datos=c(6,3,7,4,5,3)
A=matrix(data=datos,nrow=3,ncol=2,byrow=FALSE)
print(A*3)
##      [,1] [,2]
## [1,]   18   12
## [2,]    9   15
## [3,]   21    9
matA<-matrix(data = c("a", "b", "c", "d", "e", "f"), nrow = 3, ncol = 2,byrow=TRUE)
rownames(matA)<-c("Fila1","Fila2","Fila3")
colnames(matA)<-c("Col1","Col2")
print(matA)
##       Col1 Col2
## Fila1 "a"  "b" 
## Fila2 "c"  "d" 
## Fila3 "e"  "f"
class(matA)
## [1] "matrix" "array"
print(is.matrix(matA))
## [1] TRUE

Fórmulas estadísticas

x<-c(4,2,7,8,4,6,5,8,3)
media<-mean(x)
desvSTD<-sd(x)
varianza<-var(x)

print(media)
## [1] 5.222222
print(desvSTD)
## [1] 2.166667
print(varianza)
## [1] 4.694444
x<-c(0,1,2,3,4,5)
y<-c(0.5,1.4,1.98,3.1,3.8,5.4)
formula1<-formula(y~x)
modelo<-lm(formula1)
summary(modelo)
## 
## Call:
## lm(formula = formula1)
## 
## Residuals:
##        1        2        3        4        5        6 
##  0.14762  0.10990 -0.24781 -0.06552 -0.30324  0.35905 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.35238    0.20485    1.72 0.160511    
## x            0.93771    0.06766   13.86 0.000157 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.283 on 4 degrees of freedom
## Multiple R-squared:  0.9796, Adjusted R-squared:  0.9745 
## F-statistic: 192.1 on 1 and 4 DF,  p-value: 0.0001571
plot(x,y)
abline(0.35238,0.93771,col="blue")

altura<-c(2.25,2.00,1.80,1.70,1.60,1.50,1.25)
tiempo<-c(0.729,0.690,0.623,0.607,0.567,0.553,0.503)
h<-seq(1.0,2.50,0.1)
t<-sqrt(h*2/9.8)

t2=tiempo*tiempo


plot(t2,altura,xlim=c(0.5,0.75),ylim=c(1.0,2.5),main="Altura(cm) vs Tiempo(s)",xlab="t(seg)",ylab="altura(cm)")

abline(-0.8010 ,4.1449,col="orange")
abline(v=0.7,col="blue")
abline(h=2.0,col="green")
abline(v=0.5,col="green")

modelo<-lm(altura~tiempo)
summary(modelo)
## 
## Call:
## lm(formula = altura ~ tiempo)
## 
## Residuals:
##        1        2        3        4        5        6        7 
##  0.02937 -0.05898  0.01873 -0.01495  0.05084  0.00887 -0.03389 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -0.8010     0.1330  -6.023  0.00181 ** 
## tiempo        4.1449     0.2164  19.157 7.15e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.04178 on 5 degrees of freedom
## Multiple R-squared:  0.9866, Adjusted R-squared:  0.9839 
## F-statistic:   367 on 1 and 5 DF,  p-value: 7.146e-06

Linealizando altura vs \(t^2\)

altura<-c(2.25,2.00,1.80,1.70,1.60,1.50,1.25)
tiempo<-c(0.729,0.690,0.623,0.607,0.567,0.553,0.503)
h<-seq(1.0,2.50,0.1)
t<-sqrt(h*2/9.8)

t2=tiempo*tiempo


plot(t2,altura,main="Altura(m) vs T2(s2)")
abline(0.4698,3.3319)

modelo<-lm(altura~t2)
summary(modelo)
## 
## Call:
## lm(formula = altura ~ t2)
## 
## Residuals:
##         1         2         3         4         5         6         7 
##  0.009426 -0.056182  0.036930  0.002503  0.058970  0.011214 -0.062860 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.4698     0.0800   5.873  0.00203 ** 
## t2            3.3319     0.2059  16.179 1.64e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.04934 on 5 degrees of freedom
## Multiple R-squared:  0.9813, Adjusted R-squared:  0.9775 
## F-statistic: 261.8 on 1 and 5 DF,  p-value: 1.644e-05

\(\sigma\)

\(\alpha^{3x}\)

\(\int{\frac{3a}{1-x}}\)

\(\sqrt{9x^2}\)