1]]
## 
## Call:
## hclust(d = dist1, method = clus_m)
## 
## Cluster method   : complete 
## Distance         : euclidean 
## Number of objects: 1000 
## 
## 
## [[2]]
##    [1] 1.0000000 0.8915704 0.8809982 0.8268769 0.7879687 0.7714563 0.7151679
##    [8] 0.7200195 0.7206121 0.6838090 0.6795547 0.6349088 0.6117317 0.6805728
##   [15] 0.6171045 0.6410949 0.6255472 0.6457260 0.6176260 0.5968483 0.6305155
##   [22] 0.6167342 0.5989513 0.6410703 0.6238845 0.6163793 0.6370258 0.5903831
##   [29] 0.6183178 0.5748971 0.5719099 0.5454820 0.5500797 0.5729849 0.6474852
##   [36] 0.5825269 0.5569698 0.5890784 0.6103281 0.5646589 0.6101242 0.5657868
##   [43] 0.5748255 0.5535857 0.6496824 0.5530960 0.5763284 0.6113915 0.5659521
##   [50] 0.5737801 0.5306585 0.5362316 0.5464446 0.4962919 0.6335439 0.5353926
##   [57] 0.5165637 0.5183046 0.5159883 0.5636047 0.5258733 0.5986118 0.5308772
##   [64] 0.5174257 0.5348024 0.5607226 0.5337782 0.5516143 0.5421247 0.5110504
##   [71] 0.5462217 0.5173514 0.5140475 0.5211661 0.6098378 0.5442220 0.6406117
##   [78] 0.4657663 0.5986996 0.5681539 0.5529703 0.4923189 0.4363577 0.5000318
##   [85] 0.6133387 0.5085657 0.5939041 0.5017216 0.5117050 0.5215549 0.4859679
##   [92] 0.4471053 0.5514927 0.5651455 0.5736805 0.5456017 0.5079009 0.5303252
##   [99] 0.5576185 0.4662371 0.4781246 0.5513754 0.5447947 0.4976472 0.5329400
##  [106] 0.5566307 0.5025052 0.5570414 0.4889924 0.4917808 0.5171884 0.4998692
##  [113] 0.4661423 0.4646436 0.5347979 0.4945524 0.5781460 0.5895046 0.4940146
##  [120] 0.5720294 0.4869230 0.4770861 0.5572757 0.5608718 0.4749196 0.4632798
##  [127] 0.5243447 0.4978471 0.4747371 0.6193411 0.5223043 0.4893462 0.4967341
##  [134] 0.5064523 0.5066442 0.4873892 0.4376596 0.4941483 0.4874892 0.4669681
##  [141] 0.5249745 0.4775041 0.5114924 0.4401129 0.4668732 0.4575279 0.4504602
##  [148] 0.4851990 0.4879208 0.4509864 0.5152089 0.4684615 0.5017582 0.5019157
##  [155] 0.4445636 0.6346059 0.5477331 0.4381542 0.4659014 0.4700393 0.4321612
##  [162] 0.4451123 0.4810694 0.5322309 0.4482632 0.5152067 0.4715937 0.4667612
##  [169] 0.4431364 0.4592051 0.4412076 0.6152918 0.5051213 0.4599653 0.4990356
##  [176] 0.4753253 0.4556400 0.5318699 0.4683152 0.4318292 0.4456846 0.4693691
##  [183] 0.4710532 0.4333109 0.4423605 0.4719402 0.4308003 0.5447034 0.4933543
##  [190] 0.4423538 0.4818428 0.4514915 0.5266573 0.5377028 0.5424325 0.4635969
##  [197] 0.4915564 0.4685071 0.4994908 0.5876851 0.4679141 0.5072229 0.4265284
##  [204] 0.4787561 0.5816176 0.4317888 0.4585336 0.5394676 0.5596191 0.4130581
##  [211] 0.4537877 0.4477231 0.4773314 0.4585514 0.4573835 0.4584653 0.5163469
##  [218] 0.4281972 0.4053486 0.5711827 0.4342169 0.4259671 0.4305165 0.5172513
##  [225] 0.4540036 0.4278931 0.4304711 0.4654464 0.4253339 0.4615631 0.4695344
##  [232] 0.5222156 0.4269405 0.4064885 0.4477320 0.4760348 0.4165538 0.5526666
##  [239] 0.4906840 0.4310045 0.4869929 0.4898567 0.4193421 0.4622049 0.4276974
##  [246] 0.4559242 0.3935771 0.3977179 0.4244205 0.4757249 0.4465093 0.4478641
##  [253] 0.5475471 0.3942994 0.5461346 0.4178043 0.4232623 0.4895771 0.5440332
##  [260] 0.4250843 0.5049935 0.4598826 0.4047770 0.4331604 0.3903129 0.4258810
##  [267] 0.4876189 0.4053118 0.4368188 0.4532410 0.4169776 0.4226487 0.4148958
##  [274] 0.4381583 0.3973794 0.4736822 0.4183718 0.4297934 0.4331453 0.4282562
##  [281] 0.4363798 0.5256308 0.4404345 0.4882649 0.4442318 0.4165881 0.4160885
##  [288] 0.4199958 0.4751188 0.4146579 0.4083104 0.4362975 0.4042311 0.4381879
##  [295] 0.3755263 0.4484574 0.3873204 0.3592901 0.4128501 0.4504567 0.3969116
##  [302] 0.5088826 0.3826673 0.4156262 0.4107599 0.4265061 0.4032867 0.3766618
##  [309] 0.4054718 0.4438064 0.4345895 0.4044113 0.4504621 0.3962285 0.4249966
##  [316] 0.3948428 0.5003510 0.4535696 0.4484880 0.4223871 0.4989147 0.3803080
##  [323] 0.4465205 0.4983245 0.4346735 0.4168507 0.4091532 0.4297770 0.4605367
##  [330] 0.4387846 0.3855640 0.4231637 0.4722243 0.4577922 0.4894384 0.4124197
##  [337] 0.4024030 0.4876114 0.4393573 0.3787603 0.3992811 0.3976213 0.4223945
##  [344] 0.4297383 0.4390307 0.4132237 0.4339491 0.4209441 0.4003209 0.4271231
##  [351] 0.4314026 0.3909935 0.3797582 0.3896204 0.4494499 0.4378573 0.4764489
##  [358] 0.4009187 0.4463116 0.4124938 0.4061639 0.4172024 0.3844369 0.4727732
##  [365] 0.4568526 0.4085743 0.3787238 0.3811349 0.4090151 0.3700244 0.4219949
##  [372] 0.4057803 0.4686048 0.4032960 0.3804433 0.3855645 0.4050165 0.4407377
##  [379] 0.3745414 0.3936147 0.4230467 0.4227531 0.4036024 0.4376908 0.3993851
##  [386] 0.3937363 0.4133686 0.4236292 0.3480211 0.4620000 0.4619351 0.3894199
##  [393] 0.4139150 0.3755560 0.3951915 0.4595161 0.4211320 0.3670760 0.3916315
##  [400] 0.4218260 0.4571137 0.4036267 0.4179725 0.4284197 0.3809422 0.3974367
##  [407] 0.3939595 0.4550071 0.4546041 0.3841233 0.3743977 0.3985195 0.3890400
##  [414] 0.3608835 0.3901829 0.3572283 0.3851935 0.3920973 0.4502216 0.3864519
##  [421] 0.4102619 0.4498244 0.3545058 0.4488545 0.3550048 0.3654496 0.4483763
##  [428] 0.4476395 0.4061893 0.3979106 0.3751358 0.3831159 0.3505944 0.3715316
##  [435] 0.4459758 0.3837274 0.4454065 0.3923858 0.3465201 0.3791071 0.3789797
##  [442] 0.3576609 0.4026227 0.3981916 0.4007932 0.3835976 0.3764491 0.4403269
##  [449] 0.4395425 0.3821564 0.3858133 0.3921713 0.3880188 0.4111197 0.3878249
##  [456] 0.4369680 0.3904145 0.4361475 0.3389558 0.4023210 0.4356566 0.3578328
##  [463] 0.4111644 0.3957296 0.3629207 0.3987181 0.3856223 0.4332718 0.4332202
##  [470] 0.3772909 0.3813334 0.4327213 0.3985859 0.3446084 0.4318347 0.3830881
##  [477] 0.3510233 0.3645578 0.4124283 0.3897173 0.4299114 0.3609164 0.4290662
##  [484] 0.3580697 0.4115809 0.3684092 0.4277467 0.4122234 0.3595105 0.3786110
##  [491] 0.3770180 0.3723145 0.4257503 0.3751705 0.3656883 0.3867711 0.3661488
##  [498] 0.3913686 0.3818225 0.3594484 0.3583782 0.3412789 0.4210258 0.3344473
##  [505] 0.4203372 0.4202987 0.3963343 0.4200457 0.3687340 0.3511803 0.3669741
##  [512] 0.3823960 0.4192871 0.4192680 0.3404917 0.3804372 0.4076466 0.4181071
##  [519] 0.3791263 0.3600784 0.3510859 0.3298724 0.4162580 0.3747782 0.3672290
##  [526] 0.3493949 0.3722701 0.3839685 0.3581967 0.4014913 0.3625451 0.4127015
##  [533] 0.4126357 0.3644326 0.4123273 0.3617684 0.3562987 0.3801678 0.3331123
##  [540] 0.3552839 0.4110238 0.3724184 0.3678710 0.4100892 0.3603486 0.3610865
##  [547] 0.3455567 0.4094845 0.3326895 0.3915278 0.3756905 0.3935083 0.3379026
##  [554] 0.4077522 0.3399932 0.3808155 0.4066979 0.4062128 0.3460368 0.4054913
##  [561] 0.3812437 0.3436812 0.3690858 0.3376669 0.3823821 0.3357204 0.3219170
##  [568] 0.4003364 0.3666705 0.3996988 0.3996929 0.3992642 0.3421393 0.3548468
##  [575] 0.3864279 0.3965212 0.3653189 0.3956484 0.3599096 0.3947817 0.3590892
##  [582] 0.3646527 0.3550887 0.3418956 0.3464692 0.3933017 0.3929945 0.3177316
##  [589] 0.3805610 0.3238969 0.3923179 0.3918534 0.3914981 0.3914300 0.3547303
##  [596] 0.3678566 0.3906884 0.3894622 0.3888676 0.3596320 0.3567887 0.3876943
##  [603] 0.3367345 0.3494338 0.3579647 0.3859506 0.3585032 0.3333839 0.3489492
##  [610] 0.3447497 0.3852222 0.3316204 0.3845201 0.3843502 0.3840943 0.3840696
##  [617] 0.3836512 0.3818295 0.3816422 0.3286044 0.3320942 0.3809888 0.3807812
##  [624] 0.3807437 0.3804905 0.3802756 0.3799266 0.3322805 0.3798481 0.3275869
##  [631] 0.3463626 0.3791571 0.3355865 0.3476874 0.3442153 0.3525303 0.3590337
##  [638] 0.3778826 0.3540315 0.3437862 0.3334704 0.3773266 0.3254420 0.3770343
##  [645] 0.3768454 0.3568723 0.3767255 0.3630637 0.3105337 0.3752122 0.3746378
##  [652] 0.3495348 0.3741569 0.3238960 0.3319725 0.3313501 0.3639212 0.3734426
##  [659] 0.3733027 0.3729362 0.3453168 0.3230475 0.3195252 0.3469846 0.3386619
##  [666] 0.3719945 0.3476090 0.3719051 0.3712893 0.3709796 0.3329667 0.3552976
##  [673] 0.3707365 0.3233005 0.3390697 0.3694991 0.3694435 0.3382784 0.3687374
##  [680] 0.3134971 0.3356164 0.3678576 0.3678281 0.3117262 0.3671400 0.3670010
##  [687] 0.3374845 0.3651553 0.3651051 0.3649726 0.3635715 0.3268929 0.3394579
##  [694] 0.3167852 0.3601710 0.3600708 0.3600633 0.3379978 0.3564570 0.3414755
##  [701] 0.3454445 0.3550526 0.3550368 0.3548594 0.3541420 0.3305380 0.3538903
##  [708] 0.3538469 0.3170829 0.3231355 0.3531202 0.3527179 0.3525117 0.3045958
##  [715] 0.3520886 0.2945021 0.3333720 0.3517099 0.3254792 0.3514293 0.3512777
##  [722] 0.3510523 0.3502045 0.3493231 0.3492149 0.3091475 0.3032021 0.3484398
##  [729] 0.3481279 0.3478556 0.3470729 0.3205951 0.3464866 0.3463680 0.3196944
##  [736] 0.3021322 0.3130570 0.3458683 0.3203021 0.3184073 0.3454941 0.3452897
##  [743] 0.3451992 0.3449454 0.3446894 0.3438946 0.3252767 0.3436328 0.3436068
##  [750] 0.3434270 0.3431797 0.3430234 0.3142649 0.3206472 0.2961651 0.3422144
##  [757] 0.3198688 0.2991007 0.3206260 0.3416904 0.2892602 0.3410976 0.3408113
##  [764] 0.3403277 0.3402153 0.3393775 0.3391233 0.3023246 0.3176754 0.3383797
##  [771] 0.3378073 0.3375571 0.3176257 0.3101513 0.3366982 0.3359272 0.3355613
##  [778] 0.3350522 0.3349566 0.3344924 0.3343614 0.3341481 0.2950820 0.3119347
##  [785] 0.3334782 0.3334246 0.3328253 0.3035097 0.3318715 0.3310181 0.3308880
##  [792] 0.3306269 0.3304295 0.3073057 0.3300760 0.3300587 0.3293226 0.3288785
##  [799] 0.3288322 0.3275982 0.3275458 0.2989898 0.2974754 0.2830339 0.3272685
##  [806] 0.3270794 0.3269468 0.3266631 0.3261870 0.3261352 0.3258646 0.3257874
##  [813] 0.3254715 0.3250441 0.3249260 0.2952872 0.3246169 0.2960504 0.3238138
##  [820] 0.3235853 0.3235290 0.2879131 0.3224458 0.3140653 0.2848514 0.3211720
##  [827] 0.3204247 0.3202915 0.2949944 0.3196105 0.3194023 0.3192092 0.3182969
##  [834] 0.3181069 0.3175556 0.2883982 0.3172175 0.3002479 0.3169145 0.3168055
##  [841] 0.3003980 0.2988091 0.2871159 0.3156044 0.3150404 0.3146603 0.3138161
##  [848] 0.3136511 0.3132244 0.2988220 0.3127851 0.3127481 0.3122629 0.3109494
##  [855] 0.3106543 0.3104508 0.3103626 0.3094719 0.3093845 0.3081330 0.3070934
##  [862] 0.2844815 0.3065084 0.3064944 0.3006293 0.3041529 0.3034802 0.2801845
##  [869] 0.3019904 0.3018691 0.3018580 0.3013706 0.3010284 0.3008171 0.2999281
##  [876] 0.2998247 0.2995483 0.2658679 0.2985706 0.2983149 0.2978317 0.2977640
##  [883] 0.2975798 0.2965920 0.2865897 0.2963213 0.2962009 0.2960881 0.2944390
##  [890] 0.2943422 0.2937890 0.2551328 0.2932307 0.2620217 0.2913240 0.2910197
##  [897] 0.2906226 0.2903787 0.2903441 0.2900203 0.2887931 0.2884617 0.2877630
##  [904] 0.2603245 0.2874353 0.2873520 0.2870879 0.2869982 0.2869273 0.2867752
##  [911] 0.2778405 0.2861865 0.2854966 0.2853636 0.2852294 0.2848990 0.2583263
##  [918] 0.2840388 0.2838708 0.2838360 0.2838282 0.2829050 0.2822796 0.2822086
##  [925] 0.2820458 0.2819135 0.2813726 0.2809944 0.2803353 0.2791535 0.2784816
##  [932] 0.2780229 0.2780190 0.2772036 0.2771768 0.2770177 0.2768453 0.2767229
##  [939] 0.2755336 0.2752222 0.2741886 0.2734069 0.2733788 0.2722726 0.2722202
##  [946] 0.2716805 0.2708793 0.2704938 0.2692896 0.2691940 0.2690145 0.2683760
##  [953] 0.2682512 0.2679751 0.2668364 0.2649655 0.2647533 0.2643738 0.2642738
##  [960] 0.2622543 0.2621682 0.2609062 0.2599341 0.2598898 0.2590887 0.2586308
##  [967] 0.2564886 0.2559664 0.2558490 0.2556358 0.2545122 0.2536568 0.2533513
##  [974] 0.2528391 0.2527392 0.2527053 0.2513140 0.2510030 0.2496681 0.2493187
##  [981] 0.2478091 0.2457410 0.2421385 0.2395493 0.2369358 0.2365501 0.2313769
##  [988] 0.2303389 0.2255772 0.2254612 0.2252803 0.2241263 0.2225102 0.2196887
##  [995] 0.2169635 0.2165784 0.2125222 0.2069702 0.1937258 0.0000000
## 
## [[3]]
##    [1] 0.0000000 0.2464694 0.3243645 0.3855254 0.4340403 0.5012862 0.5421796
##    [8] 0.5494284 0.5688944 0.5846148 0.5940455 0.6035042 0.6097910 0.6127777
##   [15] 0.6214563 0.6270984 0.6356415 0.6369099 0.6453687 0.6520751 0.6581177
##   [22] 0.6611420 0.6645852 0.6771754 0.6789067 0.6878790 0.6904887 0.6928888
##   [29] 0.6946430 0.6972222 0.6984626 0.7012825 0.7044670 0.7077194 0.7098430
##   [36] 0.7109207 0.7125057 0.7132993 0.7147571 0.7156501 0.7170477 0.7190264
##   [43] 0.7203668 0.7222744 0.7239809 0.7250945 0.7290052 0.7305708 0.7326949
##   [50] 0.7343084 0.7348564 0.7372127 0.7393044 0.7412834 0.7433616 0.7440642
##   [57] 0.7467633 0.7481981 0.7489029 0.7494858 0.7508098 0.7536373 0.7543124
##   [64] 0.7552628 0.7570176 0.7577523 0.7586811 0.7608122 0.7616304 0.7622785
##   [71] 0.7642053 0.7653250 0.7663426 0.7688879 0.7705151 0.7710717 0.7722475
##   [78] 0.7729354 0.7739454 0.7748314 0.7755950 0.7764347 0.7774505 0.7781307
##   [85] 0.7796511 0.7806359 0.7814693 0.7820335 0.7829856 0.7839486 0.7850751
##   [92] 0.7865348 0.7871453 0.7876852 0.7881338 0.7888135 0.7897203 0.7905529
##   [99] 0.7914894 0.7919865 0.7924654 0.7934669 0.7941125 0.7947442 0.7954871
##  [106] 0.7961915 0.7968644 0.7978918 0.7984561 0.7994336 0.7998898 0.8006980
##  [113] 0.8014358 0.8019504 0.8028527 0.8034994 0.8050201 0.8054801 0.8060477
##  [120] 0.8066860 0.8071932 0.8084738 0.8091986 0.8099769 0.8104703 0.8112169
##  [127] 0.8121463 0.8128468 0.8137681 0.8142579 0.8147666 0.8152660 0.8159030
##  [134] 0.8166028 0.8173330 0.8179904 0.8188653 0.8198572 0.8203934 0.8208394
##  [141] 0.8214698 0.8219338 0.8223837 0.8228834 0.8234180 0.8241542 0.8248635
##  [148] 0.8259707 0.8269580 0.8273609 0.8280090 0.8284646 0.8292440 0.8300547
##  [155] 0.8308730 0.8313369 0.8317400 0.8321638 0.8327213 0.8334103 0.8339182
##  [162] 0.8347807 0.8354630 0.8358970 0.8363433 0.8370576 0.8374362 0.8381673
##  [169] 0.8391551 0.8397370 0.8403640 0.8410055 0.8413845 0.8418744 0.8421872
##  [176] 0.8427884 0.8431366 0.8436079 0.8440456 0.8445452 0.8452069 0.8457481
##  [183] 0.8461284 0.8466064 0.8471017 0.8478677 0.8482905 0.8488507 0.8492334
##  [190] 0.8496884 0.8503308 0.8507401 0.8513915 0.8518002 0.8521647 0.8524656
##  [197] 0.8530813 0.8534629 0.8538397 0.8541536 0.8544993 0.8549811 0.8553050
##  [204] 0.8556667 0.8560678 0.8564064 0.8568912 0.8572647 0.8576461 0.8579745
##  [211] 0.8585222 0.8588796 0.8593935 0.8597357 0.8601875 0.8605377 0.8610295
##  [218] 0.8613497 0.8618614 0.8622826 0.8626092 0.8632226 0.8637115 0.8643445
##  [225] 0.8646772 0.8650618 0.8656831 0.8660165 0.8665579 0.8670957 0.8674038
##  [232] 0.8677345 0.8680299 0.8683979 0.8687147 0.8690819 0.8694073 0.8697841
##  [239] 0.8700899 0.8704067 0.8708466 0.8712446 0.8715684 0.8721134 0.8725324
##  [246] 0.8728972 0.8731981 0.8736372 0.8739281 0.8743481 0.8746197 0.8749457
##  [253] 0.8753777 0.8756778 0.8761516 0.8764501 0.8768746 0.8772666 0.8775760
##  [260] 0.8778723 0.8782989 0.8786069 0.8789013 0.8792769 0.8796155 0.8799422
##  [267] 0.8802648 0.8805730 0.8809053 0.8811616 0.8814943 0.8817779 0.8821315
##  [274] 0.8825124 0.8829944 0.8832957 0.8835756 0.8838974 0.8842655 0.8845158
##  [281] 0.8849382 0.8852453 0.8855218 0.8857881 0.8860780 0.8863561 0.8867059
##  [288] 0.8869471 0.8874912 0.8877629 0.8882530 0.8888143 0.8890632 0.8893219
##  [295] 0.8896199 0.8899112 0.8901733 0.8906033 0.8908645 0.8911250 0.8913608
##  [302] 0.8916899 0.8919491 0.8923418 0.8928226 0.8931759 0.8934550 0.8938025
##  [309] 0.8941189 0.8944125 0.8946756 0.8950029 0.8953841 0.8956706 0.8960036
##  [316] 0.8963353 0.8966838 0.8969344 0.8971863 0.8974675 0.8977294 0.8979786
##  [323] 0.8982769 0.8985275 0.8987760 0.8990487 0.8993192 0.8995865 0.8998111
##  [330] 0.9000493 0.9003034 0.9005485 0.9008970 0.9011494 0.9014176 0.9016574
##  [337] 0.9019157 0.9022158 0.9024538 0.9027495 0.9030958 0.9034342 0.9037624
##  [344] 0.9041194 0.9044324 0.9047413 0.9049588 0.9053213 0.9056315 0.9058889
##  [351] 0.9061284 0.9063857 0.9066518 0.9069682 0.9072190 0.9074630 0.9077024
##  [358] 0.9079296 0.9081923 0.9084227 0.9086372 0.9088454 0.9091022 0.9093656
##  [365] 0.9095893 0.9098222 0.9101238 0.9103978 0.9106648 0.9109178 0.9111502
##  [372] 0.9113619 0.9116335 0.9118534 0.9121429 0.9123660 0.9126051 0.9128077
##  [379] 0.9130420 0.9133201 0.9135110 0.9137345 0.9139698 0.9142024 0.9144319
##  [386] 0.9146470 0.9148439 0.9150526 0.9152897 0.9155780 0.9157917 0.9160053
##  [393] 0.9161880 0.9164162 0.9166607 0.9168986 0.9171100 0.9173206 0.9175664
##  [400] 0.9178931 0.9181303 0.9183394 0.9185612 0.9188217 0.9190668 0.9193439
##  [407] 0.9195588 0.9198071 0.9200144 0.9202213 0.9204342 0.9206589 0.9208819
##  [414] 0.9211084 0.9212941 0.9214969 0.9217195 0.9219554 0.9221702 0.9223731
##  [421] 0.9227251 0.9229379 0.9231404 0.9234521 0.9236538 0.9238145 0.9241178
##  [428] 0.9243190 0.9245196 0.9247201 0.9249170 0.9251545 0.9253757 0.9256060
##  [435] 0.9258492 0.9260483 0.9262604 0.9264590 0.9266768 0.9268733 0.9270501
##  [442] 0.9273078 0.9275269 0.9277303 0.9279436 0.9281512 0.9283575 0.9285604
##  [449] 0.9287545 0.9289479 0.9291597 0.9293570 0.9296016 0.9297962 0.9299916
##  [456] 0.9302398 0.9304310 0.9306449 0.9308353 0.9310683 0.9312741 0.9314641
##  [463] 0.9316950 0.9318926 0.9321051 0.9323322 0.9325594 0.9327586 0.9329466
##  [470] 0.9331344 0.9333613 0.9335405 0.9337279 0.9339419 0.9340999 0.9342866
##  [477] 0.9344764 0.9347071 0.9349052 0.9350981 0.9353012 0.9354862 0.9356615
##  [484] 0.9358458 0.9360686 0.9362573 0.9364361 0.9366193 0.9368028 0.9370064
##  [491] 0.9371871 0.9374000 0.9376435 0.9378249 0.9380314 0.9382492 0.9384479
##  [498] 0.9386209 0.9388027 0.9389674 0.9391509 0.9393182 0.9395002 0.9396776
##  [505] 0.9398525 0.9400294 0.9402062 0.9403953 0.9405719 0.9407649 0.9409906
##  [512] 0.9411778 0.9413684 0.9415444 0.9417204 0.9419333 0.9421099 0.9422934
##  [519] 0.9424684 0.9426662 0.9428798 0.9431200 0.9433021 0.9434755 0.9436679
##  [526] 0.9438628 0.9440449 0.9442784 0.9444754 0.9446518 0.9448322 0.9450590
##  [533] 0.9452295 0.9454000 0.9455589 0.9457291 0.9459010 0.9460529 0.9462124
##  [540] 0.9464372 0.9466375 0.9468066 0.9469608 0.9471396 0.9473080 0.9474730
##  [547] 0.9476476 0.9478338 0.9480016 0.9481875 0.9483589 0.9485204 0.9486899
##  [554] 0.9488811 0.9490476 0.9492447 0.9494150 0.9495806 0.9497458 0.9499845
##  [561] 0.9501490 0.9503164 0.9504969 0.9506636 0.9508248 0.9510006 0.9511759
##  [568] 0.9514082 0.9515686 0.9517345 0.9518945 0.9520544 0.9522139 0.9523855
##  [575] 0.9525708 0.9527302 0.9528876 0.9530580 0.9532147 0.9533848 0.9535408
##  [582] 0.9536872 0.9538603 0.9540033 0.9542233 0.9544279 0.9545827 0.9547373
##  [589] 0.9548914 0.9550464 0.9552350 0.9553891 0.9555428 0.9556962 0.9558496
##  [596] 0.9560138 0.9561833 0.9563360 0.9564879 0.9566392 0.9568017 0.9569589
##  [603] 0.9571094 0.9572551 0.9574115 0.9575626 0.9577117 0.9578563 0.9580062
##  [610] 0.9581812 0.9583366 0.9584852 0.9586489 0.9587969 0.9589448 0.9590925
##  [617] 0.9592401 0.9593875 0.9595334 0.9596792 0.9598277 0.9599693 0.9601146
##  [624] 0.9602597 0.9604048 0.9605498 0.9606945 0.9608390 0.9609834 0.9611278
##  [631] 0.9612876 0.9614502 0.9615941 0.9617348 0.9618723 0.9620223 0.9621761
##  [638] 0.9623277 0.9624706 0.9626120 0.9627827 0.9629405 0.9630831 0.9632604
##  [645] 0.9634027 0.9635448 0.9636852 0.9638273 0.9639656 0.9640928 0.9642337
##  [652] 0.9643742 0.9645184 0.9646585 0.9648230 0.9649984 0.9651276 0.9652734
##  [659] 0.9654130 0.9655525 0.9656917 0.9658297 0.9659851 0.9661129 0.9662443
##  [666] 0.9663919 0.9665304 0.9666666 0.9668051 0.9669431 0.9670808 0.9672421
##  [673] 0.9673835 0.9675211 0.9676570 0.9678048 0.9679414 0.9680781 0.9682302
##  [680] 0.9683663 0.9685271 0.9686710 0.9688065 0.9689419 0.9690667 0.9692016
##  [687] 0.9693365 0.9694865 0.9696200 0.9697534 0.9698867 0.9700190 0.9701708
##  [694] 0.9703127 0.9704747 0.9706045 0.9707343 0.9708641 0.9709901 0.9711173
##  [701] 0.9712542 0.9713873 0.9715135 0.9716397 0.9717657 0.9718913 0.9720362
##  [708] 0.9721616 0.9722869 0.9724004 0.9725404 0.9726652 0.9727897 0.9729141
##  [715] 0.9730366 0.9731607 0.9732921 0.9734255 0.9735493 0.9736888 0.9738124
##  [722] 0.9739359 0.9740593 0.9741821 0.9743042 0.9744263 0.9745747 0.9746939
##  [729] 0.9748154 0.9749367 0.9750578 0.9751784 0.9752930 0.9754131 0.9755332
##  [736] 0.9756566 0.9757692 0.9759094 0.9760291 0.9761544 0.9762728 0.9763923
##  [743] 0.9765117 0.9766309 0.9767500 0.9768690 0.9769874 0.9771024 0.9772206
##  [750] 0.9773388 0.9774568 0.9775747 0.9776925 0.9778203 0.9779417 0.9780995
##  [757] 0.9782168 0.9783418 0.9784555 0.9785865 0.9787034 0.9788320 0.9789485
##  [764] 0.9790647 0.9791807 0.9792965 0.9794118 0.9795269 0.9796541 0.9797802
##  [771] 0.9798948 0.9800090 0.9801231 0.9802454 0.9803574 0.9804708 0.9805838
##  [778] 0.9806965 0.9808089 0.9809212 0.9810332 0.9811451 0.9812569 0.9813829
##  [785] 0.9814962 0.9816076 0.9817188 0.9818297 0.9819472 0.9820574 0.9821671
##  [792] 0.9822767 0.9823861 0.9824954 0.9826126 0.9827217 0.9828307 0.9829393
##  [799] 0.9830476 0.9831558 0.9832632 0.9833706 0.9834903 0.9836151 0.9837200
##  [806] 0.9838272 0.9839343 0.9840413 0.9841481 0.9842546 0.9843610 0.9844673
##  [813] 0.9845736 0.9846796 0.9847854 0.9848911 0.9850032 0.9851087 0.9852129
##  [820] 0.9853179 0.9854227 0.9855275 0.9856612 0.9857653 0.9858716 0.9859766
##  [827] 0.9860798 0.9861826 0.9862853 0.9863991 0.9865013 0.9866034 0.9867054
##  [834] 0.9868069 0.9869081 0.9870091 0.9871225 0.9872232 0.9873295 0.9874300
##  [841] 0.9875305 0.9876283 0.9877389 0.9878424 0.9879421 0.9880415 0.9881406
##  [848] 0.9882392 0.9883377 0.9884359 0.9885330 0.9886310 0.9887289 0.9888265
##  [855] 0.9889233 0.9890199 0.9891164 0.9892128 0.9893086 0.9894045 0.9894995
##  [862] 0.9895939 0.9896838 0.9897779 0.9898719 0.9899642 0.9900568 0.9901490
##  [869] 0.9902362 0.9903275 0.9904188 0.9905100 0.9906009 0.9906916 0.9907822
##  [876] 0.9908722 0.9909622 0.9910520 0.9911560 0.9912452 0.9913343 0.9914231
##  [883] 0.9915118 0.9916005 0.9916885 0.9917771 0.9918650 0.9919528 0.9920406
##  [890] 0.9921274 0.9922141 0.9923005 0.9923805 0.9924666 0.9925479 0.9926328
##  [897] 0.9927176 0.9928021 0.9928865 0.9929709 0.9930551 0.9931386 0.9932219
##  [904] 0.9933048 0.9933896 0.9934723 0.9935549 0.9936374 0.9937199 0.9938023
##  [911] 0.9938846 0.9939689 0.9940509 0.9941325 0.9942140 0.9942954 0.9943767
##  [918] 0.9944651 0.9945458 0.9946265 0.9947071 0.9947878 0.9948679 0.9949476
##  [925] 0.9950274 0.9951070 0.9951865 0.9952658 0.9953448 0.9954235 0.9955015
##  [932] 0.9955791 0.9956565 0.9957339 0.9958108 0.9958877 0.9959645 0.9960412
##  [939] 0.9961179 0.9961939 0.9962697 0.9963450 0.9964198 0.9964946 0.9965688
##  [946] 0.9966430 0.9967169 0.9967903 0.9968635 0.9969361 0.9970087 0.9970811
##  [953] 0.9971532 0.9972252 0.9972971 0.9973684 0.9974387 0.9975088 0.9975788
##  [960] 0.9976487 0.9977176 0.9977864 0.9978545 0.9979221 0.9979897 0.9980569
##  [967] 0.9981239 0.9981898 0.9982553 0.9983209 0.9983863 0.9984511 0.9985155
##  [974] 0.9985798 0.9986438 0.9987077 0.9987716 0.9988349 0.9988979 0.9989603
##  [981] 0.9990225 0.9990840 0.9991445 0.9992031 0.9992606 0.9993168 0.9993728
##  [988] 0.9994264 0.9994795 0.9995304 0.9995813 0.9996321 0.9996824 0.9997320
##  [995] 0.9997803 0.9998274 0.9998743 0.9999196 0.9999624 1.0000000
## 
## [[4]]
##    [1] 2.464694e-01 7.789508e-02 6.116092e-02 4.851489e-02 6.724593e-02
##    [6] 4.089334e-02 7.248887e-03 1.946592e-02 1.572046e-02 9.430710e-03
##   [11] 9.458650e-03 6.286770e-03 2.986726e-03 8.678614e-03 5.642148e-03
##   [16] 8.543059e-03 1.268435e-03 8.458780e-03 6.706412e-03 6.042572e-03
##   [21] 3.024302e-03 3.443190e-03 1.259017e-02 1.731353e-03 8.972328e-03
##   [26] 2.609642e-03 2.400092e-03 1.754203e-03 2.579202e-03 1.240446e-03
##   [31] 2.819845e-03 3.184558e-03 3.252363e-03 2.123604e-03 1.077721e-03
##   [36] 1.585018e-03 7.935488e-04 1.457803e-03 8.929760e-04 1.397596e-03
##   [41] 1.978693e-03 1.340406e-03 1.907685e-03 1.706483e-03 1.113609e-03
##   [46] 3.910670e-03 1.565596e-03 2.124140e-03 1.613428e-03 5.480717e-04
##   [51] 2.356286e-03 2.091678e-03 1.978956e-03 2.078194e-03 7.026366e-04
##   [56] 2.699116e-03 1.434773e-03 7.048067e-04 5.828759e-04 1.324045e-03
##   [61] 2.827509e-03 6.750502e-04 9.504278e-04 1.754800e-03 7.346919e-04
##   [66] 9.288564e-04 2.131095e-03 8.181593e-04 6.480524e-04 1.926819e-03
##   [71] 1.119699e-03 1.017610e-03 2.545323e-03 1.627224e-03 5.565253e-04
##   [76] 1.175797e-03 6.879784e-04 1.009974e-03 8.859530e-04 7.636652e-04
##   [81] 8.397244e-04 1.015786e-03 6.801922e-04 1.520348e-03 9.848599e-04
##   [86] 8.334112e-04 5.641156e-04 9.520935e-04 9.630206e-04 1.126541e-03
##   [91] 1.459652e-03 6.105199e-04 5.399031e-04 4.485799e-04 6.796848e-04
##   [96] 9.068784e-04 8.326130e-04 9.365038e-04 4.970316e-04 4.788962e-04
##  [101] 1.001515e-03 6.456385e-04 6.316998e-04 7.428245e-04 7.044493e-04
##  [106] 6.728735e-04 1.027436e-03 5.642822e-04 9.774864e-04 4.562299e-04
##  [111] 8.081631e-04 7.377907e-04 5.146330e-04 9.023199e-04 6.466507e-04
##  [116] 1.520735e-03 4.600126e-04 5.675701e-04 6.383317e-04 5.072174e-04
##  [121] 1.280612e-03 7.247460e-04 7.783202e-04 4.933596e-04 7.465832e-04
##  [126] 9.294812e-04 7.004944e-04 9.212622e-04 4.897746e-04 5.087141e-04
##  [131] 4.994311e-04 6.370267e-04 6.997793e-04 7.301575e-04 6.574175e-04
##  [136] 8.749244e-04 9.919120e-04 5.361461e-04 4.459950e-04 6.304585e-04
##  [141] 4.640063e-04 4.498524e-04 4.996951e-04 5.346173e-04 7.362320e-04
##  [146] 7.092998e-04 1.107139e-03 9.873360e-04 4.028803e-04 6.480807e-04
##  [151] 4.556698e-04 7.793765e-04 8.106962e-04 8.182675e-04 4.639272e-04
##  [156] 4.031278e-04 4.237960e-04 5.574907e-04 6.889959e-04 5.079277e-04
##  [161] 8.624077e-04 6.823526e-04 4.340298e-04 4.462449e-04 7.143595e-04
##  [166] 3.785946e-04 7.310609e-04 9.878145e-04 5.818519e-04 6.269909e-04
##  [171] 6.415504e-04 3.789629e-04 4.899718e-04 3.127985e-04 6.011391e-04
##  [176] 3.482123e-04 4.713088e-04 4.376612e-04 4.996584e-04 6.616602e-04
##  [181] 5.411765e-04 3.803573e-04 4.779629e-04 4.953617e-04 7.659465e-04
##  [186] 4.227859e-04 5.602561e-04 3.826311e-04 4.550936e-04 6.423091e-04
##  [191] 4.093166e-04 6.514266e-04 4.087482e-04 3.644462e-04 3.009494e-04
##  [196] 6.156094e-04 3.816500e-04 3.768421e-04 3.138064e-04 3.457195e-04
##  [201] 4.818057e-04 3.239330e-04 3.617027e-04 4.010627e-04 3.386176e-04
##  [206] 4.848401e-04 3.735094e-04 3.813907e-04 3.284125e-04 5.476614e-04
##  [211] 3.573602e-04 5.139514e-04 3.421306e-04 4.518908e-04 3.501398e-04
##  [216] 4.918305e-04 3.201645e-04 5.117714e-04 4.211794e-04 3.265763e-04
##  [221] 6.134448e-04 4.888377e-04 6.329649e-04 3.327310e-04 3.845924e-04
##  [226] 6.213194e-04 3.333643e-04 5.414708e-04 5.377968e-04 3.081171e-04
##  [231] 3.306762e-04 2.953625e-04 3.680492e-04 3.167634e-04 3.671938e-04
##  [236] 3.254485e-04 3.767978e-04 3.057461e-04 3.168497e-04 4.398689e-04
##  [241] 3.979778e-04 3.237771e-04 5.450061e-04 4.190719e-04 3.647202e-04
##  [246] 3.009355e-04 4.390821e-04 2.909521e-04 4.199613e-04 2.716368e-04
##  [251] 3.259643e-04 4.320093e-04 3.001080e-04 4.737828e-04 2.985616e-04
##  [256] 4.244423e-04 3.920608e-04 3.093582e-04 2.962684e-04 4.265759e-04
##  [261] 3.080029e-04 2.944682e-04 3.755411e-04 3.386066e-04 3.267700e-04
##  [266] 3.225659e-04 3.081751e-04 3.323003e-04 2.563303e-04 3.326501e-04
##  [271] 2.836794e-04 3.535526e-04 3.808795e-04 4.820598e-04 3.012843e-04
##  [276] 2.798761e-04 3.217821e-04 3.681464e-04 2.502863e-04 4.223981e-04
##  [281] 3.070730e-04 2.765643e-04 2.663021e-04 2.898474e-04 2.781420e-04
##  [286] 3.497612e-04 2.411841e-04 5.441154e-04 2.716735e-04 4.901212e-04
##  [291] 5.613267e-04 2.489249e-04 2.586949e-04 2.979138e-04 2.913458e-04
##  [296] 2.620966e-04 4.299629e-04 2.612541e-04 2.605295e-04 2.357902e-04
##  [301] 3.290397e-04 2.592207e-04 3.926819e-04 4.808106e-04 3.532889e-04
##  [306] 2.791334e-04 3.475391e-04 3.163239e-04 2.936760e-04 2.630509e-04
##  [311] 3.273479e-04 3.811958e-04 2.864939e-04 3.329262e-04 3.316925e-04
##  [316] 3.485211e-04 2.506018e-04 2.519484e-04 2.811539e-04 2.619206e-04
##  [321] 2.491650e-04 2.982969e-04 2.506156e-04 2.485759e-04 2.726023e-04
##  [326] 2.705813e-04 2.672446e-04 2.246469e-04 2.381320e-04 2.541254e-04
##  [331] 2.451408e-04 3.485046e-04 2.523561e-04 2.681976e-04 2.397897e-04
##  [336] 2.583597e-04 3.000420e-04 2.380029e-04 2.957001e-04 3.462809e-04
##  [341] 3.384314e-04 3.282144e-04 3.569941e-04 3.129653e-04 3.089298e-04
##  [346] 2.174606e-04 3.625752e-04 3.101251e-04 2.573991e-04 2.395850e-04
##  [351] 2.572967e-04 2.660492e-04 3.164286e-04 2.508214e-04 2.439852e-04
##  [356] 2.393929e-04 2.272308e-04 2.626254e-04 2.304454e-04 2.144655e-04
##  [361] 2.081954e-04 2.568182e-04 2.634110e-04 2.237382e-04 2.328376e-04
##  [366] 3.016666e-04 2.739171e-04 2.670864e-04 2.529653e-04 2.323627e-04
##  [371] 2.117615e-04 2.716108e-04 2.198103e-04 2.895051e-04 2.231144e-04
##  [376] 2.390776e-04 2.026644e-04 2.342891e-04 2.780546e-04 1.909825e-04
##  [381] 2.234708e-04 2.352786e-04 2.326084e-04 2.294625e-04 2.151100e-04
##  [386] 1.968878e-04 2.087510e-04 2.371339e-04 2.882754e-04 2.136577e-04
##  [391] 2.135977e-04 1.826776e-04 2.282606e-04 2.444489e-04 2.379588e-04
##  [396] 2.113664e-04 2.105707e-04 2.458166e-04 3.267670e-04 2.371241e-04
##  [401] 2.091621e-04 2.218031e-04 2.604454e-04 2.450853e-04 2.771016e-04
##  [406] 2.149348e-04 2.483426e-04 2.072387e-04 2.068718e-04 2.129455e-04
##  [411] 2.247363e-04 2.229878e-04 2.264913e-04 1.857096e-04 2.027937e-04
##  [416] 2.226222e-04 2.358783e-04 2.148024e-04 2.029024e-04 3.520116e-04
##  [421] 2.127251e-04 2.025446e-04 3.117252e-04 2.016721e-04 1.606878e-04
##  [426] 3.033025e-04 2.012425e-04 2.005817e-04 2.005291e-04 1.968917e-04
##  [431] 2.374189e-04 2.212492e-04 2.302614e-04 2.432647e-04 1.990935e-04
##  [436] 2.120864e-04 1.985855e-04 2.177686e-04 1.965472e-04 1.767469e-04
##  [441] 2.577270e-04 2.191120e-04 2.034124e-04 2.133119e-04 2.076053e-04
##  [446] 2.062734e-04 2.029396e-04 1.940819e-04 1.933910e-04 2.118036e-04
##  [451] 1.972729e-04 2.446082e-04 1.946030e-04 1.954390e-04 2.482005e-04
##  [456] 1.911321e-04 2.139532e-04 1.904151e-04 2.329562e-04 2.058467e-04
##  [461] 1.899867e-04 2.308317e-04 1.976686e-04 2.124479e-04 2.271348e-04
##  [466] 2.271991e-04 1.992313e-04 1.879124e-04 1.878676e-04 2.268391e-04
##  [471] 1.792119e-04 1.874352e-04 2.139842e-04 1.580262e-04 1.866679e-04
##  [476] 1.897825e-04 2.307328e-04 1.981209e-04 1.928586e-04 2.031372e-04
##  [481] 1.850088e-04 1.752914e-04 1.842821e-04 2.227793e-04 1.886794e-04
##  [486] 1.788700e-04 1.831504e-04 1.835022e-04 2.036251e-04 1.806856e-04
##  [491] 2.129227e-04 2.434718e-04 1.814447e-04 2.065036e-04 2.177988e-04
##  [496] 1.986392e-04 1.729840e-04 1.818266e-04 1.646799e-04 1.834906e-04
##  [501] 1.673081e-04 1.820295e-04 1.774402e-04 1.748574e-04 1.768602e-04
##  [506] 1.768278e-04 1.891125e-04 1.766150e-04 1.929685e-04 2.257172e-04
##  [511] 1.871999e-04 1.906262e-04 1.759777e-04 1.759616e-04 2.129367e-04
##  [516] 1.765637e-04 1.835772e-04 1.749885e-04 1.977764e-04 2.135889e-04
##  [521] 2.402010e-04 1.820984e-04 1.734442e-04 1.924060e-04 1.948344e-04
##  [526] 1.821371e-04 2.334387e-04 1.970539e-04 1.763716e-04 1.804160e-04
##  [531] 2.268553e-04 1.704930e-04 1.704386e-04 1.588869e-04 1.701840e-04
##  [536] 1.719678e-04 1.518986e-04 1.594915e-04 2.247987e-04 2.003065e-04
##  [541] 1.691097e-04 1.541490e-04 1.788357e-04 1.683415e-04 1.650027e-04
##  [546] 1.746296e-04 1.861725e-04 1.678454e-04 1.858714e-04 1.714619e-04
##  [551] 1.614447e-04 1.695137e-04 1.912402e-04 1.664283e-04 1.971039e-04
##  [556] 1.703544e-04 1.655687e-04 1.651740e-04 2.386940e-04 1.645878e-04
##  [561] 1.673583e-04 1.804875e-04 1.666836e-04 1.612005e-04 1.758557e-04
##  [566] 1.753129e-04 2.322529e-04 1.604297e-04 1.659090e-04 1.599191e-04
##  [571] 1.599143e-04 1.595715e-04 1.715189e-04 1.853606e-04 1.593531e-04
##  [576] 1.573865e-04 1.704811e-04 1.566943e-04 1.700956e-04 1.560086e-04
##  [581] 1.463815e-04 1.730889e-04 1.430048e-04 2.199687e-04 2.045893e-04
##  [586] 1.548410e-04 1.545992e-04 1.540660e-04 1.550166e-04 1.886371e-04
##  [591] 1.540674e-04 1.537028e-04 1.534242e-04 1.533708e-04 1.641631e-04
##  [596] 1.694935e-04 1.527902e-04 1.518327e-04 1.513694e-04 1.624532e-04
##  [601] 1.572456e-04 1.504573e-04 1.457095e-04 1.563975e-04 1.510523e-04
##  [606] 1.491070e-04 1.445923e-04 1.499742e-04 1.749287e-04 1.554815e-04
##  [611] 1.485447e-04 1.637329e-04 1.480037e-04 1.478730e-04 1.476761e-04
##  [616] 1.476571e-04 1.473355e-04 1.459397e-04 1.457966e-04 1.485445e-04
##  [621] 1.415441e-04 1.452978e-04 1.451394e-04 1.451108e-04 1.449179e-04
##  [626] 1.447543e-04 1.444887e-04 1.443895e-04 1.444290e-04 1.598146e-04
##  [631] 1.625446e-04 1.439040e-04 1.406848e-04 1.375203e-04 1.500401e-04
##  [636] 1.537630e-04 1.515977e-04 1.429382e-04 1.413311e-04 1.707886e-04
##  [641] 1.577864e-04 1.425179e-04 1.773330e-04 1.422971e-04 1.421546e-04
##  [646] 1.403551e-04 1.420641e-04 1.383523e-04 1.272032e-04 1.409251e-04
##  [651] 1.404940e-04 1.441275e-04 1.401335e-04 1.645331e-04 1.753786e-04
##  [656] 1.292240e-04 1.457981e-04 1.395989e-04 1.394944e-04 1.392207e-04
##  [661] 1.379985e-04 1.553395e-04 1.278277e-04 1.313551e-04 1.476287e-04
##  [666] 1.385185e-04 1.362233e-04 1.384518e-04 1.379937e-04 1.377636e-04
##  [671] 1.612340e-04 1.414065e-04 1.375831e-04 1.359869e-04 1.477163e-04
##  [676] 1.366662e-04 1.366251e-04 1.521749e-04 1.361034e-04 1.607155e-04
##  [681] 1.439884e-04 1.354547e-04 1.354330e-04 1.247856e-04 1.349267e-04
##  [686] 1.348246e-04 1.500150e-04 1.334718e-04 1.334352e-04 1.333383e-04
##  [691] 1.323165e-04 1.517098e-04 1.419418e-04 1.619961e-04 1.298530e-04
##  [696] 1.297808e-04 1.297753e-04 1.260244e-04 1.271888e-04 1.368419e-04
##  [701] 1.331433e-04 1.261885e-04 1.261773e-04 1.260512e-04 1.255421e-04
##  [706] 1.449613e-04 1.253637e-04 1.253330e-04 1.134616e-04 1.399755e-04
##  [711] 1.248187e-04 1.245345e-04 1.243889e-04 1.225210e-04 1.240905e-04
##  [716] 1.313523e-04 1.334154e-04 1.238237e-04 1.394960e-04 1.236262e-04
##  [721] 1.235196e-04 1.233610e-04 1.227660e-04 1.221488e-04 1.220731e-04
##  [726] 1.484194e-04 1.191633e-04 1.215318e-04 1.213143e-04 1.211246e-04
##  [731] 1.205802e-04 1.145520e-04 1.201732e-04 1.200909e-04 1.233649e-04
##  [736] 1.125860e-04 1.401936e-04 1.197446e-04 1.252769e-04 1.184234e-04
##  [741] 1.194856e-04 1.193443e-04 1.192818e-04 1.191065e-04 1.189297e-04
##  [746] 1.183819e-04 1.150353e-04 1.182017e-04 1.181838e-04 1.180602e-04
##  [751] 1.178902e-04 1.177829e-04 1.277591e-04 1.214309e-04 1.578248e-04
##  [756] 1.172279e-04 1.250754e-04 1.136865e-04 1.309817e-04 1.168692e-04
##  [761] 1.286349e-04 1.164640e-04 1.162686e-04 1.159389e-04 1.158623e-04
##  [766] 1.152924e-04 1.151198e-04 1.271899e-04 1.260426e-04 1.146155e-04
##  [771] 1.142280e-04 1.140588e-04 1.223446e-04 1.119367e-04 1.134792e-04
##  [776] 1.129601e-04 1.127141e-04 1.123724e-04 1.123082e-04 1.119972e-04
##  [781] 1.119095e-04 1.117667e-04 1.260097e-04 1.133641e-04 1.113191e-04
##  [786] 1.112832e-04 1.108836e-04 1.174638e-04 1.102489e-04 1.096826e-04
##  [791] 1.095964e-04 1.094236e-04 1.092929e-04 1.171801e-04 1.090592e-04
##  [796] 1.090478e-04 1.085619e-04 1.082694e-04 1.082388e-04 1.074280e-04
##  [801] 1.073937e-04 1.197023e-04 1.247459e-04 1.048918e-04 1.072119e-04
##  [806] 1.070880e-04 1.070012e-04 1.068156e-04 1.065045e-04 1.064707e-04
##  [811] 1.062940e-04 1.062437e-04 1.060378e-04 1.057594e-04 1.056826e-04
##  [816] 1.121670e-04 1.054816e-04 1.041942e-04 1.049603e-04 1.048122e-04
##  [821] 1.047758e-04 1.337860e-04 1.040753e-04 1.062620e-04 1.050018e-04
##  [826] 1.032547e-04 1.027748e-04 1.026893e-04 1.137685e-04 1.022531e-04
##  [831] 1.021199e-04 1.019965e-04 1.014143e-04 1.012933e-04 1.009425e-04
##  [836] 1.134045e-04 1.007277e-04 1.062715e-04 1.005354e-04 1.004662e-04
##  [841] 9.776815e-05 1.106124e-04 1.035653e-04 9.970583e-05 9.934979e-05
##  [846] 9.911019e-05 9.857915e-05 9.847547e-05 9.820773e-05 9.717808e-05
##  [851] 9.793244e-05 9.790926e-05 9.760570e-05 9.678631e-05 9.660267e-05
##  [856] 9.647618e-05 9.642136e-05 9.586874e-05 9.581459e-05 9.504099e-05
##  [861] 9.440077e-05 8.992363e-05 9.404144e-05 9.403283e-05 9.229454e-05
##  [866] 9.260160e-05 9.219244e-05 8.725336e-05 9.128950e-05 9.121618e-05
##  [871] 9.120948e-05 9.091517e-05 9.070878e-05 9.058150e-05 9.004693e-05
##  [876] 8.998481e-05 8.981899e-05 1.039458e-04 8.923363e-05 8.908088e-05
##  [881] 8.879252e-05 8.875217e-05 8.864236e-05 8.805488e-05 8.860872e-05
##  [886] 8.789421e-05 8.782281e-05 8.775590e-05 8.678108e-05 8.672404e-05
##  [891] 8.639837e-05 8.003295e-05 8.607033e-05 8.125341e-05 8.495462e-05
##  [896] 8.477722e-05 8.454603e-05 8.440419e-05 8.438407e-05 8.419594e-05
##  [901] 8.348491e-05 8.329346e-05 8.289046e-05 8.478970e-05 8.270175e-05
##  [906] 8.265384e-05 8.250196e-05 8.245043e-05 8.240971e-05 8.232236e-05
##  [911] 8.426821e-05 8.198470e-05 8.158990e-05 8.151388e-05 8.143724e-05
##  [916] 8.124868e-05 8.838768e-05 8.075879e-05 8.066330e-05 8.064351e-05
##  [921] 8.063907e-05 8.011535e-05 7.976154e-05 7.972143e-05 7.962947e-05
##  [926] 7.955477e-05 7.924981e-05 7.903691e-05 7.866652e-05 7.800470e-05
##  [931] 7.762964e-05 7.737409e-05 7.737194e-05 7.691875e-05 7.690390e-05
##  [936] 7.681560e-05 7.672006e-05 7.665223e-05 7.599474e-05 7.582308e-05
##  [941] 7.525467e-05 7.482614e-05 7.481076e-05 7.420657e-05 7.417799e-05
##  [946] 7.388419e-05 7.344903e-05 7.324013e-05 7.258946e-05 7.253795e-05
##  [951] 7.244126e-05 7.209780e-05 7.203073e-05 7.188253e-05 7.127294e-05
##  [956] 7.027700e-05 7.016446e-05 6.996347e-05 6.991054e-05 6.884619e-05
##  [961] 6.880098e-05 6.814017e-05 6.763336e-05 6.761030e-05 6.719413e-05
##  [966] 6.695685e-05 6.585227e-05 6.558438e-05 6.552426e-05 6.541506e-05
##  [971] 6.484131e-05 6.440618e-05 6.425115e-05 6.399159e-05 6.394107e-05
##  [976] 6.392388e-05 6.322197e-05 6.306560e-05 6.239654e-05 6.222206e-05
##  [981] 6.147081e-05 6.044907e-05 5.868975e-05 5.744131e-05 5.619475e-05
##  [986] 5.601195e-05 5.358884e-05 5.310911e-05 5.093601e-05 5.088362e-05
##  [991] 5.080200e-05 5.028289e-05 4.956035e-05 4.831145e-05 4.712030e-05
##  [996] 4.695315e-05 4.521091e-05 4.287953e-05 3.756724e-05 0.000000e+00
## 
## [[5]]
##   [1] 21.403395 16.390398 16.210405 15.050736 13.661975 13.322118 12.786402
##   [8] 12.759505 11.662350 11.287004 11.163952 10.891453 10.743218 10.249856
##  [15] 10.182215 10.175150 10.023846 10.017858  9.903857  9.865903  9.699700
##  [22]  9.659129  9.470359  9.439507  9.318211  9.108384  9.009192  8.836800
##  [29]  8.795705  8.284948  8.272759  8.251199  8.121289  8.113277  8.110448
##  [36]  8.083847  8.040045  8.030247  8.024227  7.937467  7.858767  7.791056
##  [43]  7.748554  7.743347  7.621897  7.618669  7.597199  7.514686  7.447793
##  [50]  7.440815  7.324888  7.296124  7.270856  7.264259  7.263409  7.260572
##  [57]  7.247053  7.232328  7.202297  7.159382  7.148179  7.071584  7.061409
##  [64]  7.053746  7.043287  6.993600  6.992998  6.954421  6.907661  6.884762
##  [71]  6.779510  6.770512  6.710106  6.707324  6.665210  6.637143  6.598426
##  [78]  6.591238  6.553512  6.534618  6.429240  6.396448  6.382800  6.379238
##  [85]  6.366920  6.363570  6.325625  6.313641  6.312395  6.304780  6.284451
##  [92]  6.255665  6.236267  6.231489  6.226926  6.222032  6.217640  6.217268
##  [99]  6.210509  6.182208  6.171098  6.168306  6.161418  6.148744  6.147989
## [106]  6.128080  6.108081  6.064337  6.049623  6.039912  6.029312  5.987151
## [113]  5.969664  5.947051  5.937940  5.934862  5.932198  5.922726  5.914222
## [120]  5.908591  5.895376  5.880568  5.845091  5.830307  5.826234  5.821516
## [127]  5.795388  5.773205  5.767061  5.758784  5.756113  5.756074  5.737430
## [134]  5.711981  5.690795  5.687744  5.675998  5.661280  5.653305  5.631399
## [141]  5.614396  5.612547  5.585253  5.582938  5.539100  5.517747  5.516535
## [148]  5.507279  5.500449  5.488202  5.476567  5.473056  5.472504  5.471416
## [155]  5.463893  5.459086  5.452645  5.451427  5.450629  5.426829  5.416871
## [162]  5.411678  5.405038  5.392292  5.388927  5.367334  5.363620  5.363598
## [169]  5.349042  5.324734  5.294343  5.292940  5.290539  5.255857  5.253515
## [176]  5.253114  5.236298  5.231248  5.226273  5.225869  5.200640  5.199227
## [183]  5.186464  5.185245  5.173291  5.138707  5.127339  5.120091  5.112646
## [190]  5.101014  5.100592  5.091117  5.084201  5.080333  5.080159  5.079453
## [197]  5.078715  5.074037  5.070331  5.055459  5.054636  5.048659  5.034669
## [204]  5.026194  5.003264  5.003044  4.989529  4.987982  4.978436  4.966466
## [211]  4.957963  4.955249  4.946654  4.946375  4.943269  4.938965  4.938888
## [218]  4.936403  4.916143  4.913500  4.903277  4.889708  4.889366  4.869063
## [225]  4.868491  4.860355  4.831115  4.825603  4.816979  4.805682  4.793627
## [232]  4.790715  4.785685  4.784162  4.781130  4.778851  4.766690  4.754218
## [239]  4.753204  4.750929  4.748560  4.740903  4.736376  4.730456  4.730160
## [246]  4.729279  4.726910  4.722531  4.722006  4.721325  4.720083  4.718911
## [253]  4.710179  4.699636  4.698027  4.696905  4.696629  4.690003  4.679950
## [260]  4.660112  4.656495  4.649386  4.641561  4.633910  4.619114  4.618427
## [267]  4.606657  4.603622  4.597236  4.593697  4.587418  4.583609  4.574967
## [274]  4.574469  4.546299  4.545338  4.544096  4.539268  4.539061  4.532778
## [281]  4.531772  4.521647  4.516263  4.504158  4.492650  4.474967  4.460749
## [288]  4.448651  4.440570  4.435992  4.424642  4.422142  4.417982  4.417152
## [295]  4.417033  4.414261  4.397456  4.392051  4.389211  4.380265  4.378893
## [302]  4.377574  4.376634  4.374694  4.373422  4.368339  4.360739  4.353507
## [309]  4.351188  4.351054  4.343640  4.341042  4.337136  4.335888  4.321588
## [316]  4.314082  4.304182  4.304068  4.302533  4.300821  4.291826  4.290661
## [323]  4.287228  4.286750  4.286713  4.275907  4.260271  4.258396  4.245420
## [330]  4.238500  4.234641  4.231878  4.216336  4.215658  4.210308  4.206386
## [337]  4.201761  4.194592  4.193078  4.192901  4.188998  4.186020  4.162062
## [344]  4.161852  4.156761  4.153063  4.144944  4.144035  4.143887  4.141175
## [351]  4.129304  4.127502  4.121334  4.112763  4.104726  4.103229  4.098568
## [358]  4.095267  4.089592  4.088075  4.084308  4.071424  4.067862  4.066949
## [365]  4.060692  4.060301  4.053070  4.051850  4.046545  4.038231  4.035694
## [372]  4.033305  4.031091  4.029904  4.022413  4.019886  4.016875  4.015800
## [379]  4.010734  4.008054  4.002386  4.002098  3.981351  3.981157  3.981069
## [386]  3.980974  3.980459  3.976657  3.975768  3.974274  3.973716  3.973384
## [393]  3.972334  3.970910  3.962082  3.952907  3.947659  3.943364  3.937817
## [400]  3.934923  3.932241  3.928869  3.928554  3.923287  3.921229  3.916941
## [407]  3.915406  3.914119  3.910653  3.910001  3.909127  3.907168  3.895822
## [414]  3.890034  3.888219  3.879047  3.874579  3.874319  3.872953  3.872309
## [421]  3.871642  3.869536  3.869498  3.861193  3.859872  3.859346  3.857079
## [428]  3.850740  3.849973  3.848778  3.845366  3.839395  3.838373  3.837071
## [435]  3.836429  3.833497  3.831531  3.824352  3.814332  3.811932  3.811251
## [442]  3.809967  3.808291  3.802930  3.798777  3.793880  3.791712  3.787836
## [449]  3.781088  3.774666  3.770240  3.768986  3.768266  3.766864  3.761140
## [456]  3.758941  3.755074  3.751883  3.749708  3.747660  3.747660  3.746853
## [463]  3.745898  3.739757  3.733949  3.732828  3.729218  3.727145  3.726701
## [470]  3.725270  3.725179  3.722409  3.720063  3.715134  3.714783  3.714296
## [477]  3.711373  3.704786  3.704094  3.700608  3.698238  3.693482  3.690967
## [484]  3.688500  3.686110  3.680496  3.679617  3.676276  3.672591  3.672458
## [491]  3.669221  3.667376  3.662442  3.658669  3.657085  3.653603  3.647181
## [498]  3.642362  3.640106  3.639816  3.633202  3.632644  3.621801  3.619695
## [505]  3.615877  3.615546  3.614844  3.613369  3.612637  3.611963  3.611793
## [512]  3.610032  3.606844  3.606680  3.604842  3.604601  3.600227  3.596693
## [519]  3.593198  3.591025  3.589482  3.587926  3.580787  3.572510  3.571737
## [526]  3.571216  3.570313  3.569316  3.568050  3.562783  3.551965  3.550192
## [533]  3.549626  3.548071  3.546974  3.546121  3.539306  3.538958  3.536939
## [540]  3.536671  3.535761  3.532696  3.529274  3.527721  3.526796  3.525947
## [547]  3.524153  3.522519  3.520152  3.519817  3.512909  3.511088  3.507796
## [554]  3.507617  3.507526  3.506695  3.498547  3.494375  3.488633  3.488168
## [561]  3.486043  3.485347  3.484788  3.480343  3.476446  3.474712  3.456446
## [568]  3.443824  3.440088  3.438339  3.438288  3.434601  3.430290  3.429000
## [575]  3.424143  3.411005  3.408701  3.403496  3.397258  3.396040  3.392658
## [582]  3.390350  3.390116  3.385810  3.385006  3.383309  3.380666  3.378595
## [589]  3.378455  3.377248  3.374846  3.370851  3.367794  3.367208  3.366908
## [596]  3.365580  3.360829  3.350281  3.345165  3.340975  3.336035  3.335073
## [603]  3.329504  3.329245  3.327347  3.320073  3.318686  3.316688  3.316654
## [610]  3.314902  3.313807  3.308719  3.307767  3.306306  3.304104  3.303892
## [617]  3.300292  3.284622  3.283011  3.278656  3.278273  3.277390  3.275603
## [624]  3.275281  3.273103  3.271255  3.268252  3.268252  3.267577  3.265597
## [631]  3.262149  3.261633  3.255054  3.254511  3.254052  3.254030  3.251223
## [638]  3.250669  3.249498  3.249046  3.248394  3.245886  3.243594  3.243371
## [645]  3.241747  3.240999  3.240715  3.236365  3.236283  3.227698  3.222756
## [652]  3.220259  3.218620  3.217137  3.216154  3.215551  3.213077  3.212474
## [659]  3.211271  3.208119  3.206960  3.205542  3.205540  3.200130  3.200112
## [666]  3.200018  3.199676  3.199248  3.193951  3.191287  3.190620  3.190358
## [673]  3.189196  3.187396  3.182070  3.178551  3.178073  3.176224  3.171999
## [680]  3.168692  3.168437  3.164431  3.164177  3.159808  3.158258  3.157062
## [687]  3.150673  3.141184  3.140753  3.139613  3.127560  3.109988  3.106827
## [694]  3.104794  3.098308  3.097446  3.097382  3.079886  3.066359  3.064289
## [701]  3.056774  3.054278  3.054142  3.052616  3.046444  3.045779  3.044279
## [708]  3.043906  3.039796  3.037919  3.037655  3.034194  3.032420  3.029758
## [715]  3.028781  3.026383  3.026268  3.025523  3.024457  3.023109  3.021805
## [722]  3.019866  3.012573  3.004991  3.004060  2.998166  2.997786  2.997393
## [729]  2.994709  2.992367  2.985634  2.985290  2.980591  2.979570  2.979131
## [736]  2.977856  2.977180  2.975272  2.974055  2.972482  2.972052  2.970294
## [743]  2.969516  2.967333  2.965131  2.958293  2.957922  2.956041  2.955817
## [750]  2.954271  2.952144  2.950799  2.950259  2.947588  2.945816  2.943840
## [757]  2.942425  2.941781  2.941169  2.939332  2.936338  2.934232  2.931770
## [764]  2.927610  2.926643  2.919435  2.917249  2.913157  2.911221  2.910853
## [771]  2.905928  2.903776  2.901675  2.897511  2.896387  2.889755  2.886608
## [778]  2.882228  2.881405  2.877412  2.876286  2.874451  2.871231  2.869704
## [785]  2.868688  2.868227  2.863071  2.859306  2.854866  2.847525  2.846406
## [792]  2.844160  2.842462  2.840288  2.839421  2.839273  2.832940  2.829120
## [799]  2.828721  2.818106  2.817656  2.817294  2.816105  2.815334  2.815270
## [806]  2.813643  2.812503  2.810062  2.805967  2.805521  2.803193  2.802529
## [813]  2.799812  2.796135  2.795119  2.793415  2.792460  2.787484  2.785552
## [820]  2.783586  2.783102  2.774602  2.773783  2.770087  2.764371  2.762826
## [827]  2.756397  2.755251  2.751853  2.749393  2.747602  2.745941  2.738093
## [834]  2.736459  2.731717  2.730654  2.728808  2.728379  2.726202  2.725264
## [841]  2.721911  2.720736  2.718672  2.714932  2.710080  2.706810  2.699549
## [848]  2.698129  2.694458  2.691115  2.690679  2.690361  2.686187  2.674888
## [855]  2.672349  2.670599  2.669840  2.662178  2.661426  2.650660  2.641717
## [862]  2.637328  2.636685  2.636564  2.627656  2.616422  2.610636  2.606139
## [869]  2.597820  2.596776  2.596681  2.592488  2.589544  2.587726  2.580079
## [876]  2.579189  2.576812  2.573601  2.568401  2.566202  2.562045  2.561463
## [883]  2.559878  2.551381  2.550665  2.549052  2.548017  2.547046  2.532860
## [890]  2.532027  2.527269  2.522783  2.522466  2.509237  2.506064  2.503446
## [897]  2.500030  2.497932  2.497634  2.494849  2.484292  2.481442  2.475431
## [904]  2.474431  2.472612  2.471896  2.469623  2.468852  2.468242  2.466934
## [911]  2.463569  2.461869  2.455935  2.454790  2.453636  2.450794  2.448543
## [918]  2.443394  2.441949  2.441649  2.441582  2.433641  2.428261  2.427650
## [925]  2.426250  2.425112  2.420459  2.417206  2.411535  2.401369  2.395589
## [932]  2.391643  2.391610  2.384595  2.384365  2.382996  2.381514  2.380461
## [939]  2.370229  2.367551  2.358660  2.351935  2.351693  2.342177  2.341726
## [946]  2.337084  2.330192  2.326876  2.316516  2.315694  2.314150  2.308658
## [953]  2.307584  2.305209  2.295414  2.279319  2.277494  2.274229  2.273369
## [960]  2.255997  2.255256  2.244400  2.236038  2.235656  2.228765  2.224826
## [967]  2.206399  2.201906  2.200897  2.199062  2.189397  2.182038  2.179411
## [974]  2.175004  2.174145  2.173853  2.161885  2.159210  2.147726  2.144721
## [981]  2.131734  2.113944  2.082954  2.060681  2.038198  2.034881  1.990379
## [988]  1.981450  1.940489  1.939490  1.937934  1.928007  1.914105  1.889834
## [995]  1.866391  1.863078  1.828185  1.780425  1.666492
## 2.  Run NbClust to compute 30+ “best-k” indices 

library(NbClust)
palette(rainbow(60))
set.seed(2024)  # NbClust uses random starts for k-means-based indices
nb_out <- NbClust(X_sc_noGK, distance = dist.m, min.nc = 2, max.nc = 15,
    method = clus.m, index = "all", alphaBeale = 0.1)

## *** : The Hubert index is a graphical method of determining the number of clusters.
##                 In the plot of Hubert index, we seek a significant knee that corresponds to a 
##                 significant increase of the value of the measure i.e the significant peak in Hubert
##                 index second differences plot. 
## 

## *** : The D index is a graphical method of determining the number of clusters. 
##                 In the plot of D index, we seek a significant knee (the significant peak in Dindex
##                 second differences plot) that corresponds to a significant increase of the value of
##                 the measure. 
##  
## ******************************************************************* 
## * Among all indices:                                                
## * 8 proposed 2 as the best number of clusters 
## * 3 proposed 3 as the best number of clusters 
## * 1 proposed 6 as the best number of clusters 
## * 7 proposed 7 as the best number of clusters 
## * 3 proposed 13 as the best number of clusters 
## * 2 proposed 15 as the best number of clusters 
## 
##                    ***** Conclusion *****                            
##  
## * According to the majority rule, the best number of clusters is  2 
##  
##  
## *******************************************************************
## Quick summary of how many indices vote for each k
table(nb_out$Best.nc[1, ])  # majority vote
## 
##  0  2  3  6  7 13 15 
##  2  8  3  1  7  3  2
# 3.  determine optimal k (elbow & silhouette) elbow in PCA
# space
wss <- map_dbl(2:10, ~kmeans(pc_df_noGK_noGK, .x, nstart = 25)$tot.withinss)

ggplot(data.frame(k = 2:10, wss), aes(k, wss)) + geom_line() +
    geom_point() + labs(title = "Elbow plot (PCA space)", x = "# clusters",
    y = "Within‑cluster SS") + theme_minimal()

# average silhouette width
sil <- map_dbl(2:10, function(k) {
    km <- kmeans(pc_df_noGK_noGK, k, nstart = 25)
    mean(silhouette(km$cluster, dist(pc_df_noGK_noGK))[, 3])
})

ggplot(data.frame(k = 2:10, sil), aes(k, sil)) + geom_line() +
    geom_point() + labs(title = "Avg silhouette width vs k",
    x = "# clusters", y = "Silhouette") + theme_minimal()

# optional: NbClust suggestion nb <- NbClust(pc_df_noGK,
# distance = 'euclidean', min.nc = 2, max.nc = 10, method =
# 'kmeans') fviz_nbclust(nb)
str(X_sc_noGK)  # should list only numeric columns
##  num [1:1000, 1:37] 2.057 -0.583 1.29 0.609 1.886 ...
##  - attr(*, "dimnames")=List of 2
##   ..$ : NULL
##   ..$ : chr [1:37] "PAC" "SHO" "PAS" "DRI" ...
##  - attr(*, "scaled:center")= Named num [1:37] 72.8 64.7 71.2 75.3 63.8 ...
##   ..- attr(*, "names")= chr [1:37] "PAC" "SHO" "PAS" "DRI" ...
##  - attr(*, "scaled:scale")= Named num [1:37] 11.74 14.14 7.66 7.44 17.66 ...
##   ..- attr(*, "names")= chr [1:37] "PAC" "SHO" "PAS" "DRI" ...
anyNA(X_sc_noGK)  # must be FALSE
## [1] FALSE
apply(X_sc_noGK, 2, sd)
##                PAC                SHO                PAS                DRI 
##                  1                  1                  1                  1 
##                DEF                PHY       Acceleration       Sprint.Speed 
##                  1                  1                  1                  1 
##        Positioning          Finishing         Shot.Power         Long.Shots 
##                  1                  1                  1                  1 
##            Volleys          Penalties             Vision           Crossing 
##                  1                  1                  1                  1 
## Free.Kick.Accuracy      Short.Passing       Long.Passing              Curve 
##                  1                  1                  1                  1 
##          Dribbling            Agility            Balance          Reactions 
##                  1                  1                  1                  1 
##       Ball.Control          Composure      Interceptions   Heading.Accuracy 
##                  1                  1                  1                  1 
##      Def.Awareness    Standing.Tackle     Sliding.Tackle            Jumping 
##                  1                  1                  1                  1 
##            Stamina           Strength         Aggression          Height_cm 
##                  1                  1                  1                  1 
##          Weight_kg 
##                  1
  1. The silhouette plot levels off after k = 4: the average silhouette width drops sharply from k = 2 to k = 3, slips only slightly at k = 4, and then declines steadily thereafter. k = 4 is the optimal choice, as though k = 2 solciits the largest width, in the context of player ratings, it is not very sensible to have only two clusters, as there are not only two types of players in soccer.

NbClust’s majority prefers k = 2 because it optimises a few variance indices, but both the pseudo T^2 jump and the sharp drop in SPRSQ after k = 4 show an additional structural split; hence I carried both 2 and 4 group solutions forward

# 4.  finalize k‑means (k = 4)
set.seed(123)
km4 <- kmeans(pc_df_noGK_noGK, centers = 4, nstart = 50)
pc_df_noGK_noGK <- pc_df_noGK_noGK %>%
    mutate(cluster = factor(km4$cluster))

fviz_cluster(list(data = pc_df_noGK_noGK[, 1:2], cluster = km4$cluster),
    geom = "point", main = "k‑means clusters (k = 4) in PC1–PC2")

# summarize clusters on original ratings
clen_noGK %>%
    mutate(cluster = km4$cluster) %>%
    group_by(cluster) %>%
    summarise(across(c(OVR, PAC, SHO, PAS, DRI, DEF, PHY), mean,
        .names = "avg_{col}"), Count = n()) %>%
    arrange(cluster) %>%
    print(n = Inf)
## # A tibble: 4 × 9
##   cluster avg_OVR avg_PAC avg_SHO avg_PAS avg_DRI avg_DEF avg_PHY Count
##     <int>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl> <int>
## 1       1    79.1    71.3    66.2    75.2    77.0    74.2    75.1   418
## 2       2    79.2    80.8    74.0    75.4    81.8    46.3    62.0   210
## 3       3    78.8    76.9    78.2    67.9    77.0    38.3    75.4   153
## 4       4    78.1    65.5    43.6    61.9    64.4    78.5    77.9   219
# 5.  hierarchical examples (i) Ward + Euclidean
dist_euc <- dist(pc_df_noGK_noGK[, 1:10], method = "euclidean")
hc1 <- hclust(dist_euc, method = "ward.D2")
fviz_dend(hc1, k = 4, cex = 0.6, main = "Ward / Euclidean")
## Registered S3 method overwritten by 'dendextend':
##   method     from 
##   rev.hclust vegan
## Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as
## of ggplot2 3.3.4.
## ℹ The deprecated feature was likely used in the factoextra package.
##   Please report the issue at <https://github.com/kassambara/factoextra/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

# (ii) Complete + Manhattan
dist_man <- dist(pc_df_noGK_noGK[, 1:10], method = "manhattan")
hc2 <- hclust(dist_man, method = "complete")
fviz_dend(hc2, k = 4, cex = 0.6, main = "Complete / Manhattan")

# print the readouts of the clusters
# k means = 2
km2 <- kmeans(pc_df_noGK_noGK, centers = 2, nstart = 50)
fviz_cluster(list(data = pc_df_noGK_noGK[, 1:2], cluster = km2$cluster),
    geom = "point", main = "k‑means clusters (k = 2) in PC1–PC2")

# summarize clusters on original ratings

clen_noGK %>%
    mutate(cluster = km2$cluster) %>%
    group_by(cluster) %>%
    summarise(across(c(OVR, PAC, SHO, PAS, DRI, DEF, PHY), mean,
        .names = "avg_{col}"), Count = n()) %>%
    arrange(cluster) %>%
    print(n = Inf)
## # A tibble: 2 × 9
##   cluster avg_OVR avg_PAC avg_SHO avg_PAS avg_DRI avg_DEF avg_PHY Count
##     <int>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl> <int>
## 1       1    78.3    65.4    44.8    62.7    65.1    78.5    78.1   242
## 2       2    79.0    75.2    71.1    73.9    78.5    59.1    71.4   758
dist_euc2 <- dist(pc_df_noGK_noGK[, 1:10], method = "euclidean")
hc3 <- hclust(dist_euc2, method = "ward.D2")
fviz_dend(hc3, k = 2, cex = 0.6, main = "Ward / Euclidean (k = 2)")

dist_man2 <- dist(pc_df_noGK_noGK[, 1:10], method = "manhattan")
hc4 <- hclust(dist_man2, method = "complete")
fviz_dend(hc4, k = 2, cex = 0.6, main = "Complete / Manhattan (k = 2)")

  1. Ward/Euclidean cuts set at four clusters with large jumps after merge 996, while Complete/Manhattan shows longer chains and less separation, especially among attacking players; both suggest 3,4 natural groups.