Creative Resume

Creative Resume in RStudio

Description: Use data visualization techniques to create a resume or CV.

Materials

  1. Google Sheet
  2. Tidyverse package (RStudio)
  3. Googlesheets4 package (RStudio)
  4. Plotly package (RStudio)
  5. Resume Template Data (Googlesheets)

Steps

  1. Install packages
  2. Load in data
  3. Look at the data
  4. Ask some questions
  5. Answer your questions with data visuals
  6. Play around

Tutorial

Step 1 - Install + Load Packages

install.packages("tidyverse", repos = "https://cran.r-project.org")
Installing package into 'C:/Users/17062/AppData/Local/R/win-library/4.5'
(as 'lib' is unspecified)
package 'tidyverse' successfully unpacked and MD5 sums checked

The downloaded binary packages are in
    C:\Users\17062\AppData\Local\Temp\RtmpopJcRq\downloaded_packages
install.packages("googlesheets4", repos = "https://cran.r-project.org")
Installing package into 'C:/Users/17062/AppData/Local/R/win-library/4.5'
(as 'lib' is unspecified)
package 'googlesheets4' successfully unpacked and MD5 sums checked

The downloaded binary packages are in
    C:\Users\17062\AppData\Local\Temp\RtmpopJcRq\downloaded_packages
install.packages("plotly", repos = "https://cran.r-project.org")
Installing package into 'C:/Users/17062/AppData/Local/R/win-library/4.5'
(as 'lib' is unspecified)
package 'plotly' successfully unpacked and MD5 sums checked

The downloaded binary packages are in
    C:\Users\17062\AppData\Local\Temp\RtmpopJcRq\downloaded_packages
library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.2     ✔ tibble    3.2.1
✔ lubridate 1.9.4     ✔ tidyr     1.3.1
✔ purrr     1.0.4     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(googlesheets4)
library(plotly)

Attaching package: 'plotly'

The following object is masked from 'package:ggplot2':

    last_plot

The following object is masked from 'package:stats':

    filter

The following object is masked from 'package:graphics':

    layout

Step 2 - Load in Data

job.experience <- read_sheet("https://docs.google.com/spreadsheets/d/1h4Kvzz5t3BSyb4YOW4AyElSdYYjk1Icj2FTwErXOiqM/edit?gid=2026032161#gid=2026032161",
                             sheet = "Job Experience")
! Using an auto-discovered, cached token.
  To suppress this message, modify your code or options to clearly consent to
  the use of a cached token.
  See gargle's "Non-interactive auth" vignette for more details:
  <https://gargle.r-lib.org/articles/non-interactive-auth.html>
ℹ The googlesheets4 package is using a cached token for 'jaymo678@gmail.com'.
Auto-refreshing stale OAuth token.
✔ Reading from "creative resume practice data".
✔ Range ''Job Experience''.
r.tools <- read_sheet("https://docs.google.com/spreadsheets/d/1h4Kvzz5t3BSyb4YOW4AyElSdYYjk1Icj2FTwErXOiqM/edit?gid=2026032161#gid=2026032161",
                      sheet = "R Tools")
✔ Reading from "creative resume practice data".
✔ Range ''R Tools''.
publications <- read_sheet("https://docs.google.com/spreadsheets/d/1h4Kvzz5t3BSyb4YOW4AyElSdYYjk1Icj2FTwErXOiqM/edit?gid=2026032161#gid=2026032161",
                           sheet = "Publications")
✔ Reading from "creative resume practice data".
✔ Range ''Publications''.
industries <- read_sheet("https://docs.google.com/spreadsheets/d/1h4Kvzz5t3BSyb4YOW4AyElSdYYjk1Icj2FTwErXOiqM/edit?gid=2026032161#gid=2026032161",
                           sheet = "Industry")
✔ Reading from "creative resume practice data".
✔ Range ''Industry''.

Step 3 - Look at the Data

#head() 
head(job.experience)
# A tibble: 6 × 8
  Job                      Place Role  City  State `Start Year` `End Year`    ID
  <chr>                    <chr> <chr> <chr> <chr>        <dbl>      <dbl> <dbl>
1 WalkGeorgia              UGA   Heal… Athe… GA            2015       2016     1
2 AmeriCorps               IRC   Inte… Clar… GA            2016       2018     2
3 REAL                     CDC   Rese… Atla… GA            2017       2018     3
4 PreP Up Pharmacies       Emory Rese… Atla… GA            2018       2020     4
5 Health Writer            HMHB… Free… Atla… GA            2018       2023     5
6 Meta-Analysis Training … GSU   Trai… Atla… GA            2020       2022     6
tail(job.experience)
# A tibble: 6 × 8
  Job                      Place Role  City  State `Start Year` `End Year`    ID
  <chr>                    <chr> <chr> <chr> <chr>        <dbl>      <dbl> <dbl>
1 PreP Up Pharmacies       Emory Rese… Atla… GA            2018       2020     4
2 Health Writer            HMHB… Free… Atla… GA            2018       2023     5
3 Meta-Analysis Training … GSU   Trai… Atla… GA            2020       2022     6
4 ORISE Fellow             CDC   Data… Atla… GA            2022       2023     7
5 Evaluation Fellow        CDC   Work… Atla… GA            2023       2024     8
6 Consultant               CVP   Opio… Atla… GA            2024       2025     9

Step 4 - Ask some questions

  1. What job experiences have I had.
  2. What industries have I worked in?
  3. What research have I published?
  4. What tools have I learned with Rstudio?

Step 5 - Answer your questions with data visuals

What job experiences have I had and where were they?

g1 <- ggplot(job.experience, aes(Place)) + geom_bar(aes(fill = City))

g1

What roles have those jobs included?

g2 <- ggplot(job.experience, aes(Role)) + geom_bar(aes(fill = Job)) 
g2 + coord_flip()

How long was I at these jobs?

g3 <- ggplot(job.experience, aes(`Start Year`, Role, fill = `End Year`)) + geom_point() + ggtitle("Time Spent at Each Job")
ggplotly(g3)

What industries have I worked in?

g4 <- ggplot(industries, aes(Years)) + geom_histogram(aes(fill = Industry))
ggplotly(g4)
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

What were my favorite memories from those industries?

g5 <- ggplot(industries, aes(Industry, Years, fill = industries$`Favorite Memory`)) + geom_tile() + coord_flip()

ggplotly(g5)
Warning: Use of `` industries$`Favorite Memory` `` is discouraged.
ℹ Use `Favorite Memory` instead.

What research have I published?

g6 <- ggplot(publications, aes(Month, Category, fill = Title)) + geom_point() + facet_wrap(~Category)

ggplotly(g6)

What tools have I learned to use with RStudio?

g7 <- ggplot(r.tools, aes(ID, Path, fill = Milestone)) + geom_point() + facet_grid(~Path)
ggplotly(g7)