data <- read_excel("../00_data/NationoalParkSpecies1.xlsx")
data %>%
summarize(num_mammals = sum(str_detect(CategoryName, "^Mammal$")))
## # A tibble: 1 × 1
## num_mammals
## <int>
## 1 55
data %>%
summarize(num_birds = sum(str_detect(CategoryName, "^Bird$")))
## # A tibble: 1 × 1
## num_birds
## <int>
## 1 364
colours <- c("red", "orange", "yellow", "green", "blue", "purple")
colour_match <- str_c(colours, collapse = "|")
# Filter rows with color in CommonNames
has_colour <- str_subset(data$CommonNames, colour_match)
# Extract the color word from the CommonName
str_extract(has_colour, colour_match)
## [1] "red" "red" "red" "red" "red" "red" "red" "red"
## [9] "red" "red" "red" "red" "yellow" "red" "purple" "green"
## [17] "red" "red" "red" "red" "red" "red" "red" "green"
## [25] "green" "green" "red"
data %>%
mutate(SciName_replaced = str_replace(SciName, "^[A-Z]", "-")) %>%
select(SciName, SciName_replaced)
## # A tibble: 1,709 × 2
## SciName SciName_replaced
## <chr> <chr>
## 1 Alces alces -lces alces
## 2 Odocoileus virginianus -docoileus virginianus
## 3 Canis latrans -anis latrans
## 4 Canis lupus -anis lupus
## 5 Vulpes vulpes -ulpes vulpes
## 6 Lynx canadensis -ynx canadensis
## 7 Lynx rufus -ynx rufus
## 8 Mephitis mephitis -ephitis mephitis
## 9 Lutra canadensis -utra canadensis
## 10 Martes pennanti -artes pennanti
## # ℹ 1,699 more rows