## [1] "work" "hoursw" "child6" "child618" "agew"
## [6] "educw" "hearnw" "wagew" "hoursh" "ageh"
## [11] "educh" "wageh" "income" "educwm" "educwf"
## [16] "unemprate" "city" "experience"
## work hoursw child6 child618
## yes:325 Min. : 0.0 Min. :0.0000 Min. :0.000
## no :428 1st Qu.: 0.0 1st Qu.:0.0000 1st Qu.:0.000
## Median : 288.0 Median :0.0000 Median :1.000
## Mean : 740.6 Mean :0.2377 Mean :1.353
## 3rd Qu.:1516.0 3rd Qu.:0.0000 3rd Qu.:2.000
## Max. :4950.0 Max. :3.0000 Max. :8.000
## agew educw hearnw wagew
## Min. :30.00 Min. : 5.00 Min. : 0.000 Min. :0.00
## 1st Qu.:36.00 1st Qu.:12.00 1st Qu.: 0.000 1st Qu.:0.00
## Median :43.00 Median :12.00 Median : 1.625 Median :0.00
## Mean :42.54 Mean :12.29 Mean : 2.375 Mean :1.85
## 3rd Qu.:49.00 3rd Qu.:13.00 3rd Qu.: 3.788 3rd Qu.:3.58
## Max. :60.00 Max. :17.00 Max. :25.000 Max. :9.98
## hoursh ageh educh wageh
## Min. : 175 Min. :30.00 Min. : 3.00 Min. : 0.4121
## 1st Qu.:1928 1st Qu.:38.00 1st Qu.:11.00 1st Qu.: 4.7883
## Median :2164 Median :46.00 Median :12.00 Median : 6.9758
## Mean :2267 Mean :45.12 Mean :12.49 Mean : 7.4822
## 3rd Qu.:2553 3rd Qu.:52.00 3rd Qu.:15.00 3rd Qu.: 9.1667
## Max. :5010 Max. :60.00 Max. :17.00 Max. :40.5090
## income educwm educwf unemprate
## Min. : 1500 Min. : 0.000 Min. : 0.000 Min. : 3.000
## 1st Qu.:15428 1st Qu.: 7.000 1st Qu.: 7.000 1st Qu.: 7.500
## Median :20880 Median :10.000 Median : 7.000 Median : 7.500
## Mean :23081 Mean : 9.251 Mean : 8.809 Mean : 8.624
## 3rd Qu.:28200 3rd Qu.:12.000 3rd Qu.:12.000 3rd Qu.:11.000
## Max. :96000 Max. :17.000 Max. :17.000 Max. :14.000
## city experience
## no :269 Min. : 0.00
## yes:484 1st Qu.: 4.00
## Median : 9.00
## Mean :10.63
## 3rd Qu.:15.00
## Max. :45.00
## Warning in library(package, lib.loc = lib.loc, character.only = TRUE,
## logical.return = TRUE, : there is no package called 'corrlot'
Mroz <- tbl_df(Mroz)
Mroz
## Source: local data frame [753 x 18]
##
## work hoursw child6 child618 agew educw hearnw wagew hoursh ageh
## (fctr) (int) (int) (int) (int) (int) (dbl) (dbl) (int) (int)
## 1 no 1610 1 0 32 12 3.3540 2.65 2708 34
## 2 no 1656 0 2 30 12 1.3889 2.65 2310 30
## 3 no 1980 1 3 35 12 4.5455 4.04 3072 40
## 4 no 456 0 3 34 12 1.0965 3.25 1920 53
## 5 no 1568 1 2 31 14 4.5918 3.60 2000 32
## 6 no 2032 0 0 54 12 4.7421 4.70 1040 57
## 7 no 1440 0 2 37 16 8.3333 5.95 2670 37
## 8 no 1020 0 0 54 12 7.8431 9.98 4120 53
## 9 no 1458 0 2 48 12 2.1262 0.00 1995 52
## 10 no 1600 0 2 39 12 4.6875 4.15 2100 43
## .. ... ... ... ... ... ... ... ... ... ...
## Variables not shown: educh (int), wageh (dbl), income (int), educwm (int),
## educwf (int), unemprate (dbl), city (fctr), experience (int)
roz <- Mroz %>%
select(agew, income, hoursw, experience)
roz
## Source: local data frame [753 x 4]
##
## agew income hoursw experience
## (int) (int) (int) (int)
## 1 32 16310 1610 14
## 2 30 21800 1656 5
## 3 35 21040 1980 15
## 4 34 7300 456 6
## 5 31 27300 1568 7
## 6 54 19495 2032 33
## 7 37 21152 1440 11
## 8 54 18900 1020 35
## 9 48 20405 1458 24
## 10 39 20425 1600 21
## .. ... ... ... ...
## $r
## hoursw experience agew income
## hoursw 1
## experience 0.4 1
## agew -0.033 0.33 1
## income 0.15 -0.028 0.052 1
##
## $p
## hoursw experience agew income
## hoursw 0
## experience 0 0
## agew 0.36 0 0
## income 5.6e-05 0.45 0.15 0
##
## $sym
## hoursw experience agew income
## hoursw 1
## experience . 1
## agew . 1
## income 1
## attr(,"legend")
## [1] 0 ' ' 0.3 '.' 0.6 ',' 0.8 '+' 0.9 '*' 0.95 'B' 1
Alpha = .05
The p-value from the p-value table show that all the values are less than alpha except that for the hoursw and agew which means there is a coorelation only between these two variables (hoursw and income)
so, we reject the null hypthesise that there is no correlation except between these variable hoursw and income.
require (ggvis)
## Loading required package: ggvis
require (magrittr)
## Loading required package: magrittr
roz %>%
ggvis (x=~hoursw, y= ~experience) %>%
layer_points() %>%
layer_smooths()
roz %>%
ggvis (x=~hoursw, y= ~agew) %>%
layer_points() %>%
layer_smooths()
roz %>%
ggvis (x=~hoursw, y= ~income) %>%
layer_points() %>%
layer_smooths()
roz %>%
ggvis (x=~experience, y= ~income) %>%
layer_points() %>%
layer_smooths()
require(corrgram)
## Loading required package: corrgram
cor.roz <- cor(roz)
corrgram (cor.roz, upper.panel= NULL)
cormat<-rquery.cormat(roz, graphType="heatmap")