Module10

Author

Hyunjeong Sin

Read the data

enroll <- read.csv("enrollmentForecast.csv")
library(ggplot2)
str(enroll)
'data.frame':   29 obs. of  5 variables:
 $ YEAR : int  1 2 3 4 5 6 7 8 9 10 ...
 $ ROLL : int  5501 5945 6629 7556 8716 9369 9920 10167 11084 12504 ...
 $ UNEM : num  8.1 7 7.3 7.5 7 6.4 6.5 6.4 6.3 7.7 ...
 $ HGRAD: int  9552 9680 9731 11666 14675 15265 15484 15723 16501 16890 ...
 $ INC  : int  1923 1961 1979 2030 2112 2192 2235 2351 2411 2475 ...
summary(enroll)
      YEAR         ROLL            UNEM            HGRAD            INC      
 Min.   : 1   Min.   : 5501   Min.   : 5.700   Min.   : 9552   Min.   :1923  
 1st Qu.: 8   1st Qu.:10167   1st Qu.: 7.000   1st Qu.:15723   1st Qu.:2351  
 Median :15   Median :14395   Median : 7.500   Median :17203   Median :2863  
 Mean   :15   Mean   :12707   Mean   : 7.717   Mean   :16528   Mean   :2729  
 3rd Qu.:22   3rd Qu.:14969   3rd Qu.: 8.200   3rd Qu.:18266   3rd Qu.:3127  
 Max.   :29   Max.   :16081   Max.   :10.100   Max.   :19800   Max.   :3345  

Make scatterplots of ROLL against the other variables

ggplot(enroll, aes(x = UNEM, y = ROLL)) + geom_point() + ggtitle("Enrollment vs Unemployment")

ggplot(enroll, aes(x = HGRAD, y = ROLL)) + geom_point() + ggtitle("Enrollment vs High School Graduates")

ggplot(enroll, aes(x = INC, y = ROLL)) + geom_point() + ggtitle("Enrollment vs Income")

Build a linear model using UNEM and number of spring HGRAD to predict the fall enrollment

model1 = lm(ROLL ~ UNEM + HGRAD, data = enroll)

Investigate the model by using summary() & anova()

summary(model1)

Call:
lm(formula = ROLL ~ UNEM + HGRAD, data = enroll)

Residuals:
    Min      1Q  Median      3Q     Max 
-2102.2  -861.6  -349.4   374.5  3603.5 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -8.256e+03  2.052e+03  -4.023  0.00044 ***
UNEM         6.983e+02  2.244e+02   3.111  0.00449 ** 
HGRAD        9.423e-01  8.613e-02  10.941 3.16e-11 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1313 on 26 degrees of freedom
Multiple R-squared:  0.8489,    Adjusted R-squared:  0.8373 
F-statistic: 73.03 on 2 and 26 DF,  p-value: 2.144e-11
anova(model1)
Analysis of Variance Table

Response: ROLL
          Df    Sum Sq   Mean Sq F value    Pr(>F)    
UNEM       1  45407767  45407767  26.349 2.366e-05 ***
HGRAD      1 206279143 206279143 119.701 3.157e-11 ***
Residuals 26  44805568   1723291                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Make a residual plot and check for any bias in the model

plot(model1, which = 1)

hist(residuals(model1))

The residuals vs. fitted plot shows a curved pattern, suggesting that the model may not fully capture the relationship between the variables. Additionally, the residuals histogram shows many residuals between -1000 and 0 with slight right skewness, indicating an imbalance. Overall, these results suggest that the model may be slightly biased.

Estimate the expected fall enrollment (if UNEM is 9% & spring HGRAD is 25,000)

newdata = data.frame(UNEM = 9, HGRAD = 25000)
predict(model1, newdata)
       1 
21585.58 

Build a second model which includes per capita income (INC)

model2 = lm(ROLL ~ UNEM + HGRAD + INC, data = enroll)
summary(model2)

Call:
lm(formula = ROLL ~ UNEM + HGRAD + INC, data = enroll)

Residuals:
     Min       1Q   Median       3Q      Max 
-1148.84  -489.71    -1.88   387.40  1425.75 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -9.153e+03  1.053e+03  -8.691 5.02e-09 ***
UNEM         4.501e+02  1.182e+02   3.809 0.000807 ***
HGRAD        4.065e-01  7.602e-02   5.347 1.52e-05 ***
INC          4.275e+00  4.947e-01   8.642 5.59e-09 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 670.4 on 25 degrees of freedom
Multiple R-squared:  0.9621,    Adjusted R-squared:  0.9576 
F-statistic: 211.5 on 3 and 25 DF,  p-value: < 2.2e-16

Compare the two models with anova()

anova(model1, model2)
Analysis of Variance Table

Model 1: ROLL ~ UNEM + HGRAD
Model 2: ROLL ~ UNEM + HGRAD + INC
  Res.Df      RSS Df Sum of Sq     F    Pr(>F)    
1     26 44805568                                 
2     25 11237313  1  33568255 74.68 5.594e-09 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Model 2 is a significant improvement because the addition of the INC variable substantially reduces the residual sum of squares and yields a highly significant p-value of less than 0.001 in the ANOVA test. This indicates that INC explains additional variance in enrollment beyond UNEM and HGRAD.