Carefully explain the differences between the KNN classifier and KNN regression methods.
Answer: KNN classifier and KNN regression are use the K-th nearest Neighbor to get the value. But, KNN classifier predics a category of input by checking the major category of the k-th nearest neighbor. KNN regression predicts a value by averaging of values of the k-th nearest neighbor.
This question involves the use of multiple linear regression on the
Auto
data set.
Produce a scatterplot matrix which includes all of the variables in the data set.
library(ISLR)
data(Auto)
pairs(Auto)
Compute the matrix of correlations between the variables using the function cor(). You will need to exclude the name variable, which is qualitative.
Auto_quant <- Auto[, -which(names(Auto) == "name")]
cor_matrix = cor(Auto_quant)
cor_matrix
## mpg cylinders displacement horsepower weight
## mpg 1.0000000 -0.7776175 -0.8051269 -0.7784268 -0.8322442
## cylinders -0.7776175 1.0000000 0.9508233 0.8429834 0.8975273
## displacement -0.8051269 0.9508233 1.0000000 0.8972570 0.9329944
## horsepower -0.7784268 0.8429834 0.8972570 1.0000000 0.8645377
## weight -0.8322442 0.8975273 0.9329944 0.8645377 1.0000000
## acceleration 0.4233285 -0.5046834 -0.5438005 -0.6891955 -0.4168392
## year 0.5805410 -0.3456474 -0.3698552 -0.4163615 -0.3091199
## origin 0.5652088 -0.5689316 -0.6145351 -0.4551715 -0.5850054
## acceleration year origin
## mpg 0.4233285 0.5805410 0.5652088
## cylinders -0.5046834 -0.3456474 -0.5689316
## displacement -0.5438005 -0.3698552 -0.6145351
## horsepower -0.6891955 -0.4163615 -0.4551715
## weight -0.4168392 -0.3091199 -0.5850054
## acceleration 1.0000000 0.2903161 0.2127458
## year 0.2903161 1.0000000 0.1815277
## origin 0.2127458 0.1815277 1.0000000
Use the lm() function to perform a multiple linear regression with mpg as the response and all other variables except name as the predictors. Use the summary() function to print the results.Comment on the output.
Answer:
is there Relationship between the predictor and the response? => F-value is 252.4 so, we can say “Yes”
Which predictors appear to have a statistically significant relationship to the response? => year, displacement, weight, origin
What does the coefficient for the year variable suggest? => the mpg increases by about 0.75 per year
lm_model <- lm(mpg~.-name, data=Auto)
summary(lm_model)
##
## Call:
## lm(formula = mpg ~ . - name, data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.5903 -2.1565 -0.1169 1.8690 13.0604
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.218435 4.644294 -3.707 0.00024 ***
## cylinders -0.493376 0.323282 -1.526 0.12780
## displacement 0.019896 0.007515 2.647 0.00844 **
## horsepower -0.016951 0.013787 -1.230 0.21963
## weight -0.006474 0.000652 -9.929 < 2e-16 ***
## acceleration 0.080576 0.098845 0.815 0.41548
## year 0.750773 0.050973 14.729 < 2e-16 ***
## origin 1.426141 0.278136 5.127 4.67e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared: 0.8215, Adjusted R-squared: 0.8182
## F-statistic: 252.4 on 7 and 384 DF, p-value: < 2.2e-16
Use the plot() function to produce diagnostic plots of the linearregression fit. Comment on any problems you see with the fit. Do the residual plots suggest any unusually large outliers? => In the Residuals vs Fitted plot, some points in high mpg have large residuals.
Does the leverage plot identify any observations with unusually high leverage? => In the Residuals vs Leverage plot, some points have high leverage values.
plot(lm_model)
Use the * and : symbols to fit linear regression models with interaction effects.
model_lm_inter <- lm(mpg ~ year * weight, data = Auto)
summary(model_lm_inter)
##
## Call:
## lm(formula = mpg ~ year * weight, data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.0397 -1.9956 -0.0983 1.6525 12.9896
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.105e+02 1.295e+01 -8.531 3.30e-16 ***
## year 2.040e+00 1.718e-01 11.876 < 2e-16 ***
## weight 2.755e-02 4.413e-03 6.242 1.14e-09 ***
## year:weight -4.579e-04 5.907e-05 -7.752 8.02e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.193 on 388 degrees of freedom
## Multiple R-squared: 0.8339, Adjusted R-squared: 0.8326
## F-statistic: 649.3 on 3 and 388 DF, p-value: < 2.2e-16
: Symbol => The coefficient of year:weight is -9.882e-05 and the t-value is is -24.07 with <2e-16 p-value. The combination of year and weight has an effect on mpg.
model_lm_inter2 <- lm(mpg ~ year : weight, data = Auto)
summary(model_lm_inter2)
##
## Call:
## lm(formula = mpg ~ year:weight, data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12.3849 -3.3041 -0.5901 2.6158 17.5737
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.571e+01 9.581e-01 47.71 <2e-16 ***
## year:weight -9.882e-05 4.105e-06 -24.07 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.957 on 390 degrees of freedom
## Multiple R-squared: 0.5977, Adjusted R-squared: 0.5967
## F-statistic: 579.4 on 1 and 390 DF, p-value: < 2.2e-16
Do any interactions appear to be statistically significant? => year and weight has significant interaction.
Try a few different transformations of the variables, such as log(X), √X, X2. Comment on your findings.
=> log(weight) has more correlation with mpg than orignal value. F-statistic: 878.8 vs 967.3, t-value: -29.64 vs -31.10
# log(x)
model_log <- lm(mpg ~ log(weight), data = Auto)
# Squart
model_sqrt <- lm(mpg ~ sqrt(weight), data = Auto)
# ^2
model_sq <- lm(mpg ~ I(weight^2), data = Auto)
#Orig
model_orig <- lm(mpg ~ weight, data = Auto)
summary(model_log)
##
## Call:
## lm(formula = mpg ~ log(weight), data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12.4315 -2.6752 -0.2888 1.9429 16.0136
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 209.9433 6.0002 34.99 <2e-16 ***
## log(weight) -23.4317 0.7534 -31.10 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.189 on 390 degrees of freedom
## Multiple R-squared: 0.7127, Adjusted R-squared: 0.7119
## F-statistic: 967.3 on 1 and 390 DF, p-value: < 2.2e-16
summary(model_sqrt)
##
## Call:
## lm(formula = mpg ~ sqrt(weight), data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12.2402 -2.9005 -0.3708 2.0791 16.2296
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 69.67218 1.52649 45.64 <2e-16 ***
## sqrt(weight) -0.85560 0.02797 -30.59 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.239 on 390 degrees of freedom
## Multiple R-squared: 0.7058, Adjusted R-squared: 0.705
## F-statistic: 935.4 on 1 and 390 DF, p-value: < 2.2e-16
summary(model_sq)
##
## Call:
## lm(formula = mpg ~ I(weight^2), data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.2813 -3.1744 -0.4708 2.2708 17.2506
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.447e+01 4.708e-01 73.22 <2e-16 ***
## I(weight^2) -1.150e-06 4.266e-08 -26.96 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.619 on 390 degrees of freedom
## Multiple R-squared: 0.6507, Adjusted R-squared: 0.6498
## F-statistic: 726.6 on 1 and 390 DF, p-value: < 2.2e-16
summary(model_orig)
##
## Call:
## lm(formula = mpg ~ weight, data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.9736 -2.7556 -0.3358 2.1379 16.5194
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 46.216524 0.798673 57.87 <2e-16 ***
## weight -0.007647 0.000258 -29.64 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.333 on 390 degrees of freedom
## Multiple R-squared: 0.6926, Adjusted R-squared: 0.6918
## F-statistic: 878.8 on 1 and 390 DF, p-value: < 2.2e-16
This question should be answered using the Carseats
data
set.
Fit a multiple regression model to predict Sales using Price,Urban, and US.
data("Carseats")
#head(Carseats)
model_Carseats = lm(Sales ~ Price + Urban + US, data=Carseats)
summary(model_Carseats)
##
## Call:
## lm(formula = Sales ~ Price + Urban + US, data = Carseats)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.9206 -1.6220 -0.0564 1.5786 7.0581
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.043469 0.651012 20.036 < 2e-16 ***
## Price -0.054459 0.005242 -10.389 < 2e-16 ***
## UrbanYes -0.021916 0.271650 -0.081 0.936
## USYes 1.200573 0.259042 4.635 4.86e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared: 0.2393, Adjusted R-squared: 0.2335
## F-statistic: 41.52 on 3 and 396 DF, p-value: < 2.2e-16
Provide an interpretation of each coefficient in the model. Becareful—some of the variables in the model are qualitative!
- Price: t-value is -10.389 with <2e-16 p-value. We can say Sales decreases by 0.054 units. - UrbanYes: P-value is very high, so it is not statistically significant. - USYes: P-value is 4.86e-06. so it is statistically significant.
Write out the model in equation form, being careful to handle the qualitative variables properly.
Sales = 13.0435 -0.0544*Price -0.0219*UrbanYes +1.2006*USYes
For which of the predictors can you reject the null hypothesis H0 : βj = 0?
Price and USYes have low p-value. So those predictors can reject the null hypothesis H0 : βj = 0
On the basis of your response to the previous question, fit a smaller model that only uses the predictors for which there is evidence of association with the outcome.
model_Carseats_smaller = lm(Sales ~ Price + US, data=Carseats)
summary(model_Carseats_smaller)
##
## Call:
## lm(formula = Sales ~ Price + US, data = Carseats)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.9269 -1.6286 -0.0574 1.5766 7.0515
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.03079 0.63098 20.652 < 2e-16 ***
## Price -0.05448 0.00523 -10.416 < 2e-16 ***
## USYes 1.19964 0.25846 4.641 4.71e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.469 on 397 degrees of freedom
## Multiple R-squared: 0.2393, Adjusted R-squared: 0.2354
## F-statistic: 62.43 on 2 and 397 DF, p-value: < 2.2e-16
How well do the models in (a) and (e) fit the data?
smaller model has more higher F-value=62.43 than original model F-value=41.52
Using the model from (e), obtain 95 % confidence intervals for the coefficient(s).
confint(model_Carseats_smaller)
## 2.5 % 97.5 %
## (Intercept) 11.79032020 14.27126531
## Price -0.06475984 -0.04419543
## USYes 0.69151957 1.70776632
Is there evidence of outliers or high leverage observations in the model from (e)?
In Q-Q Residual, We can see some points have high value of Standardized residual.And we can also observe some point are unusually high value.
plot(model_Carseats_smaller)
This problem involves simple linear regression without an intercept.
Recall that the coefficient estimate β for the linear regression of Y onto X without an intercept is given by (3.38). Under what circumstance is the coefficient estimate for the regression of X onto Y the same as the coefficient estimate for the regression of Y onto X?
In order for the regression coefficient of X onto Y to be the same as that of Y onto X, the sum of squares of X and Y must be equal.
Generate an example in R with n = 100 observations in which the coefficient estimate for the regression of X onto Y is different from the coefficient estimate for the regression of Y onto X.
n <- 100
x <- rnorm(n)
y <- 2 * x + rnorm(n) # Add noise so β estimates differ
# Regression of Y onto X
beta_y_on_x <- sum(x * y) / sum(x^2)
# Regression of X onto Y
beta_x_on_y <- sum(x * y) / sum(y^2)
cat("β (Y ~ X):", beta_y_on_x, "\n")
## β (Y ~ X): 2.037694
cat("β (X ~ Y):", beta_x_on_y, "\n")
## β (X ~ Y): 0.3753051
Generate an example in R with n = 100 observations in which the coefficient estimate for the regression of X onto Y is the same as the coefficient estimate for the regression of Y onto X.
set.seed(130)
n <- 100
x <- rnorm(n)
y <- x / sqrt(sum(x^2)) * sqrt(sum(x^2))
# Regression of Y onto X
beta_y_on_x <- sum(x * y) / sum(x^2)
# Regression of X onto Y
beta_x_on_y <- sum(x * y) / sum(y^2)
cat("β (Y ~ X):", beta_y_on_x, "\n")
## β (Y ~ X): 1
cat("β (X ~ Y):", beta_x_on_y, "\n")
## β (X ~ Y): 1