Exclusions

Per Nikki, participant 8194162701 was excluded.

Overall design and matching

75 participants were selected based on the availability of plasma samples and matches by race and sex, but one participant was excluded. The design called for 25 participants in 3 age groups: young (30-35), middle aged (45-50) and old (60-65). Despite our best intentions, discrepancies between the published inventory and the actual contents of the bank yielded the following wave 1 age distribution of sex and race matched participants after excluding one participant:

Age0grp
30-34 35-39 40-44 45-49 50-54 55-59 60-64 
   58     2     4    52     4     4    24 

Classifying wave 1 age into 3 broad categories and descriptive statistics for age within each broad category:

ageGroups
 Young Middle    Old 
    60     60     28 
  ageGroups Age0.n   Age0.mean     Age0.sd Age0.min Age0.max
1     Young     60 31.86666667 1.371213327       30       35
2    Middle     60 46.90000000 2.621294802       40       53
3       Old     28 60.64285714 2.422338719       55       64

The overall interval between repeated assessments was 4.6 years and the intervals are roughly equivalent by broad age categories.

  ageGroups ageDiff.n ageDiff.mean   ageDiff.sd ageDiff.min ageDiff.max
1     Young        30  4.671686061 1.1281334557  2.12457221  7.34291581
2    Middle        30  4.600319416 1.0781281324  2.22313484  7.35112936
3       Old        14  4.537987681 0.7327750257  2.40383299  5.46475017

Including repeated assessments and matching requires us to account for the tendency of participants to resemble themselves over time and the likelihood that those who were matched will resemble one another more than they resemble others. In practical terms, this means that we can't use ordinary regression without accounting for the potential biases of these 'built-in' correlations. Additionally, although there are 150 assays, the degrees of freedom for analyses must start with the number of independent participants. In this design, there are 25 independent assessments, each of which consists of 3 participants matched by sex and race with 2 repeated assays.

Despite these complexities, we will perform a regression-like analysis (mixed-model regression, sometimes called random-effects regression). The results from these analyses are similar to those of other regression techniques in that we will examine the relationship between predictors and covariates on the outcome (concentration of extracellular vesicles).

Descriptive summaries

Here's the distribution of concentrations (×10-9 ) by age (ignoring matching) for times 1 and 2.

Various colored dots in the scatterplot indicate BMIs.

  ageGroups reConc.n  reConc.mean    reConc.sd reConc.min reConc.max
1     Young       30 132.66333333 100.99363409      16.80        423
2    Middle       30  97.79233333  89.27647007       4.56        353
3       Old       14  82.31000000  56.05350891       8.04        230
  ageGroups reConc.n  reConc.mean    reConc.sd reConc.min reConc.max
1     Young       30 143.12866667 114.55783920       7.53        593
2    Middle       30 101.14933333  95.79644792       6.06        393
3       Old       14  70.06928571  60.87163524       3.07        184

plot of chunk descrip1

Regression techniques assume that mean levels and variances are independent. The scatterplots suggest that we may violate that assumption becasue the spread of concentrations at younger ages is greater than the spread of concentrations at 'middle' ages, which in turn is greater than the spread of concerntrations at older ages. Sometimes transformations can ameliorate the violation. However, it isn't clear that transformations will help these data, not the least because the middle age group mean is predictable from the relationship between the mean and the variance.

Cross-sectional analyses

For the moment, we can ignore the repeated measures and examine whether concentrations are associated with age differences. We can take advantage of the repeated measures by using the 2nd assessment as a replication. However, we still need to account for matching in these data so the appropriate technique is still mixed models.

We will examine age differences and the contributions of BMI, cigarette smoking (current v. not), and diabetes diagnoses in analyses that follow this pattern for BMI: with age, with age, BMI, and age×BMI, and with age and BMI. For numerical convenience we use cenAge (centered age) which is (Age - 50) / 10 and is interpreted as the effect of age decade. Note that t-values >|1.96| are significant at p<.05. The analysis of variance table following each analysis displays the exact p-value based on a F test (with 1 df F = t2 ).

BMI

Wave 1

Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: reConc ~ cenAge + (1 | Seq)
   Data: subset(exConc, HNDwave == 1)

REML criterion at convergence: 859.2

Scaled residuals: 
       Min         1Q     Median         3Q        Max 
-1.3791332 -0.6575433 -0.1684924  0.2435731  3.1631500 

Random effects:
 Groups   Name        Variance  Std.Dev.
 Seq      (Intercept)  805.6609 28.38417
 Residual             7150.3944 84.56000
Number of obs: 74, groups:  Seq, 31

Fixed effects:
              Estimate Std. Error         df  t value        Pr(>|t|)
(Intercept)  95.955305  12.551148  36.727390  7.64514 0.0000000041834
cenAge      -18.937614   9.084368  51.883780 -2.08464        0.042042

Correlation of Fixed Effects:
       (Intr)
cenAge 0.458 


Analysis of variance
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
          Sum Sq   Mean Sq NumDF     DenDF   F.value   Pr(>F)
cenAge 31073.564 31073.564     1 51.883775 4.3457133 0.042042

Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: reConc ~ cenAge * BMI + (1 | Seq)
   Data: subset(exConc, HNDwave == 1)

REML criterion at convergence: 850.3

Scaled residuals: 
       Min         1Q     Median         3Q        Max 
-1.2866679 -0.5585555 -0.2168830  0.3632742  3.2977562 

Random effects:
 Groups   Name        Variance  Std.Dev.
 Seq      (Intercept)  730.0089 27.01868
 Residual             7164.3948 84.64275
Number of obs: 74, groups:  Seq, 31

Fixed effects:
              Estimate Std. Error         df  t value Pr(>|t|)
(Intercept)  -1.793760  64.560959  65.141980 -0.02778  0.97792
cenAge      -49.731147  53.145526  68.204890 -0.93575  0.35270
BMI           3.632485   2.336937  64.497420  1.55438  0.12499
cenAge:BMI    1.063406   1.919061  68.623520  0.55413  0.58129

Correlation of Fixed Effects:
           (Intr) cenAge BMI   
cenAge      0.530              
BMI        -0.981 -0.497       
cenAge:BMI -0.502 -0.985  0.483


Analysis of variance
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
               Sum Sq    Mean Sq NumDF     DenDF    F.value  Pr(>F)
cenAge      6273.4009  6273.4009     1 68.204888 0.87563584 0.35270
BMI        17309.8529 17309.8529     1 64.497419 2.41609421 0.12499
cenAge:BMI  2199.8873  2199.8873     1 68.623517 0.30705836 0.58129

Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: reConc ~ cenAge + BMI + (1 | Seq)
   Data: subset(exConc, HNDwave == 1)

REML criterion at convergence: 853.7

Scaled residuals: 
       Min         1Q     Median         3Q        Max 
-1.3842105 -0.5739972 -0.2250633  0.3385274  3.4392234 

Random effects:
 Groups   Name        Variance Std.Dev.
 Seq      (Intercept)  699.648 26.45086
 Residual             7114.370 84.34673
Number of obs: 74, groups:  Seq, 31

Fixed effects:
              Estimate Std. Error         df  t value Pr(>|t|)
(Intercept)  16.142355  55.590446  67.678410  0.29038 0.772413
cenAge      -20.683763   9.142953  50.191910 -2.26226 0.028042
BMI           3.009890   2.036966  66.881270  1.47763 0.144200

Correlation of Fixed Effects:
       (Intr) cenAge
cenAge  0.241       
BMI    -0.975 -0.143


Analysis of variance
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
          Sum Sq   Mean Sq NumDF     DenDF   F.value   Pr(>F)
cenAge 36410.156 36410.156     1 50.191910 5.1178327 0.028042
BMI    15533.526 15533.526     1 66.881273 2.1834014 0.144200

These results suggest that there are significant age differences in concentrations, but no association of BMI with concentrations after adjusting for age differences.

Wave 3

Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: reConc ~ cenAge + (1 | Seq)
   Data: subset(exConc, HNDwave == 3)

REML criterion at convergence: 873.3

Scaled residuals: 
       Min         1Q     Median         3Q        Max 
-1.3337136 -0.6127577 -0.2133045  0.3330396  4.5691852 

Random effects:
 Groups   Name        Variance Std.Dev.
 Seq      (Intercept)    0.000  0.00000
 Residual             9593.666 97.94726
Number of obs: 74, groups:  Seq, 31

Fixed effects:
             Estimate Std. Error        df  t value   Pr(>|t|)
(Intercept) 108.28869   11.49545  72.01172  9.42014 3.4639e-14
cenAge      -26.38639   10.43440  72.01172 -2.52879   0.013637

Correlation of Fixed Effects:
       (Intr)
cenAge 0.138 


Analysis of variance
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
          Sum Sq   Mean Sq NumDF     DenDF   F.value   Pr(>F)
cenAge 61349.322 61349.322     1 72.011722 6.3947735 0.013637

Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: reConc ~ cenAge * BMI + (1 | Seq)
   Data: subset(exConc, HNDwave == 3)

REML criterion at convergence: 862.5

Scaled residuals: 
       Min         1Q     Median         3Q        Max 
-1.5755270 -0.6344126 -0.1406293  0.3473013  4.3535641 

Random effects:
 Groups   Name        Variance Std.Dev.
 Seq      (Intercept)    0.000  0.00000
 Residual             9290.698 96.38827
Number of obs: 74, groups:  Seq, 31

Fixed effects:
               Estimate  Std. Error          df  t value Pr(>|t|)
(Intercept)  -8.8733720  59.0239946  69.9488400 -0.15033 0.880933
cenAge      -38.6296558  55.8015070  69.9488400 -0.69227 0.491060
BMI           4.3561974   2.1554610  69.9488400  2.02100 0.047108
cenAge:BMI    0.4698818   1.9726460  69.9488400  0.23820 0.812423

Correlation of Fixed Effects:
           (Intr) cenAge BMI   
cenAge      0.338              
BMI        -0.981 -0.343       
cenAge:BMI -0.346 -0.983  0.355


Analysis of variance
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
              Sum Sq   Mean Sq NumDF     DenDF   F.value   Pr(>F)
cenAge      4452.441  4452.441     1 69.948836 0.4792364 0.491060
BMI        37947.494 37947.494     1 69.948836 4.0844611 0.047108
cenAge:BMI   527.142   527.142     1 69.948836 0.0567386 0.812423

Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: reConc ~ cenAge + BMI + (1 | Seq)
   Data: subset(exConc, HNDwave == 3)

REML criterion at convergence: 865.8

Scaled residuals: 
       Min         1Q     Median         3Q        Max 
-1.6025224 -0.6315373 -0.1148764  0.3229290  4.3508946 

Random effects:
 Groups   Name        Variance Std.Dev.
 Seq      (Intercept)    0.000  0.00000
 Residual             9167.268 95.74585
Number of obs: 74, groups:  Seq, 31

Fixed effects:
              Estimate Std. Error         df  t value Pr(>|t|)
(Intercept)  -4.008576  55.008905  70.973660 -0.07287 0.942113
cenAge      -25.565128  10.207481  70.973660 -2.50455 0.014560
BMI           4.173796   2.001424  70.973660  2.08541 0.040629

Correlation of Fixed Effects:
       (Intr) cenAge
cenAge -0.010       
BMI    -0.979  0.039


Analysis of variance
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
          Sum Sq   Mean Sq NumDF     DenDF   F.value   Pr(>F)
cenAge 57504.084 57504.084     1 70.973661 6.2727616 0.014560
BMI    39867.967 39867.967     1 70.973661 4.3489477 0.040629

These results suggest that there are significant age differences in concentrations, and significant associations of BMI with concentrations after adjusting for age differences, but no interaction between age×BMI.

Replication (or lack thereof)

The effects of age and BMI are not consistent. Although there age differences in concentrations at waves 1 and 3, BMI was associated with concentration only at wave 3. There was no evidence for an age×BMI interaction in either wave.

Cigarette smoking

Wave 1

Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: reConc ~ cenAge * CigaretteCurr + (1 | Seq)
   Data: subset(exConc, HNDwave == 1)

REML criterion at convergence: 757.8

Scaled residuals: 
       Min         1Q     Median         3Q        Max 
-1.4507352 -0.6668698 -0.1948412  0.2699308  3.0014905 

Random effects:
 Groups   Name        Variance  Std.Dev.
 Seq      (Intercept)  461.9773 21.49366
 Residual             7389.1846 85.96037
Number of obs: 67, groups:  Seq, 31

Fixed effects:
                        Estimate Std. Error        df  t value   Pr(>|t|)
(Intercept)            100.86084   21.30177  62.59013  4.73486 0.00001298
cenAge                 -26.31923   18.38601  56.56912 -1.43148    0.15779
CigaretteCurrNo        -11.34838   25.86542  59.05578 -0.43875    0.66245
cenAge:CigaretteCurrNo  12.08707   21.79749  62.15153  0.55452    0.58122

Correlation of Fixed Effects:
            (Intr) cenAge CgrtCN
cenAge       0.611              
CigarttCrrN -0.804 -0.509       
cnAg:CgrtCN -0.517 -0.853  0.536


Analysis of variance
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
                         Sum Sq    Mean Sq NumDF     DenDF   F.value   Pr(>F)
cenAge               26407.8052 26407.8052     1 46.756012 3.5738456 0.064903
CigaretteCurr         1422.4106  1422.4106     1 59.055637 0.1924990 0.662446
cenAge:CigaretteCurr  2272.0896  2272.0896     1 62.151467 0.3074885 0.581215

Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: reConc ~ cenAge + CigaretteCurr + (1 | Seq)
   Data: subset(exConc, HNDwave == 1)

REML criterion at convergence: 766.1

Scaled residuals: 
       Min         1Q     Median         3Q        Max 
-1.4281275 -0.6541020 -0.2288228  0.3130376  3.1313021 

Random effects:
 Groups   Name        Variance  Std.Dev.
 Seq      (Intercept)  526.8148 22.95245
 Residual             7245.2637 85.11911
Number of obs: 67, groups:  Seq, 31

Fixed effects:
                  Estimate Std. Error         df  t value      Pr(>|t|)
(Intercept)     106.815336  18.153964  60.460100  5.88386 0.00000018774
cenAge          -17.751902   9.519552  46.318220 -1.86478      0.068555
CigaretteCurrNo -19.025835  21.675690  56.865450 -0.87775      0.383773

Correlation of Fixed Effects:
            (Intr) cenAge
cenAge       0.379       
CigarttCrrN -0.726 -0.117


Analysis of variance
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
                  Sum Sq    Mean Sq NumDF     DenDF  F.value   Pr(>F)
cenAge        25194.8035 25194.8035     1 46.318221 3.477417 0.068555
CigaretteCurr  5582.0769  5582.0769     1 56.865452 0.770445 0.383773

Wave 3

Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: reConc ~ cenAge * CigaretteCurr + (1 | Seq)
   Data: subset(exConc, HNDwave == 3)

REML criterion at convergence: 823

Scaled residuals: 
       Min         1Q     Median         3Q        Max 
-1.4063708 -0.6729284 -0.1416325  0.3388017  4.0324733 

Random effects:
 Groups   Name        Variance Std.Dev.
 Seq      (Intercept)    0.000  0.00000
 Residual             8575.689 92.60502
Number of obs: 72, groups:  Seq, 31

Fixed effects:
                        Estimate Std. Error        df  t value         Pr(>|t|)
(Intercept)            150.11471   20.48096  68.00227  7.32948 0.00000000036053
cenAge                 -49.30434   20.63773  68.00227 -2.38904         0.019673
CigaretteCurrNo        -61.81026   24.38694  68.00227 -2.53456         0.013566
cenAge:CigaretteCurrNo  34.15838   23.60240  68.00227  1.44724         0.152424

Correlation of Fixed Effects:
            (Intr) cenAge CgrtCN
cenAge       0.333              
CigarttCrrN -0.840 -0.280       
cnAg:CgrtCN -0.291 -0.874  0.255


Analysis of variance
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
                        Sum Sq   Mean Sq NumDF     DenDF   F.value    Pr(>F)
cenAge               63944.982 63944.982     1 68.026646 7.4565416 0.0080419
CigaretteCurr        55090.340 55090.340     1 68.026646 6.4240132 0.0135648
cenAge:CigaretteCurr 17961.853 17961.853     1 68.026646 2.0945085 0.1524220

Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: reConc ~ cenAge + CigaretteCurr + (1 | Seq)
   Data: subset(exConc, HNDwave == 3)

REML criterion at convergence: 833.3

Scaled residuals: 
       Min         1Q     Median         3Q        Max 
-1.5532204 -0.6217115 -0.1730476  0.4046762  4.3024800 

Random effects:
 Groups   Name        Variance     Std.Dev.       
 Seq      (Intercept) 1.942983e-12  0.000001393909
 Residual             8.711720e+03 93.336597531700
Number of obs: 72, groups:  Seq, 31

Fixed effects:
                 Estimate Std. Error        df  t value          Pr(>|t|)
(Intercept)     158.75449   19.74637  69.00667  8.03968 0.000000000016903
cenAge          -23.18823   10.09299  69.00667 -2.29746         0.0246303
CigaretteCurrNo -70.79369   23.77005  69.00667 -2.97827         0.0039975

Correlation of Fixed Effects:
            (Intr) cenAge
cenAge       0.169       
CigarttCrrN -0.828 -0.122


Analysis of variance
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
                 Sum Sq   Mean Sq NumDF     DenDF   F.value    Pr(>F)
cenAge        45983.197 45983.197     1 69.006674 5.2783141 0.0246303
CigaretteCurr 77273.873 77273.873     1 69.006674 8.8701047 0.0039975

Replication (or lack thereof)

TBA

Diabetes diagnosis

Wave 1

Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: reConc ~ cenAge * dxDiabetes + (1 | Seq)
   Data: subset(exConc, HNDwave == 1)

REML criterion at convergence: 818.3

Scaled residuals: 
       Min         1Q     Median         3Q        Max 
-1.5086151 -0.6019720 -0.1430443  0.2107774  3.2062691 

Random effects:
 Groups   Name        Variance  Std.Dev.
 Seq      (Intercept)  893.2596 29.88745
 Residual             7060.3499 84.02589
Number of obs: 74, groups:  Seq, 31

Fixed effects:
                               Estimate Std. Error         df  t value      Pr(>|t|)
(Intercept)                   92.192046  15.209003  51.183640  6.06168 0.00000016221
cenAge                       -17.833665  10.615384  53.342170 -1.67998      0.098809
dxDiabetespreDiabetes         -2.157412  35.778705  62.456370 -0.06030      0.952110
dxDiabetesDiabetes            50.613133  43.004717  65.904130  1.17692      0.243460
cenAge:dxDiabetespreDiabetes   6.566323  43.777806  66.504480  0.14999      0.881225
cenAge:dxDiabetesDiabetes    -52.169193  41.004365  67.121620 -1.27228      0.207662

Correlation of Fixed Effects:
              (Intr) cenAge dxDbtspD dxDbtsDb cnAg:dxDbtspD
cenAge         0.587                                       
dxDbtsprDbt   -0.378 -0.245                                
dxDibtsDbts   -0.329 -0.220  0.152                         
cnAg:dxDbtspD -0.140 -0.253 -0.422    0.035                
cnAg:dxDbtsDb -0.162 -0.285  0.047    0.265    0.087       


Analysis of variance
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
                     Sum Sq    Mean Sq NumDF     DenDF    F.value   Pr(>F)
cenAge            19955.406 19955.4059     1 66.870201 2.82640466 0.097391
dxDiabetes        10194.282  5097.1411     2 63.761455 0.72193888 0.489737
cenAge:dxDiabetes 11913.712  5956.8558     2 65.584405 0.84370547 0.434728

Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: reConc ~ cenAge + dxDiabetes + (1 | Seq)
   Data: subset(exConc, HNDwave == 1)

REML criterion at convergence: 838.6

Scaled residuals: 
       Min         1Q     Median         3Q        Max 
-1.5787402 -0.5883902 -0.1703749  0.2715641  3.2557299 

Random effects:
 Groups   Name        Variance Std.Dev.
 Seq      (Intercept)  752.656 27.43458
 Residual             7142.912 84.51575
Number of obs: 74, groups:  Seq, 31

Fixed effects:
                        Estimate Std. Error         df  t value      Pr(>|t|)
(Intercept)            90.191208  14.761897  49.824950  6.10973 0.00000014958
cenAge                -20.642236   9.913014  51.633720 -2.08234      0.042284
dxDiabetespreDiabetes   2.921658  32.322502  62.678750  0.09039      0.928265
dxDiabetesDiabetes     64.938211  41.433454  68.158020  1.56729      0.121678

Correlation of Fixed Effects:
            (Intr) cenAge dxDbtspD
cenAge       0.566                
dxDbtsprDbt -0.485 -0.392         
dxDibtsDbts -0.303 -0.156  0.165  


Analysis of variance
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
             Sum Sq   Mean Sq NumDF     DenDF   F.value   Pr(>F)
cenAge     30972.58 30972.580     1 51.659207 4.3361281 0.042282
dxDiabetes 17752.07  8876.035     2 65.261260 1.2426354 0.295361

Wave 3

Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: reConc ~ cenAge * dxDiabetes + (1 | Seq)
   Data: subset(exConc, HNDwave == 3)

REML criterion at convergence: 824.7

Scaled residuals: 
       Min         1Q     Median         3Q        Max 
-1.8802025 -0.6416521 -0.1485437  0.4333240  3.2611365 

Random effects:
 Groups   Name        Variance Std.Dev.
 Seq      (Intercept)    0.000  0.00000
 Residual             8434.723 91.84075
Number of obs: 74, groups:  Seq, 31

Fixed effects:
                              Estimate Std. Error        df  t value         Pr(>|t|)
(Intercept)                   93.74380   12.85210  68.01119  7.29405 0.00000000041759
cenAge                       -21.40072   11.85212  68.01119 -1.80565         0.075399
dxDiabetespreDiabetes         78.29328   29.67046  68.01119  2.63876         0.010307
dxDiabetesDiabetes            90.78288   46.27386  68.01119  1.96186         0.053873
cenAge:dxDiabetespreDiabetes -68.12270   28.20743  68.01119 -2.41506         0.018426
cenAge:dxDiabetesDiabetes    -21.57356   33.92769  68.01119 -0.63587         0.526996

Correlation of Fixed Effects:
              (Intr) cenAge dxDbtspD dxDbtsDb cnAg:dxDbtspD
cenAge         0.297                                       
dxDbtsprDbt   -0.433 -0.129                                
dxDibtsDbts   -0.278 -0.082  0.120                         
cnAg:dxDbtspD -0.125 -0.420 -0.195    0.035                
cnAg:dxDbtsDb -0.104 -0.349  0.045   -0.316    0.147       


Analysis of variance
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
                      Sum Sq    Mean Sq NumDF    DenDF    F.value     Pr(>F)
cenAge            110600.059 110600.059     1 68.03516 13.1124708 0.00056002
dxDiabetes         81874.455  40937.228     2 68.03516  4.8534170 0.01070594
cenAge:dxDiabetes  49878.260  24939.130     2 68.03516  2.9567219 0.05870571

Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: reConc ~ cenAge + dxDiabetes + (1 | Seq)
   Data: subset(exConc, HNDwave == 3)

REML criterion at convergence: 847.9

Scaled residuals: 
       Min         1Q     Median         3Q        Max 
-1.4633302 -0.5661051 -0.1676745  0.3287473  4.1328231 

Random effects:
 Groups   Name        Variance     Std.Dev.       
 Seq      (Intercept) 5.192685e-11  0.000007206029
 Residual             8.906277e+03 94.373075876343
Number of obs: 74, groups:  Seq, 31

Fixed effects:
                       Estimate Std. Error        df  t value        Pr(>|t|)
(Intercept)            89.55661   13.05364  70.01621  6.86066 0.0000000022373
cenAge                -34.40816   10.46877  70.01621 -3.28674       0.0015863
dxDiabetespreDiabetes  64.94329   29.81682  70.01621  2.17808       0.0327706
dxDiabetesDiabetes     90.38811   44.95276  70.01621  2.01074       0.0482059

Correlation of Fixed Effects:
            (Intr) cenAge dxDbtspD
cenAge       0.258                
dxDbtsprDbt -0.467 -0.225         
dxDibtsDbts -0.323 -0.200  0.163  


Analysis of variance
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
              Sum Sq   Mean Sq NumDF     DenDF    F.value    Pr(>F)
cenAge     96211.579 96211.579     1 69.990896 10.8026703 0.0015865
dxDiabetes 67304.541 33652.271     2 69.990896  3.7784889 0.0276510

Replication (or lack thereof)

TBA

Longitudinal analyses

In longitudinal analyses, the age term in the mixed model is interpreted as a measure of time, not age differences. A significant 'age' effect is therefore evidence for significant change over time, and a significant interaction with 'age' is evidence for differences in rates of change over time.

Just Age

Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: reConc ~ cenAge + (0 + cenAge | HNDid) + (1 | Seq)
   Data: exConc
Control: lmerControl(check.nobs.vs.nRE = "warning")

REML criterion at convergence: 1727

Scaled residuals: 
       Min         1Q     Median         3Q        Max 
-2.2967027 -0.4640868 -0.1333725  0.2596862  4.8820951 

Random effects:
 Groups   Name        Variance Std.Dev.
 HNDid    cenAge      2296.213 47.91882
 Seq      (Intercept) 2241.810 47.34775
 Residual             4294.351 65.53130
Number of obs: 148, groups:  HNDid, 74; Seq, 31

Fixed effects:
              Estimate Std. Error         df  t value        Pr(>|t|)
(Intercept)  98.145113  11.396547  26.421380  8.61183 0.0000000037835
cenAge      -21.622809   8.634014  39.476290 -2.50437        0.016503

Correlation of Fixed Effects:
       (Intr)
cenAge 0.158 


Analysis of variance
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
          Sum Sq   Mean Sq NumDF     DenDF   F.value   Pr(>F)
cenAge 26933.714 26933.714     1 39.476291 6.2718937 0.016503

Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: reConc ~ cenAge * ageGroups + (0 + cenAge | HNDid) + (1 | Seq)
   Data: exConc
Control: lmerControl(check.nobs.vs.nRE = "warning")

REML criterion at convergence: 1687.9

Scaled residuals: 
       Min         1Q     Median         3Q        Max 
-2.2425650 -0.4095063 -0.1251300  0.2239026  4.8297478 

Random effects:
 Groups   Name        Variance Std.Dev.
 HNDid    cenAge      2277.816 47.72648
 Seq      (Intercept) 2296.529 47.92212
 Residual             4358.348 66.01778
Number of obs: 148, groups:  HNDid, 74; Seq, 31

Fixed effects:
                         Estimate Std. Error         df  t value Pr(>|t|)
(Intercept)            112.775977  52.996403  73.762170  2.12799 0.036679
cenAge                 -13.959025  34.850492  84.632120 -0.40054 0.689768
ageGroupsMiddle        -12.477770  53.275549  67.732990 -0.23421 0.815527
ageGroupsOld           -42.785919  81.715944  79.322590 -0.52359 0.602021
cenAge:ageGroupsMiddle  31.852705  45.920779  98.752560  0.69364 0.489533
cenAge:ageGroupsOld      4.449775  59.032563 103.229400  0.07538 0.940060

Correlation of Fixed Effects:
            (Intr) cenAge agGrpM agGrpO cnA:GM
cenAge       0.942                            
ageGrpsMddl -0.972 -0.941                     
ageGropsOld -0.640 -0.619  0.640              
cnAg:gGrpsM -0.717 -0.761  0.728  0.484       
cnAg:gGrpsO -0.551 -0.586  0.550 -0.216  0.432


Analysis of variance
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
                     Sum Sq    Mean Sq NumDF      DenDF     F.value  Pr(>F)
cenAge             31.26299   31.26299     1 105.049687 0.007173128 0.93267
ageGroups        1270.42659  635.21330     2  77.326024 0.145746354 0.86461
cenAge:ageGroups 2367.44747 1183.72374     2 105.298183 0.271599194 0.76269

BMI

Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: reConc ~ cenAge * BMI + (0 + cenAge | HNDid) + (1 | Seq)
   Data: exConc
Control: lmerControl(check.nobs.vs.nRE = "warning")

REML criterion at convergence: 1714.7

Scaled residuals: 
       Min         1Q     Median         3Q        Max 
-2.2794351 -0.4862379 -0.1116986  0.2789239  4.5650927 

Random effects:
 Groups   Name        Variance Std.Dev.
 HNDid    cenAge      2392.520 48.91339
 Seq      (Intercept) 1811.868 42.56605
 Residual             4186.528 64.70338
Number of obs: 148, groups:  HNDid, 74; Seq, 31

Fixed effects:
               Estimate  Std. Error          df  t value Pr(>|t|)
(Intercept)  -2.5011849  42.0557203 130.8765000 -0.05947 0.952666
cenAge      -16.4682427  45.3091400  73.8905400 -0.36346 0.717296
BMI           3.8839059   1.5545634 133.9578700  2.49839 0.013686
cenAge:BMI   -0.1919826   1.6443767  72.5344300 -0.11675 0.907380

Correlation of Fixed Effects:
           (Intr) cenAge BMI   
cenAge      0.318              
BMI        -0.967 -0.312       
cenAge:BMI -0.312 -0.981  0.313


Analysis of variance
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
               Sum Sq    Mean Sq NumDF      DenDF   F.value   Pr(>F)
cenAge       553.0658   553.0658     1  73.890542 0.1321061 0.717296
BMI        26132.1101 26132.1101     1 133.957870 6.2419534 0.013686
cenAge:BMI    57.0657    57.0657     1  72.534433 0.0136308 0.907380

Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: reConc ~ cenAge + BMI + (0 + cenAge | HNDid) + (1 | Seq)
   Data: exConc
Control: lmerControl(check.nobs.vs.nRE = "warning")

REML criterion at convergence: 1717.5

Scaled residuals: 
       Min         1Q     Median         3Q        Max 
-2.2590753 -0.4952630 -0.1042330  0.2763242  4.5876287 

Random effects:
 Groups   Name        Variance Std.Dev.
 HNDid    cenAge      2305.072 48.01116
 Seq      (Intercept) 1787.044 42.27344
 Residual             4199.589 64.80424
Number of obs: 148, groups:  HNDid, 74; Seq, 31

Fixed effects:
              Estimate Std. Error         df  t value  Pr(>|t|)
(Intercept)  -3.849555  39.784411 131.295650 -0.09676 0.9230642
cenAge      -21.725121   8.588779  39.348750 -2.52948 0.0155376
BMI           3.930299   1.469756 134.115650  2.67412 0.0084244

Correlation of Fixed Effects:
       (Intr) cenAge
cenAge  0.066       
BMI    -0.963 -0.023


Analysis of variance
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
          Sum Sq   Mean Sq NumDF      DenDF   F.value    Pr(>F)
cenAge 26870.042 26870.042     1  39.348746 6.3982552 0.0155376
BMI    30030.837 30030.837     1 134.115646 7.1508991 0.0084244

From these analyses, concentrations decline over time but are associated directly with BMI such that concentrations are greater at greater BMIs. However, the absence of an age×BMI interaction suggests that change over time is unrelated to the association of BMI with concentration. These results are illustrated in the plot showing the predicting change in concentration in 3 BMI groups (22.5, normal; 27.5, overweight; and 32.5, obese).

plot of chunk long.BMI.1.plot

Cigarette smoking

Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: reConc ~ cenAge * CigaretteCurr + (0 + cenAge | HNDid) + (1 |      Seq)
   Data: exConc
Control: lmerControl(check.nobs.vs.nRE = "warning")

REML criterion at convergence: 1605.2

Scaled residuals: 
       Min         1Q     Median         3Q        Max 
-1.9475190 -0.4710126 -0.1359470  0.2661056  4.6179326 

Random effects:
 Groups   Name        Variance Std.Dev.
 HNDid    cenAge      1784.920 42.24832
 Seq      (Intercept) 1403.093 37.45788
 Residual             4957.886 70.41226
Number of obs: 139, groups:  HNDid, 73; Seq, 31

Fixed effects:
                         Estimate Std. Error         df  t value          Pr(>|t|)
(Intercept)            116.338017  14.971074  74.698840  7.77085 0.000000000033278
cenAge                 -21.579008  16.008156  56.093040 -1.34800          0.183077
CigaretteCurrNo        -29.153713  17.190076 134.635990 -1.69596          0.092204
cenAge:CigaretteCurrNo   3.474321  19.035273  57.917920  0.18252          0.855812

Correlation of Fixed Effects:
            (Intr) cenAge CgrtCN
cenAge       0.366              
CigarttCrrN -0.717 -0.337       
cnAg:CgrtCN -0.313 -0.849  0.334


Analysis of variance
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
                         Sum Sq    Mean Sq NumDF      DenDF   F.value   Pr(>F)
cenAge               22168.6173 22168.6173     1  45.204218 4.4713851 0.040014
CigaretteCurr        14260.3010 14260.3010     1 134.606676 2.8762866 0.092205
cenAge:CigaretteCurr   165.1649   165.1649     1  57.917926 0.0333136 0.855812

Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: reConc ~ cenAge + CigaretteCurr + (0 + cenAge | HNDid) + (1 |      Seq)
   Data: exConc
Control: lmerControl(check.nobs.vs.nRE = "warning")

REML criterion at convergence: 1612.9

Scaled residuals: 
       Min         1Q     Median         3Q        Max 
-1.9238677 -0.4819876 -0.1452019  0.2805955  4.6475664 

Random effects:
 Groups   Name        Variance Std.Dev.
 HNDid    cenAge      1733.367 41.63372
 Seq      (Intercept) 1435.631 37.88972
 Residual             4928.594 70.20394
Number of obs: 139, groups:  HNDid, 73; Seq, 31

Fixed effects:
                 Estimate Std. Error        df  t value          Pr(>|t|)
(Intercept)     117.26180   14.21455  70.17103  8.24942 0.000000000006239
cenAge          -19.20389    8.37700  40.27189 -2.29245          0.027180
CigaretteCurrNo -30.43064   16.13559 131.90789 -1.88593          0.061503

Correlation of Fixed Effects:
            (Intr) cenAge
cenAge       0.201       
CigarttCrrN -0.682 -0.108


Analysis of variance
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
                 Sum Sq   Mean Sq NumDF      DenDF   F.value   Pr(>F)
cenAge        25901.473 25901.473     1  40.272135 5.2553476 0.027180
CigaretteCurr 17529.734 17529.734     1 131.930908 3.5567416 0.061503

Diabetes diagnosis

Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: reConc ~ cenAge * dxDiabetes + (0 + cenAge | HNDid) + (1 | Seq)
   Data: exConc
Control: lmerControl(check.nobs.vs.nRE = "warning")

REML criterion at convergence: 1678.1

Scaled residuals: 
       Min         1Q     Median         3Q        Max 
-1.8192568 -0.4740600 -0.1233043  0.3332761  3.7865585 

Random effects:
 Groups   Name        Variance Std.Dev.
 HNDid    cenAge      2596.311 50.95401
 Seq      (Intercept) 2411.899 49.11109
 Residual             3599.304 59.99420
Number of obs: 148, groups:  HNDid, 74; Seq, 31

Fixed effects:
                               Estimate Std. Error         df  t value       Pr(>|t|)
(Intercept)                   90.576608  12.248634  34.445080  7.39483 0.000000013124
cenAge                       -15.023841   9.669285  43.819900 -1.55377      0.1274328
dxDiabetespreDiabetes         38.447685  18.005770  88.903880  2.13530      0.0354868
dxDiabetesDiabetes            65.796741  31.347244 128.355210  2.09896      0.0377792
cenAge:dxDiabetespreDiabetes -63.765410  21.079856 105.359620 -3.02495      0.0031245
cenAge:dxDiabetesDiabetes    -56.519735  29.627355 101.349160 -1.90769      0.0592623

Correlation of Fixed Effects:
              (Intr) cenAge dxDbtspD dxDbtsDb cnAg:dxDbtspD
cenAge         0.223                                       
dxDbtsprDbt   -0.302 -0.182                                
dxDibtsDbts   -0.220 -0.076  0.155                         
cnAg:dxDbtspD -0.084 -0.310 -0.103    0.068                
cnAg:dxDbtsDb -0.015 -0.257  0.083   -0.366    0.201       


Analysis of variance
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
                     Sum Sq   Mean Sq NumDF     DenDF    F.value      Pr(>F)
cenAge            61785.931 61785.931     1  67.22876 17.1660782 0.000097886
dxDiabetes        27936.903 13968.451     2 109.43818  3.8808759   0.0235311
cenAge:dxDiabetes 39278.401 19639.200     2 114.65262  5.4563886   0.0054502

Linear mixed model fit by REML 
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: reConc ~ cenAge + dxDiabetes + (0 + cenAge | HNDid) + (1 | Seq)
   Data: exConc
Control: lmerControl(check.nobs.vs.nRE = "warning")

REML criterion at convergence: 1704.3

Scaled residuals: 
       Min         1Q     Median         3Q        Max 
-1.9845595 -0.5177364 -0.1085955  0.2613874  4.5498785 

Random effects:
 Groups   Name        Variance Std.Dev.
 HNDid    cenAge      1918.972 43.80608
 Seq      (Intercept) 2088.430 45.69934
 Residual             4368.684 66.09602
Number of obs: 148, groups:  HNDid, 74; Seq, 31

Fixed effects:
                        Estimate Std. Error         df  t value       Pr(>|t|)
(Intercept)            86.490687  12.019816  36.997800  7.19567 0.000000015581
cenAge                -27.426299   8.496561  42.911200 -3.22793      0.0023913
dxDiabetespreDiabetes  35.501892  18.879866 111.744000  1.88041      0.0626559
dxDiabetesDiabetes     63.024025  29.756530 143.648600  2.11799      0.0358978

Correlation of Fixed Effects:
            (Intr) cenAge dxDbtspD
cenAge       0.249                
dxDbtsprDbt -0.337 -0.233         
dxDibtsDbts -0.248 -0.167  0.211  


Analysis of variance
Analysis of Variance Table of type III  with  Satterthwaite 
approximation for degrees of freedom
              Sum Sq   Mean Sq NumDF      DenDF    F.value    Pr(>F)
cenAge     45519.632 45519.632     1  42.910811 10.4195288 0.0023913
dxDiabetes 29002.771 14501.386     2 127.244987  3.3193943 0.0393326

plot of chunk long.Dia.1.plot